1. II zasada dynamiki Newtona

Podobne dokumenty
Ruch jednostajnie zmienny prostoliniowy

Doświadczalne badanie drugiej zasady dynamiki Newtona

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda.

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

02. WYZNACZANIE WARTOŚCI PRZYSPIESZENIA W RUCHU JEDNOSTAJNIE PRZYSPIESZONYM ORAZ PRZYSPIESZENIA ZIEMSKIEGO Z WYKORZYSTANIEM RÓWNI POCHYŁEJ

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

We wszystkich zadaniach przyjmij wartość przyspieszenia ziemskiego g = 10 2

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

Ruch Demonstracje z kinematyki i dynamiki przeprowadzane przy wykorzystanie ultradźwiękowego czujnika połoŝenia i linii powietrznej.

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyn i współczynnika sztywności zastępczej

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Elementy rachunku różniczkowego i całkowego

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

Ćwiczenie: "Kinematyka"

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

DYNAMIKA ZADANIA. Zadanie DYN1

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Wektory, układ współrzędnych

DYNAMIKA SIŁA I JEJ CECHY

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

v=s/t [m/s] s=v t [(m/s) s=m]

Praca i energia Mechanika: praca i energia, zasada zachowania energii; GLX plik: work energy

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

Zasady dynamiki Newtona

PF11- Dynamika bryły sztywnej.

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Podstawy niepewności pomiarowych Ćwiczenia

Funkcja liniowa - podsumowanie

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Kinematyka: opis ruchu

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Graficzne opracowanie wyników pomiarów 1

W efekcie złożenia tych dwóch ruchów ciało porusza się ruchem złożonym po torze, który w tym przypadku jest łukiem paraboli.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

KOŚć i przyspieszenie. O PRĘDKOŚCI. Aby ZROZumIEć to POjĘCIE,

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Treści dopełniające Uczeń potrafi:

KINEMATYKA czyli opis ruchu. Marian Talar

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

DYNAMIKA dr Mikolaj Szopa

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Ruch prostoliniowy. zmienny. dr inż. Romuald Kędzierski

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

Ćwiczenie nr 43: HALOTRON

Ruch drgający i falowy

Przykładowe zdania testowe I semestr,

Zakład Dydaktyki Fizyki UMK

Klasa I gimnazjum. PK nr 4 semestr II. Recenzja pracy. pieczątka/nazwa szkoły FIZYKA I ASTROMINA /2010/2011

Zasada zachowania pędu

ZASADY DYNAMIKI NEWTONA

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Funkcje IV. Wymagania egzaminacyjne:

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA MAZOWIECKIEGO

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny

Kinematyka: opis ruchu

Jak ciężka jest masa?

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

lim Np. lim jest wyrażeniem typu /, a

FUNKCJA LINIOWA - WYKRES

Zasady oceniania karta pracy

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ZADANIA Z KINEMATYKI

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

SZCZEGÓŁOWE CELE EDUKACYJNE

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Transkrypt:

