Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.



Podobne dokumenty
Agenda. Optymalizacja w transporcie. Piotr Sawicki WIT PP, ZST 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Agenda. Optymalizacja w transporcie. Piotr Sawicki WIT PP ZST 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:

07 Model planowania sieci dostaw 2Po_1Pr_KT Zastosowanie programowania liniowego

Definicja problemu programowania matematycznego

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

Iwona Konarzewska Programowanie celowe - wprowadzenie. Katedra Badań Operacyjnych UŁ

Modelowanie całkowitoliczbowe

Ekonometria - ćwiczenia 10

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

OPTYMALIZACJA PROCESÓW LOGISTYCZNYCH

Przykład wykorzystania dodatku SOLVER 1 w arkuszu Excel do rozwiązywania zadań programowania matematycznego

Programowanie liniowe

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.

Programowanie liniowe

Laboratorium Metod Optymalizacji. Sprawozdanie nr 1

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

ZAGADNIENIE TRANSPORTOWE

=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)

Ekonometria - ćwiczenia 11

Metody Ilościowe w Socjologii

Wspomaganie Zarządzania Przedsiębiorstwem Laboratorium 02

Optymalizacja procesów technologicznych przy zastosowaniu programowania liniowego

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

TOZ -Techniki optymalizacji w zarządzaniu

Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej

Rozwiązywanie programów matematycznych

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

Algebra liniowa. Macierze i układy równań liniowych

Dualność w programowaniu liniowym

Programowanie liniowe

Opis przedmiotu: Badania operacyjne

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

Badania Operacyjne Ćwiczenia nr 1 (Materiały)

Zagadnienia programowania liniowego dotyczą modelowania i optymalizacji wielu problemów decyzyjnych, na przykład:

Programowanie liniowe

BADANIA OPERACYJNE Zagadnienie transportowe

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Standardowe zadanie programowania liniowego. Gliwice 1

Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe

ZAGADNIENIE TRANSPORTOWE

1. Który z warunków nie jest właściwy dla powyższego zadania programowania liniowego? 2. Na podstawie poniższej tablicy można odczytać, że

Opis modułu kształcenia Programowanie liniowe

Programowanie liniowe. Tadeusz Trzaskalik

Elementy Modelowania Matematycznego

Programowanie liniowe

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Tytuł: Identyfikacja procesu. Przedmiot: Zarządzanie procesami transportowo-logistycznymi Specjalność: Logistyka transportu Wersja:

Excel - użycie dodatku Solver

Metody Optymalizacji. Wstęp. Programowanie matematyczne. Dr hab. inż. Maciej Komosiński, mgr Agnieszka Mensfelt

Optymalizacja konstrukcji

PRZEWODNIK PO PRZEDMIOCIE

Zagadnienie transportowe

Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):

Elementy Modelowania Matematycznego

Programowanie dynamiczne. Tadeusz Trzaskalik

Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 Materiały do zajęć dostępne na stronie:

OPTYMALIZACJA DYSKRETNA

Tytuł: 00 Przygotowanie profesjonalnej prezentacji

ZAGADNIENIE TRANSPORTOWE (część 1)

Wykład 7. Informatyka Stosowana. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Wykład 7 16 kwietnia / 23

Funkcja liniowa - podsumowanie

Metody Programowania

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

1 Przykładowe klasy zagadnień liniowych

Elementy modelowania matematycznego

Optymalizacja. Programowanie Matematyczne

Analiza danych przy uz yciu Solvera

1.2. Rozwiązywanie zadań programowania liniowego metodą geometryczną

Tytuł: 02 Modelowanie procesu Pierwsze kroki z ARIS BA

PROGRAMOWANIE CAŁKOWITOLICZBOWE

Zadania 1. Czas pracy przypadający na jednostkę wyrobu (w godz.) M 1. Wyroby

Microsoft EXCEL SOLVER

4. PROGRAMOWANIE LINIOWE

Zbiory wypukłe i stożki

Z-LOG-120I Badania Operacyjne Operations Research

Badania operacyjne Operation research. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Badania Operacyjne Ćwiczenia nr 5 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

ZAGADNIENIE TRANSPORTOWE(ZT)

Kształcenie w zakresie podstawowym. Klasa 2

INSTRUKCJA DO ĆWICZENIA NR 1

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

PRZEWODNIK PO PRZEDMIOCIE

OPTYMALIZACJA W LOGISTYCE

Laboratorium Metod Optymalizacji. Sprawozdanie nr 2

1 Programowanie całkowitoliczbowe PLC

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Transkrypt:

Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put Przedmiot: Optymalizacja w transporcie Specjalność: LT, TD, TŻ Wersja: 2015.03.09 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 2 transporcie 1

Wprowadzenie Cel i zakres wykładu à Cel rozpoznanie specyfiki problemu portfelowego zbudowanie modelu matematycznego rozwiązanie problemu (metodą graficzną i z zastosowaniem Solver-a) uogólnienie problemów o charakterze liniowym Grafika: www.dreamstime.com 3 Wprowadzenie Ramowy program zajęć wadzenie acja zajęć, kluczowe! M1: dobór i wykorzystanie zasobów budowa portfela produktowego (programowanie liniowe) ustalanie kompozycji floty (programowanie całkowitoliczbowe) załadunek problem plecakowy (programowania całkowitoliczbowe) harmonogramowanie pracy (programowanie binarne) warsztat podsumowujący M1 à 3 moduły tematyczne (grupy problemów) M0: wprowadzenie M1: dobór i wykorzystanie zasobów M2: lokalizacja obiektów i ustalanie zasięgu ich działania M3: ustalanie tras M4: podsumowanie 4 transporcie 2

Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 5 Definicja problemu à Ustalenie zestawu produktów, lub usług (zasobów) gwarantujących osiągnięcie najkorzystniejszego rezultatu rynkowego w zdefiniowanych warunkach oferta usług logistycznych rodzaj przewozów w firmie transportowej 6 transporcie 3

Definicja problemu A: Dobór metody rozwiązania. B: Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza problemu na przykładzie 4-etapowy proces rozwiązywania 7 : Identyfikacja Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Analiza przypadku problem sformułowany w postaci zadania programowania liniowego zobacz treść przypadku: Firma ForkLift Service (FLS) jest jednym z ( ) 8 transporcie 4

: matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Zmienne decyzyjne 2 zmienne S: liczba sprzedanych wózków widło-wych typu 20S oferowana przez FLS H: liczba sprzedanych wózków widło-wych typu 45H oferowana przez FLS à Parametry zyskowność koszt jednostkowy vs. budżet pracochłonność vs. zatrudnienie dostępność 9 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Funkcja celu maksymalizacja zysku Z ze sprzedaży wózków widłowych typu 20S i 45H Max Z(S,H) jak ustalić zysk wynikający ze sprzedaży obu typów wózków? Z=z S +z H gdzie: z S - jednostkowy zysk ze sprzedaży wózka typu 20S z H - jednostkowy zysk ze sprzedaży wózka typu 45H 10 transporcie 5

: matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Funkcja celu zyskowność ze sprzedaży każdego typu modelu z s = 0,15 19.000 [ ] S = 2.850S z H = 0,19 33.000 [ ] H = 6.270H ostateczne sformułowanie funkcji celu jeżeli Z=z S +z to Max Z(S, H) = 2.850S + 6.270H 11 : matematycznego. Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (identyfikacja) (1) zasoby finansowe firmy FLS max. 2.400.000 [ /rok] (2) dostępny fundusz czasu pracy poświęcany przez pracowników FLS na sprzedaż wózków 20S i 45H max. 520 [rbh/rok] (3) dostępność wózków u producenta 20S: max 100 [szt./rok] 45H: max 75 [szt./rok] (4) minimalna wielkość zamówienia u producenta 20S: min 10 [szt.] 45H: min 5 [szt.] 12 transporcie 6

: matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (1) zasoby finansowe firmy FLS: max. 2.400.000 [ ], stąd: 19.000 S + 33.000 H 2.400.000 [ ] (2) dostępny fundusz czasu pracy: max. 520 [rbh/rok], stąd: 6 S + 4 H 520 [rbh/rok] 13 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (3) możliwości produkcyjne firmy Clark w zakresie dostarczenia firmie FLS wózków widłowych typu 20S i 45H dostępność wózków 20S S 100 [szt./rok] dostępność wózków 45H H 75 [szt./rok] 14 transporcie 7

: matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (4) minimalna liczba wózków w jednorazowym zamówieniu, zapewniająca ciągłość sprzedaży przy jednoczesnym zachowaniu satysfakcji klientów firmy FLS zapotrzebowanie firmy FLS na wózki typu 20S S 10 [szt./rok] zapotrzebowanie firmy FLS na wózki typu 45H H 5 [szt./rok] 15 : matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ograniczenia (zapis) (5) formalnie: poszukiwane rozwiązanie (S, H) nie powinno przyjmować wartości ujemnych dla wózków typu 20S S 0 [szt./rok] dla wózków typu 45H H 0 [szt./rok] 16 transporcie 8

: matematycznego Dobór metody rozwiązania. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości à Ostateczna postać modelu matematycznego funkcja celu Max Z(S, H) = 2.850S + 6.270H przy ograniczeniach (1) 19S + 33H 2.400 (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 17 : Dobór metody i rozwiązanie A. Dobór metody rozwiązania B. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu Metoda graficzna 18 transporcie 9

H 140 (4.1) S 10 Obszar rozwiązań niedopuszczalnych (3.1) S 100 : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S + 6.270H 100 75 20 5 0 (5.1) 10 Obszar rozwiązań dopuszczalnych dla ograniczeń (3.1) (5.2) S 0 H 0 (5.2) H 75 Ograniczenia (5.1) i (5.2) są nieaktywne 20 100 120 (3.2) H 5 (4.2) S Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 19 H 140 100 75 (4.1) (0;130) (2) S 10 Ograniczenie (3.1) staje się nieaktywne 6S + 4H = 520 (3.1) S 100 H 75 (3.2) : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S + 6.270H Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 20 5 (5.1) S 0 H 0 (5.2) (86,7; 0) H 5 (4.2) ograniczenie (2) 6S + 4H = 520 jeżeli S = 0 to H = 130; (0;130) jeżeli H = 0 to S = 86,7; (86,7;0) 0 10 20 100 120 S 20 transporcie 10

H 140 (130) (4.1) S 10 (3.1) S 100 : Dobór metody i rozwiązanie Metoda graficzna Funkcja celu: Max Z(S, H) = 2.850S + 6.270H 100 75 (2) (0; 72,7) 6S + 4H = 520 H 75 (3.2) Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 20 5 0 (5.1) 10 S 0 H 0 (5.2) (1) 19S +33H = 2 400 (126,3; 0) H 5 20 (86,7) 100 120 (4.2) S ograniczenie (1) 19 S + 33 H = 2.400 jeżeli S = 0 to H = 72,7 (0;72,7) jeżeli H = 0 to S = 126,3 (126,3;0) 21 H 140 S = 10 S = 100 : Dobór metody i rozwiązanie Metoda graficzna (130) 100 6S + 4H = 520 Ostatni wierzchołek określanie kierunku zmiany wartości funkcji celu (tu kierunek przyrostu FC) Max Z(S, H) = 2.850S + 6.270H 2.850S + 6.270H = 0 75 H = 75 Z 2 =364 800 Z 1 =239 400 (40; 40) 19S +33H = 2 400 jeżeli S = 10 to H = -4,5 (10; -4,5) jeżeli S = 20 to H = -9 (20; -9) 20 (40; 20) Z= 2 850S + 6 270H 5 H = 5 0-4,5-9 20 40 (86,7) 100 120 (126,3) S 22 transporcie 11

H 140 (130) 100 75 20 S = 10 6S + 4H = 520 (10; 66,96) S = 100 H = 75 19S +33H = 2 400 5 H = 5 0 20 100 120 S (86,7) (126,3) : Dobór metody i rozwiązanie Metoda graficzna określanie parametrów wierzchołka (określenie punktu przecięcia prostych) S = 10 19S + 33H = 2.400 H = -19/33 S + 2.400/33 S = 10; H = 66,96 określanie wartości funkcji celu jeżeli S = 10 i H = 66,96 to Z = 448.400 à Z max 23 : Dobór metody i rozwiązanie Metoda graficzna à Algorytm metody graficznej (1) narysuj obszar rozwiązań dopuszczalnych i określ jego wierzchołki jeżeli obszar rozwiązań jest pusty à wszystkie rozwiązania są niedopuszczalne à ponownie rozważ sformułowanie ograniczeń (2) narysuj 2 różne wykresy funkcji celu (FC) i określ kierunek optymalizacji (max vs. min) jeżeli problem dotyczy max FC równolegle przesuń linię reprezentującą FC w kierunku przyrostu jej wartości jeżeli problem polega na min FC przesuń linię w kierunku przeciwnym, tj. zmniejszania się wartości FC (3) przesuń funkcję celu znajdując ostatni wierzchołek w przypadku, gdy FC jest równoległa do jednego z boków obszaru rozwiązań dopuszczalnych (ORD), wówczas problem posiada szereg rozwiązań alternatywnych leżących pomiędzy wierzchołkami ORD (4) równania prostych, które przecinają się w punkcie wierzchołkowym (patrz p.3) tworzą układ równań określających współrzędne punktu optymalnego 24 transporcie 12

: Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Rozwiązanie optymalne optymalna liczba sprzedanych wózków widłowych 20S wynosi S=10 [szt.] optymalna liczba sprzedanych wózków widłowych 45H wynosi H=66,96 [szt.] w praktyce: H=66 lub H=67* (*- rozwiązanie poza obszarem rozwiązań dopuszczalnych) zysk ze sprzedaży wózków obu typów Z=2.850S + 6.270H S=10 [szt.] i H=66,96 [szt.] Z=448.400 [ ] à Z max lub S=10 i H=66 à Z=442.320 [ ] 25 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (1) dostępne zasoby finansowe LHS* RHS* 19.000S + 33.000H 2.400.000 jeżeli S=10 [szt.] i H=66,96 [szt.] to LHS 1 = 2.400.000 [ ] RHS 1 = 0 [ ] (brak zasobów!) * LHS ang. left-hand side; RHS- ang. right-hand side 26 transporcie 13

: Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (2) dostępna liczba roboczogodzin 6S + 4H 520 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 2 = 327,84 [rbh] RHS 2 =192,16 [rbh] (wolne zasoby) 27 : Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (3.1) dostępność wózków 20S S 100 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 3 = 10 [szt.] RHS 3 = 90 [szt.] (wolne zasoby) 28 transporcie 14

: Interpretacja rozwiązania i analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości à Analiza ograniczeń ograniczenie (3.2) dostępność wózków 45H H 75 jeżeli S=10 szt. i H=66,96 [szt.] to LHS 4 = 66,96 [szt.] RHS 4 = 8,04 [szt.] (wolne zasoby) 29 : Interpretacja rozwiązania i analiza wrażliwości à Analiza ograniczeń pozostałe ograniczenia (4.1-5.2) A. Dobór metody rozwiązania B. Rozwiązanie problemu A: Interpretacja rozwiązania B: Analiza wrażliwości (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 30 transporcie 15

: Dobór metody i rozwiązanie A. Dobór metody rozwiązania B. Rozwiązanie problemu Interpretacja rozwiązania Analiza wrażliwości A. Dobór metody rozwiązania B. Rozwiązanie problemu Metoda graficzna 31 : Dobór metody i rozwiązanie Solver Model zbudowany w MS Excel stanowi załącznik do materiału wykładowego: _LP.xlsx Funkcja celu: Max Z(S, H) = 2.850S + 6.270H Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 Zapis modelu matematycznego w arkuszu MS Excel Model matematyczny problemu 32 transporcie 16

: Dobór metody i rozwiązanie Solver =C7*C3 + D7*D3 lub =SUMA.ILOCZYNÓW(C7:D7; C3:D3) Funkcja celu: Max Z(S, H) = 2.850S + 6.270H Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 33 : Dobór metody i rozwiązanie Solver =C12*C3 + D12*D3 lub =SUMA.ILOCZYNÓW(C12:D12; C3:D3) LHS* Funkcja celu: Max Z(S, H) = 2.850S + 6.270H Ograniczenia: (1) 19S + 33H 2.400 (2) 6S + 4H 520 (3.1) S 100 (3.2) H 75 (4.1) S 10 (4.2) H 5 (5.1) S 0 (5.2) H 0 RHS* * LHS ang. left-hand side; RHS- ang. right-hand side 34 transporcie 17

: Dobór metody i rozwiązanie Solver 35 : Interpretacja rozwiązania i analiza wrażliwości Solver Max Z(S, H) = 448.400 dla S=10 [szt.] i H=66,96 [szt.] Wykorzystane zasoby * LHS ang. left-hand side; RHS- ang. right-hand side 36 transporcie 18

: Interpretacja rozwiązania i analiza wrażliwości Solver Max wartość FC Wartość zmiennych decyzyjnych dla optimum FC LHS dla wartości zmiennych decyzyjnych Raport wyników RHS dla wartości zmiennych decyzyjnych; Wiążące = brak zasobów Niewiążace = wolne zasoby 37 : Interpretacja rozwiązania i analiza wrażliwości Solver Optymalna wartość zm. dec. Parametry w FC Dopuszczalny wzrost/ zmniejszenie wartości param., dla których wartości zm. dec. nie ulegną zmianie Jaki zakres zmian RHS nie spowoduje zmiany ceny dualnej Raport wrażliwości O Ile zmieni się wartość FC, jeżeli RHS wzrośnie o 1 38 transporcie 19

: Interpretacja rozwiązania i analiza wrażliwości Solver Optymalna wartość FC Wartość zm. dec. dla których FC à max Granice zmienności obszaru rozwiązań dopuszczalnych FC nie zależy od zmian S DG (S)= GG (S) = 10 DG (H) = 5; GG (H) = 66,97 Raport granic 39 : Interpretacja rozwiązania i analiza wrażliwości Solver H 140 (130) S = 10 S = 100 100 6S + 4H = 520 75 H = 75 Z(max) = 448.400 E 19S +33H = 2 400 20 Z(min) = 59.850 E 5 H = 5 0 20 100 120 S (86,7) (126,3) 40 transporcie 20

