Jednowymiarowa zmienna losowa

Podobne dokumenty
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

Wykład 3 Jednowymiarowe zmienne losowe

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.

Rachunek Prawdopodobieństwa i Statystyka

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Elementy Rachunek prawdopodobieństwa

Przestrzeń probabilistyczna

Biostatystyka, # 3 /Weterynaria I/

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.

Rozkłady prawdopodobieństwa zmiennych losowych

Prawdopodobieństwo i statystyka

Zmienne losowe ciągłe i ich rozkłady

Prawdopodobieństwo i statystyka

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Rozkłady statystyk z próby

Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej

Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa

4,5. Dyskretne zmienne losowe (17.03; 31.03)

Dyskretne zmienne losowe

1 Elementy kombinatoryki i teorii prawdopodobieństwa

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Rozkłady zmiennych losowych

Zmienne losowe ciągłe i ich rozkłady

Statystyka matematyczna dla leśników

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

Statystyka i eksploracja danych

Wykład 2 Zmienne losowe i ich rozkłady

Zmienna losowa. Rozkład skokowy

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Rozkład zmiennej losowej Polega na przyporządkowaniu każdej wartości zmiennej losowej prawdopodobieństwo jej wystąpienia.

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

Statystyka. Magdalena Jakubek. kwiecień 2017

Zmienne losowe. Statystyka w 3

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

Statystyka matematyczna

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Prawa wielkich liczb, centralne twierdzenia graniczne

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

Rachunek prawdopodobieństwa- wykład 6

Rachunek prawdopodobieństwa i statystyka

PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Przykłady do zadania 3.1 :

Statystyka matematyczna

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

6. Zmienne losowe typu ciagłego ( ) Pole trapezu krzywoliniowego

KURS PRAWDOPODOBIEŃSTWO

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Ważne rozkłady i twierdzenia

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa

Rozkłady prawdopodobieństwa

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

Szkice do zajęć z Przedmiotu Wyrównawczego

Przykłady do zadania 8.1 : 0 dla x 1, c x 4/3 dla x > 1. (b) Czy można dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnego

Lista 5. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Wybrane rozkłady zmiennych losowych. Statystyka

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

Statystyka w analizie i planowaniu eksperymentu

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa i jej rozkład

Wybrane rozkłady zmiennych losowych. Statystyka

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Zwiększenie wartości zmiennej losowej o wartość stałą: Y=X+a EY=EX+a D 2 Y=D 2 X

Metody probabilistyczne

Najczęściej spotykane rozkłady dyskretne:

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

Z poprzedniego wykładu

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Statystyka w analizie i planowaniu eksperymentu

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

6.4 Podstawowe metody statystyczne

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Transkrypt:

1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ), gdzie 1* przestrzeń zdarzeń elementarnych Ω = { ω 1, ω 2,..., ω 6 }, ω i jest zdarzeniem elementarnym polegajacym na wyrzuceniu i oczek; 2* ciało zdarzeń określamy jako rodzinę wszystkich podzbiorów przestrzeni Ω, tj. S =, {ω 1 }, {ω 2 },..., {ω 1, ω 2 },..., Ω (Rodzina S składa się z 2 6 elementów)

3* zakładamy, że zdarzenia elementarne {ω i } są jednakowo prawdopodobne, tj. P ( {ω i } ) = 1 6 Prawdopodobieństwo dowolnego zdarzenia wzorem:, gdzie i = 1, 2,..., 6. A S określamy 2 P (A) = ilość zdarzeń element. składających się na zd. A ilość wszystkich zdarzeń element. prz. Ω (klasyczna definicja prawdopodobieństwa) Rozważmy funkcję określoną na przestrzeni zdarzeń elementarnych Ω i przyjmującą wartości rzeczywiste X : Ω R X( ω i ) = i i = 1, 2,..., 6

3 Funkcję X nazywamy zmienną losową na przestrzeni Ω. Ogólnie na przestrzeni Ω możemy określić wiele zmiennych losowych, np. Y : Ω R Y ( ω 1 ) = Y ( ω 2 ) = Y ( ω 3 ) = Y ( ω 4 ) = Y ( ω 5 ) = 1 Y ( ω 6 ) = 10 (Funkcja Y może być opisem gry: wyrzucisz 6 - wygrywasz 10 zł, nie wyrzucisz 6 - przegrywasz 1 zł) Uwaga Jeżeli Ω jest zbiorem przeliczalnym a S jest rodziną wszystkich podzbiorów przestrzeni Ω, to każdą funkcję X : Ω R można nazwać zmienną losową. W ogólności, gdy Ω jest zbiorem nieprzeliczalnym, tak nie jest.

