Analiza korelacji i regresji dwóch zmiennych losowych 1. Badano zależność między ilością godzin przebywania samolotu w powietrzu ( nalot lotniczy) a ilością wypadków. Na podstawie zebranych danych z pewnego okresu czasu zbadać czy taka zależność istnieje, a jeżeli istnieje, to opisać ją za pomocą liniowej funkcji regresji. nalot 167 167 155 118 159 141 130 131 141 135 145 147 18 137 138 wypadki 135 19 118 134 10 109 9 19 138 13 138 135 111 13 99. Zbadano w dziesięciu wylosowanych zakładach przemysłowych wielkość zaplanowanego i wykonanego funduszu na akcję socjalną. Zbadać, czy istnieje zależność między badanymi cechami. Jeżeli taka zależność istnieje, to opisać ją za pomocą liniowej funkcji regresji. planowany 3.60 4.65 5.0 1.86 3.06 1.36.46 3.93 5.80 6.35 wykonany 3.56 4.59 5.13 1.84 3.0 1.35.43 3.89 5.7 6.6 3. Istnieje podejrzenie że ludzie dzielą się na humanistów i matematyków tzn. jeśli ktoś jest dobry z przedmiotów humanistycznych to z matematyką może już mieć problemy. Wylosowano ośmiu uczniów z czwartej klasy liceum i obliczono dla nich średnie z ocen semestralnych z języka polskiego i z matematyki: J. polski 3.4.9 4.3 3.8 3.3 4.7 3.6 3.9 Matematyka 4.6 4.4 3.6 3. 3.8 3.5 4.6 3.1 Interesuje nas, czy oceny uczniów potwierdzają wspomniane twierdzenie. Jeśli tak to proszę wyznaczyć równanie regresji. Jaki jest przewidywana średnia ocena z matematyki dla ucznia którego średnia z języka polskiego wynosi 5.0? 4. Poniższe dane z dziesięciu poletek dotyczą efektywności nawożenia łąk azotem (w kg siana na 1 kg N) w zależności od poziomu nawożenia azotem: x = 40, ȳ = 16, x i = 000, y i = 564.65, xi y i = 695. Zbadać, czy istnieje zależność między cechami. Wyznaczyć liniową funkcję zależności przeciętnej efektywności nawożenia łąk azotem od poziomu nawożenia. 5. Poniższe dane dotyczą ciężaru owoców (Y ) pewnej rośliny oraz ilości zastosowanego pewnego preparatu (X) na dziesięciu poletkach: x = 3.9, ȳ = 3.6, x i = 15.8, y i = 131., xi y i = 141.1. Zbadać, czy istnieje zależność między cechami. Wyznaczyć liniową funkcję zależności przeciętnego ciężaru owoców od ilości zastosowanego preparatu. 6. Zbadać, czy istnieje korelacja między wielkością produkcji X pewnego artykułu (w mln metrów), a zużyciem Y pary technologicznej (w tys. ton). Dane pochodzą z dziesięciu wylosowanych zakładów. x i 1.5 3.0.0 3.5 1.5 4.5.5 4.0 4.5 3.0 y i 4.5 7.0 7.5 6.5 6.5 7.5 5.5 4.5 5.5 5.0 Jeżeli zależność istnieje, to opisać ją za pomocą liniowej funkcji regresji. W Z W SE Ekonometria zadania.1
7. W pewnym gospodarstwie wiejskim badano w ciągu dziesięciu kolejnych lat przeciętne dzienne spożycie ziemniaków w kg (X) i wielkość spożycia artykułów zbożowych w kg (Y ) przypadającą na jednego członka rodziny. Zbadać, czy istnieje zależność między cechami X oraz Y. Jeżeli zależność istnieje, to opisać ją za pomocą liniowej funkcji regresji. x i 0.70 0.60 0.80 0.85 0.55 0.65 0.90 1.00 0.75 0.50 y i 0.50 0.70 0.50 0.40 0.75 0.60 0.30 0.0 0.55 0.70 8. Na podstawie poniższych danych zbadać, czy istnieje zależność między zawartością tłuszczu (X) i białka (Y ) w mleku krów. 10 x i = 38.6, 10 x i = 150.16, 10 y i = 36., 10 y i = 131.74, 10 x i y i = 140.34 Jeżeli tak, to opisać ilościowo tę zależność. 9. Na podstawie poniższych danych zbadać, czy istnieje zależność między grubością włókna lnu (X) i grubością łodygi (Y ). 8 x i = 83.5, 8 x i = 169.5, 8 y i = 8.74, 8 yi = 18.5454, 8 x i y i = 145.780 Jeżeli tak, to opisać ilościowo tę zależność. 10. Spośród studentów pewnego wydziału wylosowano niezależnie dziesięciu studentów IV roku i otrzymano dla nich następujące średnie oceny uzyskane na I roku oraz na IV roku. Zbadać, czy istnieje zależność między wynikami studiów na I i na IV roku. Jeżeli taka zależność istnieje, to opisać ją za pomocą liniowej funkcji regresji. I rok 3.5 4.0 3.8 4.6 3.9 3.0 3.5 3.9 4.5 4.1 IV rok 4. 3.9 3.8 4.5 4. 3.4 3.8 3.9 4.6 4.0 W Z W SE Ekonometria zadania.
