Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Proces zliczający musi spełniać warunki: ) N(t), ) N(t) przyjmuje tylko całkowite własności, 3) Jeśli s < t to N(s) N(t), 4) Dla s < t N(t) - N(s) jest równe liczbie zdarzeń zaobserwowanych w przedziale (s, t],
Proces zliczający jest procesem o przyrostach niezależnych jeśli rozkłady liczby zdarzeń obserwowanych w rozłącznych przedziałach czasu są niezależne, np. N(t) nie zależy od N(t s) - N(t). 3
Proces zliczający jest procesem jednorodnym w czasie (stacjonarnym) gdy rozkład liczby zaobserwowanych zdarzeń w przedziale czasu zależy tylko od długości tego przedziału, np. N(t s) - N(t s) ma taki sam rozkład jak N(t ) - N(t ). 4
Proces Poissona jest jednorodnym procesem Markowa o przyrostach niezależnych [ ] [ ] [ ] [ ] 3 5
6 o rozkładzie (por. przykład z poprzedniego wykładu): ) ( X P ( ) t k t t e k t k X X P k X P τ τ! ) ( ) ( k,,... - intensywność procesu, >
Siméon Denis Poisson (78 84), francuski mechanik teoretyk, fizyk i matematyk. W matematyce zajmował się całkami oznaczonymi, równaniami różnicowymi i różniczkowymi oraz teorią prawdopodobieństwa. 7
parametry procesu Poissona: m(t) t t, K(s, t) min(s, t) 8
Przykłady zjawisk modelowanych procesem Poissona. - liczba wyemitowanych cząstek przez ciało promieniotwórcze w pewnym przedziale czasu, - liczba awarii systemu komunikacyjnego w pewnym przedziale czasu, - liczba zgłoszeń do portalu internetowego w pewnym przedziale czasu, 9
Uwaga. ( ) t i j t t ij e i j t i j X X P i X j X P t p τ τ τ τ )! ( ) ( ) ( ) ( dla j i, ) ( t p ij dla j < i,
Problem. T - czas pierwszego zgłoszenia, T n - czas między n - a n-tym zgłoszeniem, Wyznaczyć rozkład tych zmiennych losowych.
Rozwiązanie. {T > t} oznacza zdarzenie, że nie było zgłoszenia w [, t], P( T > t) P( X t ) e t t zatem P( T < t) e F( t) (dystrybuanta rozkładu wykładniczego).
Następnie zauważmy, że z niezależności wynika P { zgłoszeń w( s, s t] T s} P( T > t T s) P brak t { brak zgłoszeń w( s, s t] } e Zatem T też ma rozkład wykładniczy i jest niezależny od T. Itd. 3
Wniosek. Odstępy czasu między kolejnymi zmianami stanów w jednorodnym procesie Poissona są niezależnymi zmiennymi losowymi o tym samym rozkładzie wykładniczym: dla t P( T < t) t e dla t > 4
Twierdzenie. Suma skończonej liczby niezależnych procesów Poissona jest procesem Poissona, którego parametr jest sumą parametrów poszczególnych procesów. 5
Przykład. Strumień awarii pewnego systemu jest modelowany procesem Poissona. Wiadomo, że przeciętnie jedna awaria zdarza się raz na 5 godzin (zatem intensywność tego procesu wynosi, awarii/godz.). a) obliczyć prawdopodobieństwo wystąpienia co najwyżej jednej awarii w ciągu godzin, b) obliczyć prawdopodobieństwo wystąpienia co najmniej dwóch awarii w ciągu godzin, c) obliczyć prawdopodobieństwo bezawaryjnej pracy w ciągu godzin, d) obliczyć prawdopodobieństwo, że czas między kolejnymi awariami będzie większy niż godzin, e) obliczyć wartość oczekiwaną bezawaryjnego czasu pracy tego systemu. 6
Proces urodzeń i śmierci. i - intensywności urodzeń, i,,... j - intensywności śmierci, j,,... [ ] [ ] [ ]... 3 7
Dalej rozpatrujemy proces urodzeń i śmierci ze skończoną liczbą stanów równą N. Niech P(t) [p ij (t)] stochastyczna macierz przejścia i, j,,..., N. 8
Proces urodzeń i śmierci jest jednorodnym procesem Markowa. 9
Dla procesu urodzeń i śmierci macierz intensywności ma postać: [ ] Λ N N N N N N ij ) ( ) ( ) (
wtedy układ równań Kołmogorowa można zapisać w postaci wektorowej: d p( t) p( t)λ dt
Rozwiązanie tego równania ma postać Λt p( t) p() e t! 3 t 3! Λ 3 gdzie e t I Λt Λ Λ...