4 Definicja (Zmiennej losowej) Jednowymiarową zmienną losową w przestrzeni probabilistycznej (Ω, S, P ) nazywamy każdą funkcję X : Ω R taką, że dla dowolnie wybranej liczby rzeczywistej x R zbiór ω Ω : X(ω) < x jest zdarzeniem losowym tzn. jest elementem rodziny S. Liczby rzeczywiste X(ω 1 ) = x 1, X(ω 2 ) = x 2,... ω i Ω, nazywamy realizacjami zmiennej losowej X. Fakt Jeżeli A jest zbiorem borelowskim na R i X : Ω R jest zmienną losową w p.p. (Ω, S, P ), to zbiór ω Ω : X(ω) A jest zdarzeniem losowym.

5 Zatem zdarzeniami losowymi są zbiory: ω Ω : X(ω) = x ω Ω : X(ω) x ω Ω : X(ω) < x ω Ω : X(ω) x ω Ω : X(ω) (a, b) ω Ω : X(ω) [a, b) ω Ω : X(ω) > x ω Ω : X(ω) x ω Ω : X(ω) (a, b] ω Ω : X(ω) [a, b] Uwaga Stosować będziemy następujący zapis skrócony: P ω Ω : X(ω) (a, b) ω Ω : X(ω) (a, b) ozn. = ( a < X < b ) ozn. = P ( a < X < b )

Twierdzenie Jeżeli X : Ω R jest zm. los. w p.p. (Ω, S, P ) a h(x) jest funkcją przedziałami ciagłą, której dziedzina zawiera zbiór wartości X(ω), to Y (ω) = h ( X(ω) ) (Ω, S, P ). jest też zm. los. w p.p. 6 to Przykład Jeżeli X : Ω R jest zm. los. w p.p. (Ω, S, P ), Y = ax + b Z = X 2 W = cos X V = e X są zmiennymi losowymi w p.p. (Ω, S, P ).

7 Zmienna losowa skokowa Definicja Zmienna losowa X określona w p.p. (Ω, S, P ) nazywa się zmienną losową skokową (dyskretną) jeżeli istnieje co najwyżej przeliczalny zbiór W X = { x 1, x 2,... } jej możliwych wartości taki, że P ( X = x i ) = p i > 0 dla wszystkich x i W X p i = 1. i : x i W X x i - punkt skokowy zmiennej losowej X p i - skok zmiennej losowej X w punkcie x i Uwaga Zm. los. skokowa może przyjmować inne wartości poza punktami skokowymi, ale P (X = x) = 0, gdy x / W X.

8 Definicja Funkcją prawdopodobieństwa skokowej zmiennej losowej X nazywamy przyporządkowanie x i p i, x i W X, określone wzorem: P ( X = x i ) = p i, x i W X. Uwaga Funkcję p-stwa często określamy tabelą: X : x i x 1 x 2... p i p 1 p 2...

9 Twierdzenie Niech X jest skokową zm. los. w p.p. (Ω, S, P ) o funkcji p-stwa P ( X = x i ) = p i, x i W X. Wówczas p- stwo przyjęcia przez zm. los. X wartości ze zbioru borelowskiego A R wyraża się wzorem: P ( X A ) = p i. i : x i A Przykład Niech X : x i 1 1 3 p i 0, 5 0, 2 0, 3 Oblicz: P (X > 2), P ( 1 X 3 2 ).