1 1. II zasada dynamiki Newtona 1.1. Cel ćwiczenia Cel ćwiczenia: Sprawdzenie II zasady dynamiki dla ruchu dla ciała po poziomym torze pozbawionym tarcia. Zagadnienia praktyki laboratoryjnej: Pomiar czasu za pomocą stopera z bramkami optycznym, wykonywanie wykresów, linearyzacja zależności funkcyjnej, szacowanie niepewności pomiarowych. Zagadnienia teoretyczne z fizyki zasady dynamiki Newtona dla punktu materialnego, jednostka siły, ruch jednowymiarowy ciała pod wpływem stałej siły, ruch jednostajnie zmienny, zwrot (znak) prędkości początkowej i przyspieszenia w tym ruchu. 1.. Opis ćwiczenia Przed wykonaniem ćwiczenia należy przypomnieć sobie teorię dotyczącą ruchu jednostajnie zmiennego i II zasady dynamiki Newtona (p. 0.5) rozwiązując także załączone zadania. Ćwiczenie wykonywane będzie przy użyciu toru po którym poruszać się będzie ślizgacz rozpędzany przez ciężarek podwieszony na nici przeciągniętej przez bloczek. Ciężarek przyspieszający nie powinien mieć masy większej niż 0 g. Dzięki zastosowaniu poduszki powietrznej ślizgacz porusza się po torze z minimalnym tarciem, które w praktyce można tu zaniedbać. Opory powietrza także są minimalne ze względu na niewielkie prędkości. Jeżeli tor jest dobrze wypoziomowany to ślizgacz powinien zasadniczo spoczywać jeśli wcześniej nie został rozpędzony. Pomiar czasu wykonywany jest przez czterokanałowy stoper z bramkami świetlnymi. Pomiar czasu jest jest uruchamiany automatycznie po zwolnieniu magnesu startowego wężykiem spustowym a zatrzymywany w kolejnych kanałach po przesłonięciu odpowiedniej bramki. Elektroniczny stoper ma kilka rodzajów (modów) pracy. Należy sprawdzać, czy włączony jest odpowiedni. Ze względu na hałas dmuchawę toru należy włączać tylko na czas pomiaru. Wszystkich ustawień, zapisywania wyników dokonuj przy dmuchawie wyłączonej. 1.3. Przebieg ekserymentu 1. Zapoznaj się z działaniem stopera w każdym modzie pracy. Przećwicz uruchamianie stopera bez włączania dmuchawy dla unikania hałasu.. Ustaw bramki pomiarowe tak aby dzieliły dystans pomiarowy mniej więcej równe części pamiętając aby i ostatnią bramkę ślizgacz pokonał zanim ciężarek przyspieszający dotknie podłogi. Pozycji bramek nie zmieniaj podczas całego ćwiczenia. 3. Odczytaj położenie ślizgacza w pozycji startowej. Zmierz dokładnie odległości x i od pozycji startowej przy których następuje przełączenie stanu bramek (wykorzystaj do tego celu tryb pracy stopera do pomiaru czasu przesłonięcia bramek). Oszacuj niepewność x pomiaru odległości. Wyniki zapisz w protokole. 4. Za pomocą stopera ustawionego w trybie pomiaru czasu całkowitego zmierz czasy pokonywania odległości x 1... x 4. Zapisz dane. Pomiar wykonaj pięciokrotnie co da informację o powtarzalności uzyskanych wyników. Wyniki zapisz. 5. Zważ (lub odczytaj) masę ślizgacza oraz masę ciężarka przyspieszającego. Dane zapisz w protokole. Uwzględnij niepewności pomiarowe. 1.4. Opracowanie wyników Metoda I 1. Wyniki pomiarów wpisz do tabeli wg poniżej zamieszczonego wzoru. Uzupełnij kolumny dokonując stosownych obliczeń. Czas t i oblicz jako średnią z pięciu dokonanych pomiarów a t i jako niepewność przeciętną lub jako odchylenie standardowe. t i t i x i x a i ā a i Lp [ s ] [ s ] [ cm ] [ cm ] [ cm/s ] [ cm/s ] 1 3 4 5 Przyspieszenie a i oblicz ze wzoru: a i = x i t i. Oblicz wartość średnią przyspieszenia ā oraz jego niepewność pomiarową (jako niepewność przeciętną lub odchylenie standardowe). Wynik podaj w stosownej formie odpowiednio zaokrąglając liczby.

3. Sporządź wykres zależności położeń x i od czasów t i. Zaznacz pola niepewności pomiarowych. Odpowiednio dobierz skalę czasu i położenia tak by cały wykres był dostatecznie duży i czytelny. 3. Dokonaj regresji liniowej. Użyj albo metody graficznej rysując prostą najlepiej pasującą do naniesionych punktów albo też zastosuj równania metody najmniejszych kwadratów. W przypadku metody graficznej po narysowaniu prostej wyznacz jej współczynnik kierunkowy (określimy go jako B) a w przypadku metody najmniejszych kwadratów najpierw wyznacz parametry prostej (w tym jej współczynnik kierunkowy) a potem narysuj prostą na podstawie obliczonych parametrów. 4. Współczynnik kierunkowy wyznaczonej prostej jest, jak wynika ze wzoru x = a t, 4. Na wykonany wykres nanieś parabolę, parametr której oblicz z otrzymanej, średniej wartości ā. Punkty pomiarowe naniesione na wykres powinny układać się wzdłuż narysowanej paraboli. Możliwe są oczywiście odchyłki ze względu na skończoną dokładność pomiarów. Metoda II 1. Wyniki pomiarów wpisz do tabeli wg poniżej zamieszczonego wzoru. Uzupełnij kolumny dokonując stosownych obliczeń. t i t i x i x Lp [ s ] [ s ] [ cm ] [ cm ] 1 3 4 5. Sporządź wykres zależności położenia x i od kwadratu czasu t i. Punkty pomiarowe powinny układać się wzdłuż prostej (z możliwymi odchyłkami). jedną drugą przyspieszenia z jakim poruszał się ślizgacz. 5. Oszacuj niepewność pomiarową obliczonego przyspieszenia. W metodzie graficznej przez określenie sensownego zakresu współczynnika kierunkowego a w metodzie graficznej stosując odpowiednie wzory metody najmniejszych kwadratów. Niepewność pomiarowa przyspieszenia będzie równa a = a B B, gdzie B jest niepewnością wyznaczenia współczynnika kierunkowego. Korzystając z masy ślizgacza i ciężarka przyspieszającego oblicz oczekiwane przyspieszenie z jakim powinien poruszać się ślizgacz (patrz ćw. 3). Niepewność pomiaru oblicz ze wzoru ( g a = a g + m 1 + m ), m 1 m gdzie m 1 i m oznaczają odpowiednio masę ślizgacza i ciężarka przyspieszającego a m 1 i m niepewności pomiarowe tych wielkości. Po wszystkich obliczeniach i sporządzeniu obydwu wykresów tzn. x(t) oraz x(t ), podaj wyniki końcowe obliczeń (przyspieszenie wg obydwu metod jak i przyspieszenie oczekiwane). Zastosuj stosowną formę odpowiednio zaokrąglając liczby. Sformułuj uwagi i wnioski.