Uwaga. Proces urodzeń i śmierci ma dla intensywności dodatnich rozkład graniczny postaci: gdzie i... i... i N `... i... i i,,..., N i 3
4 Dowód. Zastosujemy sposób pierwszy. Rozpatrzmy równanie Λ [ ] T N N N N N N N ) ( ) ( ) ( czyli układ równań ( ) ) ( 3 3 n n n n Jeśli przyjąć, że z ; z ; itd. to 3 z n z z z z z stąd z i i przyjmując jako parametr mamy z warunków unormowania poszukiwane wzory.
Przykład. W zakładzie pracują maszyny, z których każda psuje się niezależnie od pozostałych z intensywnością 3 maszyny/godz. Maszyny te są naprawiane przez robotników. Niech X(t) oznacza liczbę zepsutych maszyn w chwili t. Rozpatrzmy następujące przypadki: ) są 3 maszyny i robotnik pracujący z intensywnością maszyna/godz. ) są 3 maszyny i robotników pracujących bez współpracy z intensywnością maszyna/godz. każdy. 3) są 4 maszyny i robotników pracujących bez współpracy z intensywnością maszyna/godz. każdy. 4) są 3 maszyny i 3 robotników pracujących z pełną współpracą z intensywnością maszyna/godz. każdy. 5) są 3 maszyny i robotników pracujących z pełną współpracą z intensywnością maszyna/godz. każdy. 6) są 3 maszyny i robotników pracujących z ograniczoną współpracą (z intensywnością maszyna/godz. każdy gdy pracują osobno 5
i z intensywnością,5maszyny/godz. gdy pracują razem). W każdym przypadku: a) narysować graf, b) wyznaczyć prawdopodobieństwa graniczne, c) obliczyć prawdopodobieństwo graniczne, że żaden robotnik nie pracuje, d) obliczyć prawdopodobieństwo graniczne, że przynajmniej jedna maszyna jest sprawna, e) obliczyć prawdopodobieństwo graniczne, że przynajmniej jedna maszyna czeka na naprawę, f) obliczyć średnia liczbę zepsutych maszyn, g) obliczyć średnia liczbę zajętych robotników. 6
Dodatek Tablica rozkładu Poissona i tablica skumulowanego rozkładu Poissona. Poisson-f.prawdopodobieństwa nieskumulowana alfa n 3 4 5 6 7 8 9 3 4 5,,99,99,,,,,,,,,,,,,,,5,95,476,,,,,,,,,,,,,,,,948,95,45,,,,,,,,,,,,,,,887,637,64,,,,,,,,,,,,,,3,748,,333,33,3,,,,,,,,,,,,4,673,68,536,7,7,,,,,,,,,,,,5,665,333,758,6,6,,,,,,,,,,,,6,5488,393,988,98,3,4,,,,,,,,,,,7,4966,3476,7,84,5,7,,,,,,,,,,,8,4493,3595,438,383,77,,,,,,,,,,,,9,466,3659,647,494,,,3,,,,,,,,,,3679,3679,839,63,53,3,5,,,,,,,,,,,339,366,4,738,3,45,8,,,,,,,,,,,3,364,69,867,6,6,,,,,,,,,,,3,75,