Definicja (Wartości oczekiwanej (przeciętnej)) Wartością oczekiwaną skokowej zm. los. X o zbiorze punktów skokowych W X = { x 1, x 2,... } i skokach p i = P ( X = x i ) nazywamy liczbę 10 E X = x i p i, i : x i W X o ile, w przypadku nieskończonej liczby punktów skokowych, szereg jest bezwzględnie zbieżny. Przykład poprzedniego przykładu. Oblicz wartość oczekiwaną dla zmiennej losowej z

Przykład Czy zmienna losowa X o funkcji p-stwa i, gdzie xi = ( 3)i 1 P ( X = x i ) = 1 3 posiada wartość oczekiwaną? i, i = 1, 2,... 11 Uwaga Nie każda zmienna losowa posiada wartość oczekiwaną. Jeżeli skokowa zm. los. ma skończony zbiór punktów skokowych, to posiada wartość oczekiwaną. Przykład Dokonujemy niezależnych prób wyprodukowanych przedmiotów dla dużej partii. Wiadomo, że p-stwo pomyślnego przejścia przez próbę każdego przedmiotu wynosi 0,9. Doświadczenie kończy się, gdy dojdziemy do pierwszego przedmiotu, który nie wytrzyma próby. Oblicz:

12 a) p-stwo, że liczba prób będzie większa niż 3; b) wartość oczekiwaną E X, gdzie zm. los. X opisuje liczbę prób. Definicja (Wartości oczekiwanej funkcji zmiennej losowej) Jeżeli dana jest funkcja p-stwa skokowej zm. los. X : P ( X = x i ) = p i > 0, x i W X oraz określona jest zm. los. Y = h(x), to wartość oczekiwaną zm. los. Y określamy wzorem: E Y = h(x i ) p i, i : x i W X o ile, w przypadku nieskończonej liczby punktów skokowych, szereg jest bezwzględnie zbieżny.

13 Przykład a) Niech X : x i 1 4 p i 0, 3 0, 7 oraz niech Y = 2X 1 i Z = X 2. Oblicz E Y + E Z. b) Niech X : x i 0 1 2 p i 0, 3 0, 4 0, 3 oraz niech Y = 2X + 1. Oblicz E Y.

14 Dystrybuanta zmienna losowej Definicja Dystrybuantą jednowymiarowej zm. los. X w p.p. (Ω, S, P ) nazywamy funkcję F : R [0, 1] określoną wzorem: F (x) = P ( {ω Ω : X(ω) < x} ) = P ( X < x ). Fakt Dystrybuanta skokowej zm. los. X o funkcji p-stwa P ( X = x i ) = p i wyraża się wzorem: F (x) = P ( X < x ) = x i <x P (X = x i) = x i <x p i.

15 Przykład a) Niech x X : i 1 2 p i 0, 4 0, 6 Wyznaczyć dystrybuantę zmiennej losowej X. b) Niech x X : i 1 2 3 p 1 1 1 i 3 3 3 Wyznaczyć dystrybuantę zmiennej losowej X. Uwaga Dystrybuanta skokowej zm. los. jest funkcją przedziałami stałą i w punktach nieciągłości x i ma skoki p i = P ( X = x i ), których suma wynosi 1.

16 Twierdzenie (Podstawowe własności dystrybuanty zm. los. dowolnego typu) Funkcja F : R [0, 1] jest dystrybuantą pewnej zm. los. wtedy i tylko wtedy, gdy F jest funkcją niemalejącą: x1,x 2 R x 1 < x 2 F (x 1 ) F (x 2 ) F jest funkcją ciągłą lub co najmniej lewostronnie ciągłą: x0 R lim x x 0 F (x) = F (x 0 ) ozn. lim F (x) = F (+ ) = 1 x + ozn. lim F (x) = F ( ) = 0. x

Przykład a) Funkcja F (x) = sin x, x R nie jest dystrybuantą żadnej zmiennej losowej, bo nie spełnia warunków 1 i 3 twierdzenia. 17 b) Niech F (x) = 0 x 0 sin x 0 < x π 2 1 x > π 2 Powyższa funkcja jest dystrybuantą pewnej zm. los., gdyż spełnia wszystkie założenia twierdzenia, ale nie jest to dystrybuanta zm. los. skokowej. c) Rozważmy funkcję F o danym wykresie. Czy F jest dystrybuantą pewnej zm. los., czy jest dystrybuantą zm. los. skokowej?

18

19 Twierdzenie (Obliczanie p-stwa, gdy dana jest dystrybuanta) Jeżeli F jest dystrybuantą zm. los. X dowolnego typu w p.p. (Ω, S, P ), to oraz P (a X < b) = F (b) F (a) P (X = a) = F (a + ) F (a), gdzie F (a + ) = lim x a + F (x). Wniosek Jeżeli dystrybuanta jest funkcją ciągłą w punkcie x = a, to P (X = a) = F (a + ) F (a) = 0.

