Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstęp do metod numerycznych Dyskretna transformacja Fouriera. P. F. Góra"

Transkrypt

1 Wstęp do metod numerycznych Dyskretna transformacja Fouriera P. F. Góra 01

2 Problem Majac dany szereg czasowy {x i } N i=1 = {x 1, x,..., x N } (zazwyczaj nieciekawy), zdobadź informację na temat mechanizmu odpowiedzialnego za wygenerowanie tego szeregu (co może być interesujace). Copyright c P. F. Góra 13

3 Przykład x(t) 0.0 x(t) t t Po owocach jego poznacie go. Copyright c P. F. Góra 13 3

4 Próbkowanie Nie zajmujemy się sygnałami ciagłymi, ale sygnałami, które zostały spróbkowane z pewnym stałym krokiem: g n = g(n ), n =..., 3,, 1, 0, 1,, 3,... (1) Proces próbkowania wprowadza pewna częstotliwość charakterystyczna, zwana częstotliwościa Nyquista: f Nyq = 1. () Uwaga: Jeśli chcemy rozpoznać falę harmoniczna, należy ja spróbkować (co najmniej) dwa razy w każdym okresie. Jeśli próbkujemy z krokiem, możemy rozpoznać częstotliwości f [ f Nyq, f Nyq. Copyright c P. F. Góra 13 4

5 Dodatnie i ujemne częstotliwości Jeśli dopuszczamy dodatnie i ujemne częstotliwości, e +πift, e πift = e +πi( f)t, możemy odróżnić sin πft od cos πft, które maja taka sama częstotliwość, ale różnia się faza. Copyright c P. F. Góra 13 5

6 Twierdzenie Shannona-Kotelnikowa o próbkowaniu Pytanie: Kiedy możemy próbkować lub też pod jakimi warunkami dyskretne próbki dadza tę sama informację, co funkcja o argumencie ciagłym? Theorem: Jeśli funkcja g(t) jest pasmowo ograniczona, czyli gdy zwiera tylko częstotliwości z przedziału [ f Nyq, f Nyq, i gdy mamy nieskończony szereg próbkowany z krokiem, wówczas sin ( πf Nyq (t n ) ) t: g(t) = g n. (3) π(t n ) n= Szum (procesy stochastyczne) i funkcje nieciagłę (zawierajace skoki) nie sa pasmowo ograniczone. Copyright c P. F. Góra 13 6

7 Aliasy Jeśli w sygnale sa częstotliwości spoza przedziału f [ f Nyq, f Nyq, nie tylko sa one tracone, ale także psuja one informację o częstotliwościach z przedziału Nyquista. Rozważmy dwie fale harmoniczne exp(πif 1 t), exp(πif t) takie, że f 1 f = k/. Wówczas exp(πif 1 n ) = exp(πi(f + k/ )n ) = exp(πif n + πikn) = exp(πif n ). Takie fale daja identyczne próbki, jeśli próbkować je z krokiem. Copyright c P. F. Góra 13 7

8 Example sin(πt) + 0.5sin(9πt) sin(πt) - 0.5sin(7πt) t Częstotliwość 9/ zostanie fałszywie zinterpretowana jako 7/. Copyright c P. F. Góra 13 8

9 Transformacja Fouriera G(f) = g(t)e πift dt (4) Funkcja musi znikać dostatecznie szybko dla t ± aby transformacj Fouriera istniała. Transformacja odwrotna: g(t) = G(f)e πift df (5) Trzeba zapamiętać gdzie umieścić π, jest kilka różnych konwencji. Copyright c P. F. Góra 13 9

10 Własności transformacji Fouriera Splot: (g h)(t) = g(τ)h(t τ) dτ (6a) g h G(f)H(f) (6b) Funkcja korelacji: Corr(g, h) = g(τ + t)h(t) dτ (7a) Corr(g, h) G(f)H (f) (7b) Copyright c P. F. Góra 13 10

11 Twierdzenie Wienera-Chinczyna Funkcja korelacji: Corr(g, g) G(f) (8) Tożsamość Parsevala g(t) dt = G(f) df = całkowita moc (9) Copyright c P. F. Góra 13 11