3 1.5. Zagadnienia teoretyczne II zasada dynamiki Newtona Druga zasada dynamiki dla punktu materialnego mówi, że przyspieszenie ciała a jest wprost proporcjonalne do siły wypadkowej F w działającej na ciało a odwrotnie proporcjonalne do masy m tego ciała a kierunek wektora przyspieszenia jest taki sam jak kierunek siły. Podobne zagadnienie odnajdziemy w ćw. 3. Siłą rozpędzającą jest tu siła ciężkości F c działająca na wiszący klocek. Siła ciężkości działająca na klocek poruszający się poziomo nie wpływa na ruch, dociska jedynie klocek do podłoża nie przyspieszając ani nie hamując ruchu. a F w m. Jeżeli siłę wyrazimy w jednostkach [ kg m/s ] nazywanej niutonem [ N ] to powyższa proporcja przechodzi w równość. Dla ruchu jednowymiarowego, bez wektorów, zapisuje się to prawo następującym równaniem: a = F w m. W przypadku gdy siła F w jest stała w czasie to stałe jest także przyspieszenie (ćw. 1a w dalszej części tekstu). Druga zasada dynamiki jest prawdziwa dla każdego ciała (pomijamy tu szczególny przypadek bardzo dużych, relatywistycznych prędkości gdzie wymagane są pewne uzupełnienia) a także dla fragmentów ciał. Klasycznym przykładem wprowadzającym do tego zagadnienia jest przypadek z ćw.. Taki przypadek rozwiązuje się przez dwukrotne zastosowanie II zasady dynamiki dla jednego i drugiego ciała uwzględniając przy tym siłę wzajemnego oddziaływania ciał w tym przypadku reprezentowaną przez siłę naprężenia nici łączącej te ciała. Tak więc przyspieszenie klocka o masie m 1 wynosić będzie a = N m 1 a przyspieszenie klocka o masie m wynosić będzie a = F N m. Z oczywistych względów przyspieszenia obydwu klocków są takie same. Równania powyższe tworzą układ z którego możemy wyznaczyć przyspieszenie a jak i naprężenie N jeśli tylko znamy masy klocków i wartość siły F. Wiszący klocek nie ma jednak zupełniej swobody ponieważ jego ruch hamowany jest przez siłę wywieraną na niego przez nić łączącą obydwa klocki. Tak więc przyspieszenie klocka poruszającego się poziomo wyrazić można jako a = N m a przyspieszenie klocka wiszącego wyrazić można jako a = m 1g N m 1. Znów otrzymujemy układ równań, z którego można wyznaczyć przyspieszenie poruszających się ciał oraz siłę naprężenia nici. Kinematyka ruchu jednostajnie zmiennego Przyspieszenie jest z definicji przyrostem prędkości w jednostkowym czasie czyli (w ujęciu jednowymiarowym): a = v t, lub po przekształceniu v = a t, Jeśli przyspieszenie jest stałe to przyrost prędkości jest proporcjonalny do czasu a więc w każdej sekundzie prędkość zmienia się o taką samą wartość. Taki ruch nazywany jest jednostajnie zmiennym. Jeżeli wartość bezwzględna prędkości jednostajnie rośnie mówimy o ruchu jednostajnie przyspieszonym a gdy maleje o ruchu jednostajnie opóźnionym.