20 Przykład a) Dana jest dystrybuanta zm. los. X typu skokowego: 0 x 1 F (x) = 0, 2 1 < x 1 0, 3 1 < x 3 1 x > 3 Wyznaczyć funkcję p-stwa zm. los. X oraz obliczyć P (X 2). b) Dana jest dystrybuanta zm. los. X typu skokowego: 0 x 2 F (x) = 0, 5 2 < x 1 1 x > 1 Obliczyć P (X = 1), P (X = 0, 5), P ( 3 X < 0, 5).

Przykład Za pomocą dystrybuanty F zm. los. X wyrazić p-stwa: a) P (a X b) b) P (a < X < b) oraz P (X a), P (X a), P (a < X b). 21

22 Zmienne losowe typu ciągłego Wstęp Zmiennej losowej typu skokowego odpowieda w mechanice rozkład masy jednostkowej na odosobnione, poszczególne punkty zbioru przeliczalnego W X. p i = 1

23 Zmiennej losowej typu ciągłego odpowieda w mechanice rozkład ciągłej masy jednostkowej w przedziale. P = 1 m = b a f(x) dx = 1 f(x) gęstość masy

24 Definicja Zmienną losową X o dystrybuancie F nazywamy zm. los. typu ciągłego, jeżeli istnieje taka funkcja f(x) nieujemna ( f(x) 0 ) i całkowalna na R (tzn. dla dowolnego x R zbieżna jest całka x x R przedstawić w postaci: f(t) dt ), że dystrybuantę F można dla dowolnego F (x) = x f(t) dt. Funkcję podcałkową f nazywamy wówczas gęstością rozkładu p- stwa zm. los. X. Uwaga Wzór powyższy pozwala wyznaczyć dystrybuantę, gdy dana jest gęstość rozkładu p-stwa.

25 Przykład a) Wyznaczyć dystrybuantę zm. los. X o gęstości: f(x) = 1 x 2 x 1 0 x < 1 b) Wyznaczyć dystrybuantę zm. los. X o gęstości: f(x) = 1 2 0 x 2 0 dla pozostałych x Twierdzenie Jeżeli X jest zmienną losową typu ciągłego, to jej dystrybuanta jest funkcją ciągłą na całym zbiorze R.

26 Twierdzenie (O rozpoznawaniu gęstości p-stwa) Jeżeli funkcja f : R R spełnia warunki: x R f(x) 0 x R całka x f(t) dt jest zbieżna + f(x) dx = 1, to f jest gęstością pewnej zm. los. X typu ciągłego. Przykład Czy funkcję o wykresie można interpretować jako gęstość rozkładu p-stwa?

27 Przykład a) Dobrać stałe a i b > 0 tak, aby funkcja f(x) = była gęstością pewnej zm. los.. a cos x x [0, b] 0 x / [0, b] b) Dobrać stałą c tak, aby funkcja f(x) = była gęstością pewnej zm. los.. c sin x x [0, π 3 ] 0 x / [0, π 3 ]

28 Twierdzenie (O wyznaczaniu gęstości p-stwa, gdy dana jest dystrybuanta) Jeżeli F jest dystrybuantą zm. los. typu ciągłego, to jej gęstością jest funkcja f(x) = F (x) w punktach różniczkowalności F 0 dla pozostałych x.

29 Przykład a) Dana jest dystrybuanta zm. los. X typu ciągłego: F (x) = Podać wzór na gęstość zm. los. X. 0 x 0 1 e x x > 0 b) Dana jest dystrybuanta zm. los. X typu ciągłego: F (x) = 1 2π x e t2 2 dt, x R. Podać wzór na gęstość zm. los. X.

30 Twierdzenie (O wyznaczaniu p-stwa, gdy dana jest gęstość) Jeżeli X jest zm. los. typu ciągłego o danej gęstości f, to P (X [a, b]) = P (X (a, b]) = P (X [a, b)) = = P (X (a, b)) = b a f(x) dx. Uwaga Ogólnie, jeżeli I oznacza dowolny przedział (ograniczony lub nieograniczony), to P (X I) = I f(x) dx.

31 Przykład a) Dana jest gęstość zm. los. X : f(x) = 1* Obliczyć P (0 X 1 2 ). 3 4 (2x x 2 ) x [0, 2] 0 x / [0, 2] 2* Odczytać z wykresu gęstości P (0 X 1) i obliczyć P (1 X 2 0). b) Dana jest gęstość zm. los. X : f(x) = 1* Obliczyć P (4 X 2 0). 2* Obliczyć P (X 2 > 4X). 2 x 3 x 1 0 x < 1

Wartość oczekiwana zmiennej losowej typu ciągłego 32 Definicja Wartością oczekiwaną zmiennej losowej typu ciągłego o gęstości f nazywamy liczbę E X def = + x f(x) dx, przy założeniu, że zbieżna jest całka + x f(x) dx. W przeciwnym razie wartość oczekiwana nie istnieje. Przykład Rozważmy zm. los. o dystrybuancie F (x) = 1 π arctg x + 1 2, x R. Sprawdzić, czy zmienna losowa X posiada wartość oczekiwaną.

33 Definicja (Wartości oczekiwanej funkcji zm. los.) Jeżeli X jest zm. los. typu ciagłego o gęstości f oraz Y = g(x), gdzie g jest funkcją przedziałami ciągłą, to E Y = E (g(x)) def = + przy założeniu, że zbieżna jest całka g(x) f(x) dx, + g(x) f(x) dx.

34 Przykład a) Dana jest zm. los. X o gęstości: f(x) = 1 2 e x x [0, ln 3] 0 x / [0, ln 3] Obliczyć E(X 2 ) = m 2 (moment zwykły rzędu drgiego). b) Dana jest zm. los. X o gęstości: Obliczyć E(ln X). f(x) = 3 x 4 x 1 0 x < 1

35 Uwaga Jeżeli zm. los. X ma gęstość f, która jest równa 0 poza pewnym zbiorem ograniczonym na prostej oraz jesli funkcja jest ograniczona, to istnieje E(g(X)). Jeżeli zm. los. X jest typu skokowego i przyjmuje tylko skończoną liczbę wartości, to wartość oczekiwana E(g(X)) istnieje. g Definicja Zmienne losowe X i Y (dowolnego typu) nazywamy niezależnymi w p.p. (Ω, S, P ), jeśli dla dowolnych liczb x, y R zdarzenia { ω Ω : X(ω) < x } i { ω Ω : Y (ω) < y } są niezależne, tj. x,y R P ( X < x, Y < y ) = P (X < x) P (Y < y).

36 Włsności wartości oczekiwanej E1. Jeżeli P (X = c) = 1, to EX = c. E2. Jeżeli istnieje EX, to dla dowolnych liczb a, b R E(aX + b) = a EX + b. E3. Jeżeli istnieją EX 1,..., EX n, dla dowolnych stałych c 1,..., c n E(c 1 X 1 +... + c n X n ) = c 1 EX 1 +... + c n EX n. W szczególności jeśli istnieją EX i EY, to E(X ± Y ) = EX ± EY

E4. Jeżeli zm. los. X i Y są niezależne i istnieją EX i EY, to istnieje E(X Y ) oraz E(X Y ) = EX EY. 37 E5. (Interpretacja probabilistycznej wartości oczekiwanej) Jeżeli istnieje EX oraz krzywa gęstości zm. los. typu ciągłego lub wykres funkcji p-stwa skokowej zm. los. są symetryczne względem prostej x = x 0, to EX = x 0.

38 Wariancja zmiennej losowej Przykład Rozważmy dwie zm. los. o rozkładach: X : x i 2 2 p i 0, 25 0, 75 i Y : y i 20 15 p i 0, 4 0, 6 Zauważmy, że EX = EY. Zatem wartości oczekiwane zm. los. X i Y są równe, ale same zm. los. różnią się rozrzutem swych wartości względem punktu x = 1. Wprowadzimy pewną miarę tego rozrzutu. Definicja Wariancją zm. los. X dowolnego typu nazywamy wartość oczekiwaną kwadratu odchylenia X EX od wartości oczekiwanej EX tj. gdzie m = EX. E(X EX) 2 ozn. = E(X m) 2 = D 2 X,

39 Dla rozkładu skokowego: P (X = x i ) = p i, x i W X : o ile szereg jest zbieżny. D 2 X = i (x i m) 2 p i, Dla rozkładu ciągłego o gestości f : D 2 X = + o ile całka jest zbieżna. (x m)2 f(x) dx, Definicja Odchyleniem standardowym (lub dyspersją) zm. los. X nazywamy liczbę DX ozn. = σ def = D 2 X.

40 Włsności wariancji zmiennej losowej D1. D 2 X 0, co więcej D 2 X = 0 wtedy i tylko wtedy, gdy zm. los. X ma rozkład jednopunktowy. D2. Jeżeli istnieje D 2 X, to dla dowolnych liczby a R D 2 (ax) = a 2 D 2 X, i D 2 (X + a) = D 2 X. D3. Jeżeli zm. los. X i Y są niezależne i posiadają warinję, to D 2 (X ± Y ) = D 2 X + D 2 Y.

41 D4. o ile istnieje E(X 2 ). D 2 X = E(X 2 ) (EX) 2, Wzór powyższy jest wygodny do obliczania wariancji. Przykład Niech zm. los. X i Y są niezależne oraz niech EX = 2, D 2 X = 1, EY = 1, D 2 Y = 4. Obliczyć EZ, D 2 Z oraz σ Z, jeśli Z = X 2Y. Przykład Dana jest zm. los. X o gęstości: f(x) = 3 2 (x 1)2 0 x 2 0 dla pozostałych x Obliczyć D 2 X.

42 Standaryzowanie zmiennej losowej Definicja Zmienną losową X (dowolnego typu) nazywamy zmienną losową standaryzowaną, jeżeli EX = 0 i D 2 X = 1. Fakt Jeżeli EX = m i D 2 X = σ 2 > 0, to funkcja zmiennej losowej X S def = X m σ jest standaryzowaną zmienną losową. a) Przykład Dokonać standaryzacji zm. los. Y, jeżeli: Y : y i 1 0 3 p i 1 6 2 3 1 6

43 b) Y = X 1 + X 2 +... + X 180, gdzie zm. los. X k, (k = 1, 2,..., 180) są niezależne i mają jednakowe gęstości p-stwa X k : f(x) = 2x 0 x 1 0 dla pozostałych x

44 Rozkład dwuminowy (Bernoulliego) Niech p oznacza daną liczbę z przedziału (0, 1), n ustaloną liczbe naturalną. Mówimy, że zmienna losowa skokowa X : Ω R ma rozkład (B) z parametrami (n, p), jeżeli jej punkty skokowe (realizacji) tworzą zbiór postaci W = {0, 1, 2,..., n} i skoki określone są wzorem: P (X = k) = n k p k q n k, k W, q = 1 p Uwaga P-stwo n k p k q n k można interpretować jako p- stwo uzyskania k - sukcesów w serii n - powtórzeń tego samego doświadczenia, jeżeli p-stwo sukcesu w jednej próbie wynosi p.

Ilustracja Wykonujemy n = 10 prób Bernoulliego. Wiadomo, że w każdej z nich odnosimy sukces z p-stwem p-stwo, że w 10% wszystkich prób odniesiemy sukces. 45 p = 0, 9. Jakie jest Fakt Dla rozkładu dwumianowego z parametrami (n, p) mamy: EX = n p D 2 X = n p q Przykład Wadliwość pewnej masowej produkcji wynosi 0, 3. Z bieżącej produkcji wylosowano 7 sztuk towaru. Niech X(ω) oznacza liczbę sztuk wadliwych wśród wylosowanych. a) Znaleźć funkcję p-stwa zm. los. X. b) Podać EX i D 2 X.

c) Napisać wzór na p-stwo, że liczba sztuk wadliwych będzie nie większa niż 2. d) Podać wzór na dystrybuantę F (x) zm. los. X. e) Obliczyć F (0) i F (1). 46

47 Rozkład Poissona Mówimy, że zmienna losowa X ma rozkład Poissona (P ) z parametrem λ, (λ > 0), jeżeli X : Ω W, gdzie W = {0} N = {0, 1, 2,...} jest nieskończonym zbiorem punktów skoku i P (X = k) = e λ λk k!, k W. Uwaga Definicja powyższa jest poprawna, ponieważ P (X = k) > 0 oraz k=0 P (X = k) = k! k=0 e λ λk = 1.

48 Fakt Wartość oczekiwana i wariancja zm. los. X o rozkładzie Poissona wyrażają się wzorami: EX = λ D 2 X = λ Twierdzenie graniczne (lokalne Poissona) Niech p zmienia się wraz z n, tzn. niech p = p n. Jeżeli { X n } jest ciągiem zmiennych losowych mających rozkłady Bernoulliego: P (X n = k) = n k p k n q n k n, k = 0, 1, 2,..., n, 0 < p n < 1, q n = 1 p n

49 oraz lim n n p n = λ > 0, to lim n P (X n = k) = e λ λk, k = 0, 1, 2,.... k! Z powyższego twierdzenia wynika następujące przybliżenie Poissona rozkładu Bernoulliego: dla n k p k q n k e λ λk k! λ = n p k = 0, 1, 2,..., n.

50 Przybliżenie to jest wystarczająco dokładne, gdy p 0, 1, n 50, n p = λ 10. Przykład Obliczyć p-stwo, że wśród 200 nadesłanych szyb będą conajmniej 4 szyby uszkodzone, jeżeli wiadomo, że co setna nadesłana szyba jest uszkodzona. Przykład Robotnik obsługuje 800 wrzecion. P-stwo zerwania się przędzy na każdym z nich w czasie T wynosi 0,005. Obliczyć najbardziej prawdopodobną liczbę zerwań w tym czasie i jej p-stwo.

51 Rozkład normalny Gaussa Mówimy, że zmienna losowa X typu ciągłego ma rozkład normalny z parametrami m R i σ > 0, co zapisujemy X : N(m, σ), gdy jej gęstość jest postaci: f(x) = 1 σ 2π e (x m) 2 2σ 2, x R. Własności rozkładu normalnego 1* EX = m i D 2 X = σ 2, 2* krzywa gęstości, zwana też krzywą Gaussa, jest symetryczna względem prostej x = m, 3* wpływ parametrów m R i σ > 0 na kształt i położenie

52 krzywej Gaussa ilustrują rysunki: 4* max x R f(x) = f(m) = 1 σ 2π 0,4 σ, 5* odcięte punktów przegięcia wynoszą x 1 = m σ > 0 i x 2 = m + σ > 0 6* oś 0X jest asymptotą poziomą krzywej gęstości dla x ±. Twierdzenie Jeżeli X i Y są niezależnymi zmiennymi losowymi o rozkładach normalnych, to zmienne losowe: Z = ax + b, gdzie a 0, b - stałe Z = X + Y Z = ax + by, gdzie a + b > 0 też mają rozkłady normalne.

Twierdzenie Jeżeli X 1, X 2,..., X n są niezależnymi zmiennymi losowymi o rozkładach normalnych N(m k, σ k ), k = 0, 1, 2,..., n, to także zmienna losowa X = X 1 + X 2 +... + X n ma rozkład normalny N(m, σ), gdzie m = m 1 + m 2 +... + m n 53 oraz σ = σ 2 1 + σ2 2 +... + σ2 n.

54 Rozkład normalny N(0,1) Zmienną losową o rozkładzie normalnym z wartością oczekiwaną m = 0 i odchyleniem standartowym σ = 1 nazywamy zmienną losową o standaryzowanym rozkładzie normalnym N(0, 1). Jej gęstość dana jest wzorem: f(x) = 1 2π e x2 2, x R. Dystrybuanta rozkładu normalnego N(0, 1) : Φ(x) = 1 2π x e t2 2 dt, x R nie jest funkcją elementarną. Jej przybliżone wartości odczytujemy z tablic. Tablice wartości dystrybuanty rozkładu normalnego N(0, 1)

55 są sporządzone dla x 0. Zauważmy jednak, że Φ( x) = 1 Φ(x) Przykład Zmienna losowa X ma rozkład N(0, 1). Obliczyć P (X < 0, 2) P (X > 1, 2), P ( 0, 1 < X 2), P ( X 1 < 0, 5). Przykład W populacji studentów PG dokonano pomiaru wzrostu mężczyzn. Obserwacje potwierdziły, że zmienna losowa X, wyrazjąca wzrost studenta, ma rozkład N(170, 10). Obliczyć p-stwo, że a) wzrost studenta jest mniejszy niż 180 cm, b) wzrost studenta jest mniejszy niż 160 cm, c) wzrost studenta jest większy niż 165 cm,

56 d) wzrost studenta jest większy niż 200 cm, c) wzrost studenta należy do przedziału (160,180).