Analiza korelacji i regresji trzech zmiennych losowych 11. Zanotowano średnie oceny dziesięciu Studentów pewnego kierunku studiów jakie uzyskali na maturze (X 1 ), egzaminie wstępnym (X ) oraz czwartym roku studiów (X 3 ). Otrzymano następujące wyniki: x 1 = 3.5 x = 3.6 x 3 = 3.8 x 1i = 11.07 x i = 0.19 x 3i = 45.76 x1i x i = 15.0 x 1i x 3i = 7.38 xi x 3i = 3.56 1. Wylosowano sto średniej klasy mieszkań. Każde mieszkanie scharakteryzowano ze względu na cenę jednego metra kwadratowego (X 1 ), odległość od pasów szybkiego ruchu (X ) oraz odległość od najbliższego centrum handlowego (X 3 ). Otrzymano następujące wyniki: x 1 = 86.06 x = 3.06 x 3 = 9.94 varx 1 = 815803.0 varx = 08.80 varx 3 = 854.8 cov(x 1, x ) = 8093.18 cov(x 1, x 3 ) = 14189.81 cov(x, x 3 ) = 7.8 13. O czterdziestu czterech krajach, określanych jako rozwijające się, zebrano dane dotyczące średniego poziomu zmian wielkości produktu krajowego brutto w skali roku (X 1 ), średniego rocznego udziału inwestycji zagranicznych w produkcie krajowym brutto (X ) oraz średniego rocznego udziału inwestycji krajowych w produkcie krajowym brutto (X 3 ). Na podstawie zebranych danych otrzymano: x 1 = 4.047 x = 0.306 x 3 = 1.181 varx 1 = 51.78 varx = 4.576 varx 3 = 130.87 cov(x 1, x ) = 1.0 cov(x 1, x 3 ) = 13.195 cov(x, x 3 ) = 5.76 14. Badano sprawność systemu dostaw piwa. Obserwowano czas (X 1 ), wielkość (X ) oraz moment (X 3 ) rozpoczęcia dostawy. Zebrano próbę o liczności 50 i otrzymano wyniki: x 1 = 116.50 x = 08.16 x 3 = 9.50 varx 1 = 88540.55 varx = 40.48 varx 3 = 608.50 cov(x 1, x ) = 109580.66 cov(x 1, x 3 ) = 44.00 cov(x, x 3 ) = 3070.00 15. Wylosowano 60 prywatnych szkół średnich. O każdej szkole zebrano informacje z pięciu lat. Każdą szkołę scharakteryzowano pod względem udziału uczniów, którzy dostali się na państwowe studia wyższe (X 1 ), średniego udziału pieniędzy, które szkoła przeznaczyła bezpośrednio na edukację (X ) oraz procentu uczniów ostatnich klas, których średnia z przedmiotów ścisłych przewyższała o 30% średnią krajową (X 3 ). Na podstawie zebranych informacji otrzymano: x 1 = 45.01 x = 48.63 x 3 = 0.01 varx 1 = 1060.98 varx = 8161.56 varx 3 = 4749.86 cov(x 1, x ) = 593.8 cov(x 1, x 3 ) = 7156.35 cov(x, x 3 ) = 10.98 16. Wyniki ogólnopolskiego konkursu maszynopisania dostarczyły informacji o średniej liczbie błędów na stronie popełnionych przez maszynistki zależnie od czasu pisania tego samego tekstu i ich wieku. Podane zestawienie uwzględnia odpowiednie informacje dla piętnastu wylosowanych maszynistek: wiek 6 30 8 3 5 7 8 4 1 4 33 5 0 37 czas 8.3 7.3 9.4 7.8 6.8 8.7 8.0 7.8 8.9 9.5 8.9 6.7 8.7 10.0 5.6 błędy 6.48 3.56 4.94 3.69 5.67 9.18 5.9.74 4.7 8.49 5.87 5.66 5.86 6.00 5.53 Zbadać istnienie zależności między liczbą popełnianych błędów a czasem pisania i wiekiem maszynistki. Opisać tę zależność za pomocą liniowej funkcji regresji. W Z W SE Ekonometria zadania.3
