FUNKCJA KWADRATOWA. Poziom podstawowy



Podobne dokumenty
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Skrypt 12. Funkcja kwadratowa:

WIELOMIANY. Poziom podstawowy

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3

FUNKCJA WYMIERNA. Poziom podstawowy

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Określ zbiór wartości i przedziały monotoniczności funkcji.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Przygotowanie do poprawki klasa 1li

MATEMATYKA POZIOM ROZSZERZONY

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

WŁASNOŚCI FUNKCJI. Poziom podstawowy

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Test sprawdzający wiadomości i umiejętności funkcja kwadratowa

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

x+h=10 zatem h=10-x gdzie x>0 i h>0

Dział I FUNKCJE I ICH WŁASNOŚCI

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Wykresy i własności funkcji

Funkcja kwadratowa Zadania na plusy Maria Małycha. Funkcja kwadratowa. Zadanie 7

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Model odpowiedzi i schemat oceniania do arkusza I

Ostatnia aktualizacja: 30 stycznia 2015 r.

1. Równania i nierówności liniowe

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

SEMESTRALNE BADANIE WYNIKÓW NAUCZANIA MATEMATYKI W KLASACH III. Kartoteka testu. Nr zad Czynność ucznia Kategoria celów

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1

KURS FUNKCJE. LEKCJA 6 PODSTAWOWA Funkcje zadania maturalne ZADANIE DOMOWE. Strona 1

OCENIANIE ARKUSZA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

Indukcja matematyczna

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

3. FUNKCJA LINIOWA. gdzie ; ół,.

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

. Funkcja ta maleje dla ( ) Zadanie 1 str. 180 b) i c) Zadanie 2 str. 180 a) i b)

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE II TECHNIKUM.

Skrypt 18. Trygonometria

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

Propozycje sprawdzianów z matematyki w klasie I liceum i technikum poziom podstawowy

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Funkcje IV. Wymagania egzaminacyjne:

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

1 S t r o n a ZDASZ MATURĘ! Cz.1. Do każdego zadania dodano film z rozwiązaniem

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KONSPEKT FUNKCJE cz. 1.

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

WIELOMIANY SUPER TRUDNE

zestaw DO ĆWICZEŃ z matematyki

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy I Liceum

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Zadania do samodzielnego rozwiązania zestaw 11

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

ETAP III wojewódzki 16 marca 2019 r.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2

Wymagania edukacyjne z matematyki

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2017/2018 klasa pierwsza Branżowa Szkoła

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

GEOMETRIA ANALITYCZNA. Poziom podstawowy

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA. Schemat odpowiedzi PRÓBNA MATURA Z MATEMATYKI, POZIOM ROZSZERZONY

Na rysunku przedstawiony jest wykres funkcji f(x) określonej dla x [-7, 8].

Wymagania na egzamin poprawkowy z matematyki

1. Na wycieczkę pojechało 21 osób o średniej wieku 23 lata. Średnia ta wzrośnie do 24 lat, jeśli doliczy się wiek przewodnika. Ile lat ma przewodnik?

I1. Liczby i wyrażenia

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

Uzasadnienie tezy. AB + CD = BC + AD 2

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

Funkcje Andrzej Musielak 1. Funkcje

Funkcje elementarne. Matematyka 1

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

Transkrypt:

FUNKCJA KWADRATOWA Poziom podstawowy Zadanie ( pkt) Wykres funkji y = ax + bx+ przehodzi przez punkty: A = (, ), B= (, ), C = (,) a) Wyznaz współzynniki a, b, (6 pkt) b) Zapisz wzór funkji w postai kanoniznej ( pkt) ) Naszkiuj jej wykres ( pkt) Zadanie (7 pkt) f + a) Przedstaw tę funkję w postai ogólnej i ilozynowej ( pkt) b) Narysuj wykres tej funkji ( pkt) ) Podaj: zbiór wartośi funkji; zbiór w którym funkja jest rosnąa; zbiór tyh argumentów, dla któryh funkja przyjmuje wartośi niedodatnie ( pkt) Dana jest funkja kwadratowa w postai kanoniznej ( x) = ( x ) Zadanie (5 pkt) Funkja kwadratowa y = x + bx+ ma dwa miejsa zerowe: x = oraz x = a) Wyznaz b oraz ( pkt) b) Podaj postać kanonizną tej funkji ( pkt) ) Narysuj wykres tej funkji ( pkt) Zadanie (5 pkt) Rozwiąż grafiznie nierówność: x > x 6 Zadanie 5 ( pkt) x x Rozwiąż równanie: = Zadanie 6 (5 pkt) Wyznaz długośi boków trójkąta prostokątnego, wiedzą, że są one kolejnymi naturalnymi lizbami parzystymi Zadanie 7 (5 pkt) W roku 85 na urozystośi urodzin spytał ktoś jubilata, ile on ma lat Na o jubilat odpowiedział: Gdy swój wiek sprzed 5 lat pomnożę przez swój wiek za 5 lat, to otrzymam rok swego urodzenia Ile lat miał wówzas jubilat? Zadanie 8 (6 pkt) Lizbę osób, które odwiedziły kiermasz obuwia n - tego dnia od momentu jego otwaria w przybliżeniu opisuje wzór d ( n) = n + n 8, gdzie n N+ i n 5 a) W którym dniu kiermasz odwiedziło najwięej osób i ile ih było? b) Ile osób odwiedziło kiermasz podzas jego trwania?

Zadanie 9 (7 pkt) W pewnym zakładzie pray zależność przyhodów ze sprzedaży od wielkośi produkji wyraża w przybliżeniu wzór p( n) = 5n, gdzie n oznaza lizbę sztuk wyprodukowanego towaru, a koszty produkji, w złotyh, określa zależność k ( n) = n + 5n+ 6 a) Napisz wzór funkji z(n) - zależnośi zysku zakładu od wielkośi produkji, jeśli wiadomo, że zysk jest różnią między przyhodem zakładu a kosztami produkji b) Przy jakiej wielkośi produkji zysk ten wynosi? ) Jaka wielkość produkji zapewnia największy zysk? Jaki jest koszt produkji, gdy zysk jest największy? Zadanie (8 pkt) Okno na poddaszu ma kształt trójkąta, w którym suma długośi jego podstawy i wysokośi opuszzonej na podstawę tego okna wynosi m Jaka powinna być długość podstawy okna, aby jego powierzhnia była największa? Obliz maksymalną powierzhnię tego okna Zadanie (5 pkt) Wyznaz najmniejszą oraz największą wartość funkji f ( x) = x 5x+ 7 w przedziale domkniętym, Zadanie (9 pkt) Dana jest funkja f ( x) = x x+ dla x R, a) obliz jej wartość największą w przedziale ;, b) zapisz jej wzór w postai kanoniznej, ) narysuj jej wykres, d) omów jaj własnośi: dziedzina, zbiór wartośi, monotonizność, znak funkji Zadanie (6 pkt) Szerokość dywanu jest o 5 m mniejsza od długośi tego dywanu Jakie są wymiary dywanu, jeżeli jego powierzhnia wynosi m? Zadanie (8 pkt) Dane są zbiory A i B Zaznaz na osi lizbowej zbiory A i B oraz wykonaj działania: A B, A B, A / B, gdy: 7 A = x R : x + x >, B = x R : x x+ Zadanie 5 (9 pkt) Dana jest funkja f ( x) = x + x dla x R, a) wyznaz jej wartość najmniejszą, największą, b) obliz, dla jakih argumentów przyjmuje wartośi nieujemne, ) rozwiąż grafiznie równanie f(x) = - Zadanie 6 ( pkt) Przezytaj rozwiązanie poniższego Następnie przeprowadzają analogizne f (8) rozumowanie obliz, jeżeli miejsami zerowymi funkji kwadratowej są lizby i f (6)