4 w chwili początkowej prędkość wynosi zero możliwe jest także, że prędkość jest niezerowa i skierowana zgodnie lub przeciwnie z kierunkiem siły (i przyspieszenia). Możemy wtedy zapisać O tym, czy mamy do czynienia z ruchem przyspieszonym czy opóźnionym decydują: zwrot prędkości (prędkości początkowej) oraz zwrot przyspieszenia (a tym samym siły zgodnie z II zasadą dynamiki). Ogólnie można zapisać, że v(t) = v 0 + a t Jeśli prędkość początkowa wynosi zero a przyspieszenie jest skierowane z umownym kierunkiem plus to prędkość będzie rosła proporcjonalnie do czasu (przypadek A na rysunku poniżej). Jeśli pędkość początkowa jest mniejsza niż zero (kierunek ruchu jest przeciwny do założonego kierunku plus) a przyspieszenie, a tym samym i siła skierowana zgodnie założonym kierunkiem dodatnim to wartość bezwzględna prędkości będzie najpierw malała by po chwili zatrzymania znów roznąć przypadek B na rysunku. Jeżeli prędkość początkowa natomiast jest większa niż zero a siła (i przyspieszenie) mniejsze niż zero to sytuacja będzie podobna jak w przypadku B lecz ruch odbywał się będzie w przeciwną stronę.(ćw. 1b) Zachodzi pytanie czy możemy na podstawie zależności zmian prędkości od czasu wyznaczyć zależność położenia od czasu? Odpowiedź jest twierdząca. Zacznijmy od najbardziej ogólnego przypadku dowolnie zmieniającej się prędkości jak na przykład na wykresie poniżej. W zaznaczonym, krótkim przedziale czasu trwającym 0,5 s, uznać możemy z niewielkim błędem, że prędkość była stała i wynosiła 9, m/s. Stąd więc obliczyć możemy, że obiekt przemieścił się o x = v n t = 9, 0,5 =,3 m. Dzieląc cały interesujący nas czas na krótkie odcinki i w taki sam sposób obliczając przemieszczenia, a następnie je sumując, możemy obliczyć pokonany dystans. x = n x n = n v n t n W powyższym wzorze n oznacza numer kolejnego przedziału czasowego. Zauważyć należy ponadto, że iloczyn występujący pod znakiem sumy ma swoją interpretację geometryczną. Jest to mianowicie pole zaznaczonego wąskiego paska. Wynika stąd też, że całkowite przemieszczenie jest równe polu pod krzywą zależności prędkości od czasu. Z tym jednak zastrzeżeniem, że to pole należy wyznaczać w jednostkach wykresu a nie na przykład cm. Na powyższym wykresie każdy fragment powierzchni o polu równemu zaznaczonemu, szaremu prostokątowi oznacza przemieszczenie m. Jeżeli sumowanie przeprowadzimy po odcinkach czasu o długościach zmierzających do zera to taka operacja będzie nosiła matematyczne miano całkowania. W przypadku ruchu jednostajnie zmiennego pole pod wykresem zależności v(t) ma kształt trapezu więc łatwo obliczyć pole tej figury a więc i położenie ciała w kolejnych chwilach czasu. W ten sposób można wyprowadzić pomocne równania. Tak więc w ruchu jednostajnie zmiennym równie na obliczanie położenia x w zależności od końcowej chwili czasu t k przy założeniu, że znamy prędkość początkową v 0 oraz przyspieszenie a wygląda następująco: x = v 0 t + 1 at, czyli wykres zależności x(t) w ruchu jednostajnie przyspieszonym jest parabolą. W za-

5 leżności od tego jaki jest znak (czyli kierunek, zwrot) prędkości początkowej i przyspieszenia w odniesieniu do kierunku x parabola ta jest różnie umiejscowiona (ćw. 3). W najprostszym przypadku zerowej prędkości początkowej i przyspieszenia zgodnego z kierunkiem x wykres będzie miał kształt jak na rysunku poniżej a parabola będzie opisana równaniem Ćwiczenie. 4. Na poziomej powierzchni umieszczony jest klocek o masie 3 kg mogący poruszać się bez tarcia. Do niego przymocowany jest sznurek przerzucony przez śliską krawędź, na którego końcu wisi klocek o masie kg. Oblicz z jakim przyspieszeniem poruszają się klocki i z jaką siłą naprężony jest sznurek. x = 1 at, który może też służyć do wyznaczania przyspieszenia jeśli tylko znamy położenie x w danej chwili czasu t a = x t. 1.6. Ćwiczenia sprawdzające Ćwiczenie. 1. Klocek o masie m = kg umieszczony na poziomym stole pozbawionym tarcia porusza się pod wpływem stałej siły F = 0,05 N. (a) Wyznacz przyspieszenie klocka. (b) Narysuj zależność prędkości od czasu gdy w chwili początkowej prędkość wynosi (a) v 0x = 0 m/s, (b) v 0x = 0,5 m/s, (c) v 0x = 0,5 m/s. Ćwiczenie.. Dwie masy m 1 i m umieszczone na poziomym stole pozbawionym tarcia są połączone lekką linką i poruszają się pod wpływem siły F. Wyznacz przyspieszenie układu i naprężenie (siłę naprężenia) linki N. Ćwiczenie. 3. Na podstawie wyników ćw. 1 wykonaj wykres zależności położenia od czasu x(t) dla przedziału 0 10 s dla każdego z przypadków.