12 Skończone szeregi czasowe Twierdzenie o próbkowaniu wymaga nieskończonego szeregu czasowego. W rzeczywistości mamy dane jedynie szeregi skończone, o pewnej długości N. Stosowane sa dwie konwencje: Zakładamy, że wyrazy szeregu na obu końcach daż a do zera (jeśli trzeba, mnożymy szereg przez odpowiednia funkcję okna) i sa tożsamościowo równe zeru przed zarejestrowanym poczatkiem i po zarejestrowanym końcu. Zakładamy, że zaobserwowany szereg skończony jest okresem nieskończonego szeregu okresowego. (W tej konwencji sinus i kosinus maja transformaty Fouriera.) Copyright c P. F. Góra 13 1

13 Przyjmujemy ta druga konwencję i udajemy, że szereg ma postać..., g 0, g 1, g,..., g N 1, g 0, g 1, g,..., g N 1, g 0, g 1, g,..., g N 1,... (10) } {{ } kopia 1 } {{ } prawdziwe dane } {{ } kopia +1 Ponieważ mamy N (przyjmijmy, że jest to liczba parzysta) próbek wejściowych, dyskretna transformacja Fouriera (Discrete Fourier Transform, DFT) może być obliczana tylko w N punktach. Decydujemy, że DFT obliczamy tylko dla częstotliwości f n = n N, n = N,..., N. (11) Copyright c P. F. Góra 13 13

14 Dyskretna transformacja Fouriera G(f n ) = g(t) e πif nt dt = lim M 1 M+1 M s(n 1) s= M (s 1)(N 1) g(t) e πif nt dt = (N 1) 0 g(t)e πif nt dt N 1 k=0 g k e πif nt k = N 1 k=0 g k e πikn/n. (1) Copyright c P. F. Góra 13 14

15 Liczby G n = 1 N 1 N k=0 g k e πikn/n (13) nazywamy dyskretnymi składowymi Fourierowskimi funkcji g. Transformacja odwrotna ma postać g k = 1 N 1 N Dyskretna tożsamość Parsevala: n=0 G n e πikn/n. (14) N 1 k=0 g k = N 1 n=0 G n. (15) Copyright c P. F. Góra 13 15

16 DFT jako transformacja liniowa Równanie (13) można przepisać w postaci G n = N 1 k=0 W nk g k, W nk = 1 N e πikn/n. (16a) (16b) Liczby W nk można interpretować jako elementy pewnej macierzy. Wobec tego (16) można zapisać w zwartej postaci w następujacy sposób: G = Wg, (17) gdzie G, g C N, W C N N. Jaka jest złożoność obliczenia DFT? Wydaje się, że jest to koszt pomnożenia wektora przez macierz, a więc O(N ). Copyright c P. F. Góra 13 16

17 Własności macierzy W ( WW ) ls = N 1 k=0 ( W lk W ) N 1 ks = k=0 W lk (W sk ) = 1 N N 1 k=0 Jeżeli l = s, wszystkie wyrazy równaja się 1, więc wynikiem jest 1. l s = m 0, ( WW ) ls = 1 N N 1 k=0 ( e πim/n ) k = 1 ( e πim/n ) N e πi(l s)k/n (18) Jeżeli N(1 e πim/n ) = 1 emπi N(1 e πim/n ) = 0. (19) ( WW ) ls = δ ls. Macierz W jest macierza unitarna. Copyright c P. F. Góra 13 17

18 Podsumowanie DFT jest, z dokładnościa do normalizacji, unitarnym przekształceniem wektora próbek na wektor składowych Fourierowskich. DFT przedstawia wektor próbek w innej bazie, a mianowicie w bazie rozpinanej przez zdyskretyzowane sinusy i kosinusy o częstotliwościach 0, 1/(N ), /(N ),..., 1/( ). Dzięki symetriom macierzy W, złożoność obliczeniowa DFT może być znacznie zmniejszona (FFT). Copyright c P. F. Góra 13 18