Zadanie f (7) Miejsami zerowymi funkji kwadratowej są lizby i Obliz f (5) Rozwiązanie Funkję kwadratową f ( x) = ax + bx+ ( a ) można przedstawić w postai: f ( x) = a( x x )( x x), gdy > Z treśi mamy: x =, x = Po podstawieniu otrzymujemy: f ( x) = a( x )( x ) = a( x x x+ 8) = a( x 6x+ 8) Czyli f ( x) = a( x 6x+ 8) f (7) a(7 6 7+ 8) 9 + 8 5 Stąd wyrażenie: = = = = 5 f (5) a (5 6 5+ 8) 5 + 8 Odpowiedź f (7) Wartośią wyrażenia jest lizba 5 f (5) Zadanie 7 ( pkt) Równanie 9x 6x = można rozwiązać w następująy sposób: 9x 6x+ = 9x 6x+ = ( ) ( x ) = ( x )( x + ) = ( x )( x+ ) = x= x= Wykorzystują wskazany sposób, rozwiąż równanie: 5x x 8= Zadanie 8 ( pkt) Nierówność ( x ) 8 można rozwiązać w następująy sposób: ( x ) 8 ( x ) 9 x x x, 7 Analogiznie postępują rozwiąż nierówność ( ) x Zadanie 9 (5 pkt) Lizba x = jest miejsem zerowym funkji kwadratowej, a wierzhołkiem paraboli jest W =, Zapisz wzór tej funkji w postai ilozynowej punkt ( ) Zadanie (7 pkt) Funkja kwadratowa f ( x) = x + bx+ ma dwa miejsa zerowe: x =, x = a) Wyznaz współzynniki b i b) Podaj postać kanonizną tej funkji

Zadanie (8 pkt) Największa wartość funkji kwadratowej f(x) wynosi Lizby i 5 są jej miejsami zerowymi a) Napisz wzór funkji w postai ogólnej b) Dla jakih argumentów wykres funkji f(x) leży powyżej wykresu funkji y = x 5? Poziom rozszerzony Zadanie ( pkt) Dane jest równanie ( m + ) x ( m ) x+ ( m) = Dla jakih wartośi parametru m Rrównanie to ma dokładnie jeden pierwiastek? Dla wyznazonyh m obliz ten pierwiastek Zadanie (6 pkt) Dla jakih wartośi parametru rozwiązania? m R równanie ( m 5) x mx+ m = ma dwa różne Zadanie ( pkt) Dla jakih wartośi m Rróżne pierwiastki rzezywiste równania x + mx+ m = spełniają warunek + x x Zadanie ( pkt) Funkja kwadratowa y = ax + bx+ ma jedno miejse zerowe i do jej wykresu należą punkty A = (, ) i B = (, 9) Wyznaz wartośi a, b, i podaj ilustraję grafizną rozwiązania Zadanie 5 (7 pkt) Dla jakiej wartośi parametru m nierówność: ( 5 m) x ( m) x+ ( m) < jest spełniona dla każdego x R? Zadanie 6 ( pkt) Funkja g przyporządkowuje lizbie rzezywistej a lizbę pierwiastków równania x + x = a Naszkiuj wykres tej funkji Zadanie 7 (8 pkt) Dane są zbiory A i B Wyznaz A B grafiznie i algebraiznie, jeśli: {( x, y) : x, y R i x + y = 5} i B= {( x, y) : x, y R i = } A= xy Zadanie 8 ( pkt) Napisz wzór funkji kwadratowej f ( x) = ax + bx+ wiedzą, że jej miejsa zerowe spełniają warunki: x + x =, x x =, f () =

Zadanie 9 ( pkt) Dla jakih wartośi parametru m dziedziną funkji f ( x) = x mx+ m+ jest zbiór lizb rzezywistyh? Zadanie (7 pkt) Dla jakih wartośi parametru m równanie x + ( m+ ) x+ m m= ma dwa różne pierwiastki rzezywiste jednakowyh znaków?