17. Przypuszcza się, że miesięczne wydatki Y na zakup artykułów nieżywnościowych uzależnione są od wielkości dochodów X 1 oraz wysokości X wydatków na zakup artykułów żywnościowych. Przeprowadzono odpowiednie badania 50 gospodarstw domowych i otrzymano wyniki: x 1 = 5 x =.5 ȳ = 1.5 x 1i = 170.30 x i = 36.50 y i = 13.50 x1i x i = 640.00 x1i y i = 370.00 xi y i = 157.50 Przeprowadzić na tej podstawie analizę regresji wydatków na artykuły nieżywnościowe od pozostałych zmiennych. 18. Do produkcji pewnego artykułu stosowane są dwa komponenty X 1 oraz X. Mierzona za pomocą pewnej cechy ilościowej Y jakość wyrobu uzależniona jest od ilości użytych komponentów. W wyniku zbadania czterdziestu próbek wyrobu produkowanego z różnymi ilościami obu składników otrzymano: x 1 = 7.00 x = 8.00 ȳ = 5.54 x 1i = 3438.00 x i = 3017.00 y i = 1464.75 x1i x i = 10151.00 x 1i y i = 704.5 xi y i = 088.53 Przeprowadzić analizę regresji jakości wyrobu od ilości użytych składników. 19. W produkcji pewnego artykułu analizowano zysk Y ze sprzedaży w zależności od wielkości produkcji. x i 10 1 13 16 17 19 1 3 6 9 36 y i 80.69 308.7 31.9 349.63 358. 357.10 356.95 356.99 348.90 31.60 78.10 113.60 Przyjmując, że funkcja regresji opisująca zysk przedsiębiorstwa w zależności od wielkości produkcji ma postać y = β 0 + β 1 x + β x przeprowadzić analizę regresji. Czy istnieje produkcja maksymalizująca zysk? 0. Analizowano, jak wynik Studenta z egzaminu (Y ) zależy od liczby kartkówek przeprowadzonych na ćwiczeniach (X 1 ) oraz od procentu opuszczonych przez Studenta ćwiczeń (X ). Na podstawie próby o liczności 60 otrzymano: ȳ = 54 x 1 = 5 x = 11 vary = 4660.57 varx 1 = 114.18 varx = 57773.33 cov(y, x 1 ) = 157.43 cov(y, x ) = 18.84 cov(x 1, x ) = 55.33 Przeprowadzić analizę regresji wyniku egzaminu od pozostałych zmiennych. W Z W SE Ekonometria zadania.4
Programowanie liniowe 1. Produkt A zawiera około 1000 kalorii, 5 gramów protein oraz 5 mg witaminy C na jednostkę. Produkt B zawiera około 000 kalorii, 100 gramów protein oraz 0 mg witaminy C na jednostkę. Minimalne zapotrzebowanie konsumenta na środki odżywcze wynosi: 3000 kalorii, 100 gramów protein i 50 mg witaminy C. Cena rynkowa produktu A wynosi 0 za jednostkę, zaś produktu B 50. Znaleźć najtańszą dietę.. W pewnym zakładzie produkcyjnym wytwarza się dwa rodzaje produktów A i B. Do wyprodukowania produktów A i B potrzebne są surowce X i Y. Surowca X zakład może sprowadzić co najwyżej 15 jednostek, natomiast surowca Y co najwyżej 1 jednostek. Na jednostkę produktu A potrzeba 0.5 jednostki surowca X oraz 0.3 surowca Y. Na jednostkę produktu B potrzeba 0.3 jednostki surowca X i 0.4 surowca Y. Zysk ze sprzedaży jednostki wyprodukowanego produktu A wynosi 800, natomiast z jednostki produktu B wynosi 700. W jakich ilościach należy sprowadzać surowce X i Y, by zapewnić największy zysk? 3. Zakład mleczarski skupuje dziennie 5000 kg mleka o zawartości tłuszczu 3.5%. Dzienna zdolność produkcyjna zakładu wynosi 000 kg mleka spożywczego i 400 kg masła. Zużycie plazmy na 1 kg produktu wynosi: dla mleka spożywczego 0.98 kg, dla masła 3.44 kg. Zużycie tłuszczu na 1 kg produktu wynosi: dla mleka spożywczego 0.03 kg, dla masła 0.85 kg. Zysk ze sprzedaży jednego kilograma poszczególnych produktów wynosi: dla dla mleka spożywczego 9. a dla masła 15. W jakich ilościach należy wytwarzać poszczególne produkty, by zysk ze sprzedaży był największy? 