3543,33,998,34,84,8,3,,,,,,,,,4,466,345,47,8,395,,6,5,,,,,,,,,5,3,3347,5,55,47,4,35,8,,,,,,,,,6,9,33,584,378,55,76,47,,,,,,,,,,7,87,36,64,496,636,6,6,5,3,,,,,,,,8,653,975,678,67,73,6,78,,5,,,,,,,,9,496,84,7,7,8,39,98,7,6,,,,,,,,353,77,77,84,9,36,,34,9,,,,,,,,,8,438,68,966,8,476,74,55,5,4,,,,,,,4,97,77,63,9,54,6,4,83,5,7,,,,,,,5,8,5,565,38,336,668,78,99,3,9,,,,,,,6,743,93,5,76,44,735,39,8,38,,3,,,,,,8,68,73,384,5,557,87,47,63,57,8,5,,,,, 3,498,494,4,4,68,8,54,6,8,7,8,,,,, 3,5,3,57,85,58,888,3,77,385,69,66,3,7,,,, 4,83,733,465,954,954,563,4,595,98,3,53,9,6,,, 5,67,337,84,44,755,755,46,44,653,363,8,8,34,3,5, 8,3,7,7,86,573,96,,396,396,4,993,7,48,96,69,9,,5,3,76,89,378,63,9,6,5,5,37,948,79,5,347 Poisson p-stwo skumulowane (dystrybuanta prawostronnie ciągła) 7
alfa n 3 4 5 6 7 8 9 3 4 5,,99,,,,,,,,,,,,,,,,5,95,9988,,,,,,,,,,,,,,,,948,9953,9998,,,,,,,,,,,,,,,887,985,9989,9999,,,,,,,,,,,,,3,748,963,9964,9997,,,,,,,,,,,,,4,673,9384,99,999,9999,,,,,,,,,,,,5,665,998,9856,998,9998,,,,,,,,,,,,6,5488,878,9769,9966,9996,,,,,,,,,,,,7,4966,844,9659,994,999,9999,,,,,,,,,,,8,4493,888,956,999,9986,9998,,,,,,,,,,,9,466,775,937,9865,9977,9997,,,,,,,,,,,3679,7358,997,98,9963,9994,9999,,,,,,,,,,,339,699,94,9743,9946,999,9999,,,,,,,,,,,3,666,8795,966,993,9985,9997,,,,,,,,,,3,75,668,857,9569,9893,9978,9996,9999,,,,,,,,,4,466,598,8335,9463,9857,9968,9994,9999,,,,,,,,,5,3,5578,888,9344,984,9955,999,9998,,,,,,,,,6,9,549,7834,9,9763,994,9987,9997,,,,,,,,,7,87,493,757,968,974,99,998,9996,9999,,,,,,,,8,653,468,736,893,9636,9896,9974,9994,9999,,,,,,,,9,496,4337,737,8747,9559,9868,9966,999,9998,,,,,,,,353,46,6767,857,9473,9834,9955,9989,9998,,,,,,,,,8,3546,67,894,975,975,995,998,9995,9999,,,,,,,4,97,384,5697,7787,94,9643,9884,9967,999,9998,,,,,,,5,8,873,5438,7576,89,958,9858,9958,9989,9997,9999,,,,,,6,743,674,584,736,8774,95,988,9947,9985,9996,9999,,,,,,8,68,3,4695,699,8477,9349,9756,999,9976,9993,9998,,,,, 3,498,99,43,647,853,96,9665,988,996,9989,9997,9999,,,, 3,5,3,359,38,5366,754,8576,9347,9733,99,9967,999,9997,9999,,, 4,83,96,38,4335,688,785,8893,9489,9786,999,997,999,9997,9999,, 5,67,44,47,65,445,66,76,8666,939,968,9863,9945,998,9993,9998,9999 8,3,3,38,44,996,9,334,453,595,766,859,888,936,9658,987,998,,5,8,3,93,67,3,,338,4579,583,6968,796,8645,965,953 8