a SCHEMAT PUNKTOWANIA FUNKCJA KWADRATOWA Poziom podstawowy Etapy rozwiązania L pkt = a+ b+ Ułożenie układu trzeh równań: = a+ b+ = a b+ Rozwiązanie ułożonego układu a =, b=, = 5 b Sprowadzenie wzoru funkji do postai kanoniznej: y = x 5, = 6 Naszkiowanie wykresu otrzymanej funkji Punkty przeięia wykresu z osiami układu współrzędnyh: (,),,, (, 5) Sprowadzenie wzoru funkji do postai ogólnej f ( x) = x + x+ a Sprowadzenie funkji do postai ilozynowej f ( x) = ( x )( x+ ), gdzie = b Naszkiowanie wykresu funkji Odzytanie zbioru wartośi funkji Y = ( ; Odzytanie przedziału, w którym funkja jest rosnąa Odp:( ;) Odzytanie zbioru tyh argumentów, dla któryh funkja przyjmuje wartośi niedodatnie Odp: ( ; ; + ) a = b+ Ułożenie układu dwóh równań = + b+ Rozwiązanie ułożonego układu b = 9, = 6 b Sprowadzenie wzoru funkji do postai kanoniznej y = x, = 9 Naszkiowanie wykresu otrzymanej funkji Narysowanie wykresu funkji f ( x) = x 5 Narysowanie wykresu funkji g ( x) = x 6 Odzytanie z wykresu odiętyh punktów wspólnyh obu wykresów: -, Odzytanie z wykresu, dla jakih argumentów wartośi funkji f(x) są x ; większe od wartośi funkji g(x) Odp: ( ) Zapisanie równania w postai równania równoważnego x x 9= Oblizenie pierwiastków: x =, x =

6 Etapy rozwiązania Analiza : wprowadzenie oznazeń np a = n, b = n +, = n +, oraz określenie warunku n lizba parzysta Zapisanie równania korzystają z twierdzenia Pitagorasa n + n+ = n+ ( ) ( ) L pkt Przekształenie równania do postai równoważnej n n = Rozwiązanie ułożonego równania n =, n = 6 Zapisanie odpowiedzi a = 6, b = 8, = 7 Shemat punktowania analogizny jak w zadaniu 6 5 Spostrzeżenie faktu, że skoro a < to dana funkja posiada wartość 8a b największą równą dla argumentu a a b Oblizenie i sprawdzenie, że ; 5 a Oblizenie d(8) = i sformułowanie odpowiedzi 8b Oblizenie wartośi funkji dla argumentów naturalnyh od x = do x = 7 Oblizenie sumy d ( ) + d() + + d(5) i sformułowanie odpowiedzi 9a Napisanie wzoru funkji z ( n) = p( n) k( n) = n + n 6 9b Zapisanie równania: n + n 6= i warunku n N Oblizenie pierwiastków równania: n =, n = 6 9 b Oblizenie: 5 a = oraz = 9 a Zapisanie odpowiedzi Analiza treśi : sporządzenie rysunku i przyjęie oznazeń a długość podstawy okna, b długość wysokośi okna Zapisanie wzoru a + b= i wyznazenie z niego b= a Zapisanie wzoru funkji na pole okna f ( a) = a ( a) i określenie dziedziny a > i b>, zyli a ( ;) Spostrzeżenie faktu, że skoro a < to dana funkja posiada wartość największą Podanie tej wartośi argumentu, dla której funkja f(a) przyjmuje b największą wartość x = 5 = a Oblizenie maksymalnego pola tego okna: P max ( 5) = 5m Sprawdzenie, że x ; w Oblizenie f ( ) =, f ( ) = Sformułowanie odpowiedzi

5 6 7 8 9 Etapy rozwiązania L pkt Określenie wartośi największej w przedziale: y max =, dla x = Podanie postai kanoniznej: ( + ) y = x + Narysowanie wykresu Opisanie własnośi funkji Za każdą z wymienionyh własnośi po pkt Analiza, rysunek Podanie wzoru funkji pola i jej dziedziny: P(x) = x(x+), x > Rozwiązanie równania P(x) = i uwzględnienie dziedziny Sformułowanie odpowiedzi Odp 8 m na m Rozwiązanie nierównośi A Rozwiązanie nierównośi B Zaznazenie na osi lizbowej zbiorów A i B Wykonanie działań: A B, A B, A / B Stwierdzenie, że wartość minimalna istnieje, a maksymalna nie Oblizenie y min = -, dla x = - Wyznazenie dla jakih x, y Odp: x (,, + ) Sporządzenie wykresu funkji liniowej y = Sporządzenie wykresu funkji kwadratowej y = x + x Odzytanie z wykresu rozwiązań: x =, x = - Zapisanie funkji kwadratowej w postai ilozynowej i miejs zerowyh Doprowadzenie funkji kwadratowej do postai: f ( x) = a( x x+ ) f (8) Oblizenie wartośi wyrażenia po odpowiednim podstawieniu f (6) f (8) 7 Sformułowanie odpowiedzi: = f (6) Doprowadzenie równania do postai: ( 5 ) 9= x Doprowadzenie równania do postai: ( 5 x )( 5x+ ) = Rozwiązanie równania: x = x= 5 5 Sprowadzenie do postai ( x ) Sprowadzenie do postai x Zapisanie nierównośi w postai x Rozwiązanie nierównośi i podanie odpowiedzi: x, Zapisanie funkji w postai kanoniznej: ( ) = ( x ) a Oblizenie współzynnika a: f x a, gdzie a = f ( x) = x+ x Zapisanie funkji w postai ilozynowej: ( )( )