19 Uwagi Dyskretne składowe Fourierowskie sa okresowe. G N/ = G N/. W szczególności, Używa się także transformacji rozpiętych na samych sinusach badź kosinusach (transformacje jednostronne). Sygnał może być zespolony. Jeśli sygnał jest rzeczywisty, wygodnie jest obliczać jego transformatę, traktujac go jako sygnał zespolony o połówkowej długości. Wygodnie jest także jednocześnie obliczać transformatę dwu sygnałów rzeczywistych, traktowanych jako część rzeczywista i urojona sygnału zespolonego. W obu wypadkach symetrie DFT pozwalaja zidentyfikować co jest transformacja czego. Copyright c P. F. Góra 13 19

20 Transformata sygnału pokrywajacego się z jednym z sygnałów bazowych N = 3, = 1/ sin(πt) 0.0 P(f) t f Copyright c P. F. Góra 13 0

21 Transformata czystego sygnału harmonicznego, który nie pokrywa się z pojedynczym sygnałem bazowym N = 3, = 1/ sin(6t) 0.0 P(f) t f Copyright c P. F. Góra 13 1

22 Zwiększanie liczby próbek bez zmiany kroku próbkowania zwiększa rozdzielczość 1 N = 3, = 1/ P(f) sin(6t) + 0.5sin(7t) P(f) f N = 18, = 1/ t f Copyright c P. F. Góra 13

23 Macierz Vandermonde a Mecierz DFT jest szczególnym przypadkiem macierzy Vandermonde a W = 1 N V (N) C N N, gdzie V (N) = z 0 z 1 z N z N 1 z0 z1 zn z N 1... z0 N 1 z1 N 1 zn N 1. zn 1 N 1 (0) W wypadku DFT, z k = exp(πik/n). Copyright c P. F. Góra 13 3

24 Algorytm szybkiej transformacji Fouriera (Fast Fourier Transform, FFT) Przedyskutujmy to na przykładzie N = 8 G = V(8) 8 g = i i 1 1+i 1+i 1 1 i 1 i 1 i 1 i 1 i 1 i i 1 i 1 1+i 1+i 1 i 1 i i i 1 1 i 1 i 1 1+i 1+i 1 i 1 i 1 i 1 i 1 i i 1 i 1 i 1 1+i Widać pewne wzorce, ale trudno jest dostrzec symetrie. 1+i g 0 g 1 g g 3 g 4 g 5 g 6 g 7 (1) Copyright c P. F. Góra 13 4

25 Spermutujmy kolumny macierzy i wiersze wektora próbek tak, aby nie zmienić wyniku: G = i 1 i 1+i 1+i 1 i 1 i i i i i 1 i 1 i 1+i 1+i 1 i 1 i i 1 i 1 i 1 i 1+i 1+i i i i i 1 i 1 i 1 i 1 i 1+i 1+i g 0 g g 4 g 6 g 1 g 3 g 5 g 7 () Teraz zaczynamy coś widzieć! Copyright c P. F. Góra 13 5

26 Przepiszmy równanie () w następujacej notacji blokowej G = 1 8 V (4) Ω (4) V (4) V (4) Ω (4) V (4) g 0 g g 4 g 6 g 1 g 3 g 5 g 7 (3) Copyright c P. F. Góra 13 6

27 ... gdzie V (4) = i 1 i i 1 i, (4) Ω (4) = i i i = ( ) 0 1+i ( ) 1 1+i ( ) 1+i ( ) 3 1+i (5) Copyright c P. F. Góra 13 7

28 A zatem G = 1 8 V (4) V (4) g 0 g g 4 g 6 g 0 g g 4 g 6 + Ω(4) V (4) Ω(4) V (4) g 1 g 3 g 5 g 7 g 1 g 3 g 5 g 7 (6) Fragmenty o różnych kolorach obliczane sa tylko raz. Mnożenie przez Ω (4) zachodzi w czasie liniowym. Zredukowaliśmy całkowita liczbę operacji o połowę. Copyright c P. F. Góra 13 8

29 Kluczowa obserwacja: V (4) można sfaktoryzować w podobny sposób, z jednoczesna permutacja wektora wejściowego: V (4) g 0 g g 4 g 6 = V () Ω () V () V () Ω () V () g 0 g 4 g g 6 (7) V () = [ , Ω () = [ 1 i = [ i 0 i 1 (podobnie dla [g 1, g 3, g 5, g 7 T ) Copyright c P. F. Góra 13 9