: Interpretacja rozwiązania i analiza wrażliwości à Rozwiązanie problemu portfelowego czy w portfelu produktowym (palecie wózków) znajdują się modele 20S i 45H? 20S: 10 szt. 45H: 66(,97) szt. rekomendacja utrzymanie 20S w portfelu dla zachowania ciągłości sprzedaży koncentracja sprzedaży na 45H pozyskanie dodatkowych środków finansowych (eliminacja ograniczenia) à Czy na pewno model zbudowano właściwie? czy zapis funkcji celu i ograniczeń jest właściwy? 41 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 42 transporcie 21

Zadanie programowania liniowego Zapis à Ogólne sformułowanie zadania programowania liniowego funkcja celu (maksymalizacja) Max Z = c 1 x 1 + c 2 x 2 +... +c n x n ograniczenia (dostępne zasoby) a 11 x 1 + a 12 x 2 +... + a 1n x n b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n b 2... a m1 x 1 + a m2 x 2 +... + a mn x n b m x 1 0, x 2 0,..., x n 0 gdzie: x 1, x 2,..., x 3 zmienne decyzyjne parametry: c j jednostkowy przyrost j-tej czynności w ocenie globalnej Z (j = 1, 2,..., n) b i ilość i -tego zasobu dostępnego do alokacji do czynności (i = 1, 2,..., m) a ij ilość i -tego zasobu konsumowanego przez j-tą czynność 43 Zadanie programowania liniowego Cechy zpl à Model matematyczny problemu à Które z poniższych sformułowań maja sformułowany w postaci zadania charakter liniowy? programowania liniowego 2 Min Z (x funkcja celu (kryterium jakości dobroci 1,x 2 ) = 2x 1 + 3x 2 rozwiązania) 3 Min Z (x funkcja liniowa 1,x 2 ) = x 1 + x 2 zmienne decyzyjne w pierwszej potędze 2x ograniczenia 1 + 3x 2 2 45 funkcja liniowa Min Z (x 1,x 2 ) = 2x 1 + x 2 zmienne decyzyjne w pierwszej potędze zależności w postaci >, <, = 3x 1 + 4x 2 + x 3 10 44 transporcie 22

Zadanie programowania liniowego Cechy zpl à Co w praktyce oznacza liniowość modelu matematycznego? zależność funkcyjna pomiędzy zmiennymi decyzyjnymi posiada graficzną reprezentację w postaci prostych dotyczy to każdego wyrażenia w modelu matematycznym 45 Agenda Kluczowe elementy wykładu WPROWADZENIE Cel i zakres wykładu. PROBLEM PORTFELOWY Istota. Sformułowanie matematyczne. Rozwiązanie. Analiza rozwiązania ZADANIE PROGRAMOWANIA LINIOWEGO Uogólnienie zadania programowania liniowego (zpl). Cechy zpl PODSUMOWANIE Resume. Dyskusja 46 transporcie 23

Podsumowanie Przypomnienie kluczowych pojęć à Resume problem portfelowy (PP) rozwiązanie przykładowego PP - identyfikacja problemu - budowa modelu matematycznego - dobór metody i rozwiązanie - interpretacja rozwiązania i analiza wrażliwości uogólniony model zadania programowania liniowego definicja rozwiązań - rozwiązanie dopuszczalne rozwiązanie dla którego spełnione są wszystkie ograniczenia - rozwiązania niedopuszczalne rozwiązania znajdujące się poza obszarem rozwiązań dopuszczalnych - rozwiązanie optymalne (optimum) rozwiązanie dopuszczalne osiągające wartość ekstremalną - ograniczenie aktywne ograniczenie wyznaczające obszar rozwiązań dopuszczalnych - ograniczenie nieaktywne ograniczenie nie należące do obszaru rozwiązań dopuszczalnych 47 Podsumowanie Przypomnienie kluczowych pojęć à Resume przykłady obszarów rozwiązań dopuszczalnych Funkcja celu może przyjmować nieograniczone wartości Obszar rozwiązań dopuszczalnych jest pusty 48 transporcie 24

Podsumowanie Zapraszam do dyskusji i zadawania pytań Grafika: www.chemtrailsky.com 49 Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put Przedmiot: Optymalizacja w transporcie Specjalność: LT, TD, TŻ Wersja: 2015.03.09 transporcie 25