Etapy rozwiązania L pkt b+ = Ułożenie układu równań + b+ = Rozwiązanie układu równań: b =, = 6 Zapisanie funkji w postai kanoniznej (oblizenie p i q i podanie postai 7 kanoniznej) Odp y = x+ Zapisanie funkji w postai ilozynowej f ( x) = a( x )( x 5) Oblizenie odiętej wierzhołka x w = Oblizenie współzynnika a, korzystają z faktu f ( ) = Odp a = - Napisanie wzoru funkji w postai ogólnej: f ( x) = x + 7x Zapisanie nierównośi f ( x) > x 5 Rozwiązanie nierównośi: x ( ;5) Poziom rozszerzony Numer Etapy rozwiązania L pkt Zapisanie układów warunków, dla którego równanie ma jedno rozwiązanie: a= a I lub II b = Rozwiązanie I przypadku: a = m= ; b =, zyli b Rozwiązanie warunku: a m Wyprowadzenie wyrażenia: = 5m m Rozwiązanie równania: = m = m= 5 Uwzględnienie rozwiązań I i II: Równanie ma jeden pierwiastek dla m ;; i oblizenie tyh rozwiązań 5 a Zapisanie układów warunków: > Rozwiązanie warunku: a m Wyprowadzenie wyrażenia: = 5m m

5 6 Etapy rozwiązania L pkt > m ; ; + 5 m ; ; ; + 5 Rozwiązanie nierównośi: ( ) Wyznazenie rozwiązania układu: ( ) ( ) > Zapisanie układów warunków: + x x Wyprowadzenie wyrażenia: = m + m 8 Rozwiązanie nierównośi: > ( ; ) ( ; + ) Przekształenie wyrażenia: x m ( x + x) ( x x ) x x + = x Zastosowanie wzorów Viete a: x + x = m oraz x x = m Sprowadzenie nierównośi : x + x m + m ( m) Rozwiązanie nierównośi: m 6; Wyznazenie rozwiązania układu warunków: m 6; ) a b a= Ułożenie układu równań = a + b + 9= a + b + Rozwiązanie układu równań Wykonanie ilustraji grafiznej rozwiązania Udzielenie odpowiedzi Odp a =, b = -, = lub a =, b =, = Zauważenie, że dla żadnego m funkja ta nie jest funkją liniową stałą 5 m = Układ ( m) = jest sprzezny ( m) < a< Określenie warunku dla trójmianu kwadratowego < Wyprowadzenie wyrażenia: = ( m )( m 9) Rozwiązanie układu nierównośi m 9, + Sformułowanie odpowiedzi Odp ( ) Wykres funkji y = x + x Wykres funkji y = x + x wraz z prostą y = a Analiza ilośi rozwiązań Sporządzenie wykresu funkji g(a)

7 8 Etapy rozwiązania Zaznazenie na układzie współrzędnyh zbiorów A, B oraz L pkt A B x + y = 5 Zapisanie układu równań xy= Rozwiązanie układu równań Odp A B= {(,) ;(, ) ;(, ) ;(, ) } Oblizenie współzynnika : Oblizenie współzynnika a: Oblizenie współzynnika b: 8 9 9 Zapisanie warunków: a = > Oblizenie = m m Rozwiązanie nierównośi m m i sformułowanie odpowiedzi: m ;6 a Zapisanie układu warunków: > x x > Oblizenie = m + 6 i rozwiązanie odpowiedniej nierównośi Oblizenie x x = m m Rozwiązanie nierównośi m> m,, + Wyznazenie zęśi wspólnej rozwiązań warunków układu: m, (, + ) 5 m Odp ( ) ( )