30 Zatem G = 1 8 V () [ g0 g 4 +Ω () V () [ g g 6 V () [ g0 g 4 Ω () V () [ g g 6 V () [ g0 g 4 +Ω () V () [ g g 6 V () [ g0 g 4 Ω () V () [ g g 6 +Ω(4) Ω (4) V () [ g1 g 5 +Ω () V () [ g3 g 7 V () [ g1 g 5 Ω () V () [ g3 g 7 V () [ g1 g 5 +Ω () V () [ g3 g 7 V () [ g1 g 5 Ω () V () [ g3 g 7 Wektory dwuwymiarowe o różnych kolorach obliczane sa tylko raz. Zmniejszyliśmy liczbę operacji czterokrotnie. Copyright c P. F. Góra (8)

31 Ostatnia zagadka Dokonaliśmy następujacej permutacji wektora wejściowego [g 0, g 1, g, g 3, g 4, g 5, g 6, g 7 T [g 0, g 4, g, g 6, g 1, g 5, g 3, g 7 T. Czy taka permutację łatwo jest zaimplementować? = odwróć kolejność = (9) Wejściowy wektor został zapisany w odwrotnej kolejności bitowej indeksów. Copyright c P. F. Góra 13 31

32 Ten algorytm łatwo można uogólnić dla każdego N = s, s N. Nie trzeba obliczać członów postaci sin ( ) ( ) nπ N, cos nπ N nie trzeba wołać funkcji bibliotecznych sin( ), cos( ). Na każdym etapie faktoryzacji tylko jeden raz obliczany jest pierwiastek odpowiedniego stopnia z i, na co sa gotowe wzory. Następnie oblicza się tylko kolejne potęgi tego pierwiastka. Jaki jest więc końcowy koszt numeryczny? Copyright c P. F. Góra 13 3

33 Każda faktoryzacja zmniejsza liczbę operacji o połowę. Jest log N fakatoryzacji. Złożoność obliczeniowa algorytmu FFT wynosi O(N log N) Na przykład, dla N = = 16, algorytm FFT zmniejsza koszt obliczeniowy wyliczenia DFT ponad cztery tysiace razy. Copyright c P. F. Góra 13 33

34 Uwagi Podobne algorytmy można skonstruować dla N = 3 s, N = 5 s i, w ogólności, dla każdego N = q s, gdzie q jest liczba pierwsza. Ich złożoność obliczeniowa wynosi O(N log q N). Dobre biblioteki automaczynie faktoryzuja macierze o rozmiarach N = q s 1 q 1, q,..., q m sa niewielkimi liczbami pierwszymi. 1 qs qs m, gdzie Jeśli analizujemy szerego, którego wyrazy obliczamy, możemy kontrolować jego długość i powinniśmy zadbać, aby była ona potęga niewielkiej liczby peirwszej. Jeśli analizujemy szereg doświadczalny, rozsadnie jest go albo obciać, albo wypełnić zerami, tak, aby długość była potęga niewielkiej liczby peirwszej. Istnieja także szybkie algorytmy obliczania transformat jednostronnych (sinusowej i kosinusowej). Na sieci dostępnych jest wiele pakietów obliczajacych FFT. Niektóre z nich sa dobre. Ja polecam The Fastest Fourier Transform in the West, Copyright c P. F. Góra 13 34

Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne

Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 007/08 Transformata Fouriera G(f) = g(t)e πift dt (1)

Bardziej szczegółowo

Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne

Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne Analiza szeregów czasowych: 1. Dyskretna transformata Fouriera i zagadnienia pokrewne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 006/07 Plan wykładu Dyskretna transformata Fouriera,

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Transformacje Fouriera * podstawowe własności

Transformacje Fouriera * podstawowe własności Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

Przekształcenie Fouriera obrazów FFT

Przekształcenie Fouriera obrazów FFT Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Transformacja Fouriera i biblioteka CUFFT 3.0

Transformacja Fouriera i biblioteka CUFFT 3.0 Transformacja Fouriera i biblioteka CUFFT 3.0 Procesory Graficzne w Zastosowaniach Obliczeniowych Karol Opara Warszawa, 14 kwietnia 2010 Transformacja Fouriera Definicje i Intuicje Transformacja z dziedziny