4. Aby zdrowo wyglądać pies musi miesięcznie zjeść przynajmniej 100g składnika S 1, 00g składnika S i nie więcej jak 300g składnika S 3. Na rynku dostępne są dwie karmy, gdzie porcja karmy K 1 zawiera 10g składnika S 1, 1g składnika S i 10g składnika S 3. Natomiast karma K zawiera 1g składnika S 1, 10g składnika S i 10g składnika S 3. Porcja karmy K 1 kosztuje 5 zł, natomiast porcja karmy K 8 zł. W jakich porcjach zmieszać karmy aby pies dostał składników ile potrzeba a koszt był jak najmniejszy. 5. Piekarnia produkuje dwa rodzaje bułek (B 1, B ), które odpowiednio kosztują 1 i 3 złote. Na wypiek bułki pierwszej B 1 potrzeba 1 dkg mąki, 1 dkg cukru i 0.1 rodzynek. Na wypiek bułki drugiej B potrzeba dkg mąki, 1 dkg cukru i 1 dkg rodzynek. Przy czym w magazynie piekarni dostępne jest tylko 4.5 dkg mąki, 4 dkg cukru i 1 dkg rodzynek. Nasze zadanie polega na ustaleniu ile i jakich bułek powinniśmy upiec aby otrzymać największy zysk, biorąc pod uwagę ograniczone zapasy składników. 6. Mieszanka paszowa składa się z dwóch produktów P 1 i P. Mieszanka musi dostarczyć składników odżywczych S 1, S i S 3 w ilości nie mniejszej niż określone w tabeli minimum. Cena produktu P 1 wynosi 6 zł, P 9 zł za kilogram. Dobrać skład mieszanki tak, by jej koszt był najniższy. Zawartości poszczególnych składników w kilogramie produktu podane są poniżej. P 1 P min S 1 3 9 7 S 8 4 3 S 3 1 3 36 7. Przedsiębiorstwo produkuje dwa wyroby używając do tego trzech rodzajów surowców s 1, s, s 3, których zasoby wynoszą odpowiednio: 80, 100, 48 jednostek. Należy ułożyć plan produkcji zapewniający maksymalny zysk, jeżeli zysk jednostkowy z poszczególnych wyrobów wynosi odpowiednio 15 i 9 złotych. Zużycie jednostkowe surowców w produkcji podaje tabelka. S 1 S S 3 I 3 II 3 1 W Z W SE Ekonometria zadania.5
8. Przedsiębiorstwo produkuje dwa wyroby używając do tego trzech rodzajów surowców s 1, s, s 3, których zasoby wynoszą odpowiednio: 150, 10, 190 jednostek. Należy ułożyć plan produkcji zapewniający maksymalny zysk, jeżeli zysk jednostkowy z poszczególnych wyrobów wynosi odpowiednio 18 i 5 złotych. Zużycie jednostkowe surowców w produkcji podaje tabelka. S 1 S S 3 I 1 4 II 5 1 9. Produkty A, B służące jako pasza dla trzody chlewnej zawierają dwa składniki odżywcze M 1 i M, które należy dostarczyć zwierzętom w ilościach co najmniej odpowiednio 45 i 0 jednostek. Produkty te zawierają jednak składnik M 3, którego ilość w spożywanej paszy powyżej 0 jednostek może być szkodliwa. Zawartość poszczególnych składników w produktach A, B oraz ceny jednostkowe produktów podane są w tabelce. Należy ułożyć optymalny plan żywienia zwierząt. A B M 1 3 3 M 1 M 3 1 ceny 0 5 30. Farmer ma 45 akrowe gospodarstwo, w którym zamierza uprawiać pszenicę i kukurydzę. Może on sprzedać co najwyżej 140 ton pszenicy po 30$ za tonę i 10 ton kukurydzy po 50$ za tonę. Każdy obsiany akr daje 5 ton pszenicy lub 4 tony kukurydzy. Zebranie z jednego akra pszenicy wymaga sześciu godzin a kukurydzy dziesięciu godzin pracy farmera. Farmer może wynająć do 350 roboczogodzin po 10$ za godzinę. Jak struktura zasiewów maksymalizuje zysk farmera. W Z W SE Ekonometria zadania.6