Bardziej szczegółowo

Szereg i transformata Fouriera

Szereg i transformata Fouriera Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Przetwarzanie sygnału cyfrowego (LabVIEW)

Przetwarzanie sygnału cyfrowego (LabVIEW) Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział: Elektryczny, Kierunek: Informatyka Projekt zaliczeniowy Przedmiot: Systemy akwizycji i przesyłania informacji Przetwarzanie sygnału

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008

Analiza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze

Bardziej szczegółowo

Szybka transformacja Fouriera

Szybka transformacja Fouriera Szybka transformacja Fouriera (Opis i wydruki programów) Instytut Astronomii UMK, Toruń 1976 2 K. Borkowski PROGRAM OBLICZANIA TRANSFORMAT FOURIERA Wstęp Prezentowany tutaj program przeznaczony jest do

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR. P. F. Góra Wstęp do metod numerycznych Faktoryzacja Cholesky ego i QR P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Faktoryzacja Cholesky ego Niech A R N N będzie symetryczna, A T = A, i dodatnio określona:

Bardziej szczegółowo

Właściwości sygnałów i splot. Krzysztof Patan

Właściwości sygnałów i splot. Krzysztof Patan Właściwości sygnałów i splot Krzysztof Patan Właściwości sygnałów Dla sygnału ciągłego x(t) można zdefiniować wielkości liczbowe charakteryzujące ten sygnał wartość średnia energia sygnału x sr = lim τ

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)

Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018) Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej

Bardziej szczegółowo

Szybka transformacja Fouriera (FFT Fast Fourier Transform)

Szybka transformacja Fouriera (FFT Fast Fourier Transform) Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja

Bardziej szczegółowo

Analiza szeregów czasowych: 4. Filtry liniowe

Analiza szeregów czasowych: 4. Filtry liniowe Analiza szeregów czasowych: 4. Filtry liniowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry liniowe W dziedzinie fourierowskiej filtruje się bardzo prosto: oblicza się iloczyn

Bardziej szczegółowo

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311

dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra Wstęp do metod numerycznych Faktoryzacja QR i SVD P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Transformacja Householdera Niech u R N, u 0. Tworzymy macierz W sposób oczywisty P T = P. Obliczmy

Bardziej szczegółowo

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów

Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów 31.01.2008 Zastowowanie transformacji Fouriera w cyfrowym przetwarzaniu sygnałów Paweł Tkocz inf. sem. 5 gr 1 1. Dźwięk cyfrowy Fala akustyczna jest jednym ze zjawisk fizycznych mających charakter okresowy.

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L

Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Przetwarzanie sygnałów

Przetwarzanie sygnałów Spis treści Przetwarzanie sygnałów Ćwiczenie 3 Właściwości przekształcenia Fouriera 1 Podstawowe właściwości przekształcenia Fouriera 1 1.1 Kompresja i ekspansja sygnału................... 2 1.2 Właściwości

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt.

Kompresja Danych. Streszczenie Studia Dzienne Wykład 13, f(t) = c n e inω0t, T f(t)e inω 0t dt. 1 Kodowanie podpasmowe Kompresja Danych Streszczenie Studia Dzienne Wykład 13, 18.05.2006 1.1 Transformaty, próbkowanie i filtry Korzystamy z faktów: Każdą funkcję okresową można reprezentować w postaci

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU

NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie NIEOPTYMALNA TECHNIKA DEKORELACJI W CYFROWYM PRZETWARZANIU OBRAZU Wojciech Zając Instytut Informatyki

Bardziej szczegółowo

Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago

Transformata Fouriera. Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformata Fouriera Sylwia Kołoda Magdalena Pacek Krzysztof Kolago Transformacja Fouriera rozkłada funkcję okresową na szereg funkcji okresowych tak, że uzyskana transformata podaje w jaki sposób poszczególne

Bardziej szczegółowo

Spis treści. Metody nieparametryczne. Transformacja Fouriera

Spis treści. Metody nieparametryczne. Transformacja Fouriera Spis treści 1 Metody nieparametryczne 1.1 Transformacja Fouriera 1.2 Bliżej życia 1.3 Splot 2 Transformacja Z 3 Filtry 4 Metody parametryczne 5 Analiza danych wielokanałowych 5.1 Koherencje 5.2 Związki

Bardziej szczegółowo

Wykład 2. Transformata Fouriera

Wykład 2. Transformata Fouriera Wykład 2. Transformata Fouriera Transformata Fouriera jest podstawowym narzędziem analizy harmonicznej i teorii analizy i przetwarzania sygnału. Z punktu widzenia teorii matematycznej transformata Fouriera

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa i faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś   Wykład 13 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie

Bardziej szczegółowo

2. Szybka transformata Fouriera

2. Szybka transformata Fouriera Szybka transforata Fouriera Wyznaczenie ciągu (Y 0, Y 1,, Y 1 ) przy użyciu DFT wyaga wykonania: nożenia zespolonego ( 1) razy, dodawania zespolonego ( 1) razy, przy założeniu, że wartości ω j są już dane

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

FUNKCJE. (odwzorowania) Funkcje 1

FUNKCJE. (odwzorowania) Funkcje 1 FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Technika audio część 2

Technika audio część 2 Technika audio część 2 Wykład 12 Projektowanie cyfrowych układów elektronicznych Mgr inż. Łukasz Kirchner lukasz.kirchner@cs.put.poznan.pl http://www.cs.put.poznan.pl/lkirchner Wprowadzenie do filtracji

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Wymiana i składowanie danych multimodalnych

Wymiana i składowanie danych multimodalnych SKRYPT DO LABORATORIUM Wymiana i składowanie danych multimodalnych ĆWICZENIE 3: Dyskretna transformata kosinusowa zasada działania i podstawowe właściwości autor: dr inż. Adam Bujnowski 1. Wymagania wstępne

Bardziej szczegółowo

Ćwiczenie: Własności dyskretnej transformaty Fouriera (DFT)

Ćwiczenie: Własności dyskretnej transformaty Fouriera (DFT) Opracował: dr hab. inż. G. Stępniak Ćwiczenie: Własności dyskretnej transformaty Fouriera (DFT) Dyskretna transformata Fouriera (DFT ang. discrete Fourier Transform) to jedno z podstawowych narzędzi w

Bardziej szczegółowo

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.

Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera. Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Plan na dziś 1 Przedstawienie przedmiotu i zakresu wykładu polecanej iteratury zasad zaliczenia 2 Wyklad

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Analiza szeregów czasowych: 3. Filtr Wienera

Analiza szeregów czasowych: 3. Filtr Wienera Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Akwizycja i przetwarzanie sygnałów cyfrowych

Akwizycja i przetwarzanie sygnałów cyfrowych Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Czasowo-częstotliwościowa analiza sygnałów Metody analizy sygnału Do tej pory - analiza sygnału jako funkcji

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi

Bardziej szczegółowo

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra

Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie. P. F. Góra Wstęp do metod numerycznych Zagadnienia wstępne Uwarunkowanie P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Sposoby reprezentacji liczb całkowitych i rzeczywistych patrz wykład z Teoretycznych Podstaw

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Metody numeryczne Wykład 6

Metody numeryczne Wykład 6 Metody numeryczne Wykład 6 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Interpolacja o Interpolacja

Bardziej szczegółowo

Funkcje analityczne. Wykład 12

Funkcje analityczne. Wykład 12 Funkcje analityczne. Wykład 2 Szeregi Laurenta. Osobliwości funkcji zespolonych. Twierdzenie o residuach Paweł Mleczko Funkcje analityczne (rok akademicki 206/207) Plan wykładu W czasie wykładu omawiać

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

1 Grupa SU(3) i klasyfikacja cząstek

1 Grupa SU(3) i klasyfikacja cząstek Grupa SU(3) i klasyfikacja cząstek. Grupa SU(N) Unitarne (zespolone) macierze N N można sparametryzować pzez N rzeczywistych parametrów. Ale detu =, unitarność: U U = narzucają dodatkowe warunki. Rozważmy

Bardziej szczegółowo

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha

LABORATORIUM METROLOGII. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. dr inż. Andrzej Skalski. mgr inż. Mirosław Socha AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i ELEKTRONIKI KATEDRA METROLOGII LABORATORIUM METROLOGII Podstawy akwizycji i cyfrowego

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo