FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2012, Oeconomica 297 (68) 47 54

Wielkość: px
Rozpocząć pokaz od strony:

Download "FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2012, Oeconomica 297 (68) 47 54"

Transkrypt

1 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Uv. Techol. Se. 0, Oecoomca 97 (68) 7 5 Aa Ladowska, Marek Ladowsk ZASTOSOWANIE WYBRANYCH MODELI OPTYMALIZACJI DYNAMICZNEJ STRUKTURY PRODUKCJI ROŚLINNEJ W PRZECIĘTNYM GOSPODARSTWIE ROLNYM APPLICATION OF DYNAMIC OPTIMIZATION MODELS FOR PLANTS PRODUCTION STRUCTURE IN A TYPICAL AGRICULTURAL FARM Kaedra Zasosowań Maemayk w Ekoom, Zachodopomorsk Uwersye Techologczy w Szczece, l. Klemesa Jackego, 7-70 Szczec, e-mal: Aa.Ladowska@z.ed.pl Zakład Meod Iloścowych Progozowaa, Akadema Morska w Szczece, l. Wały Chrobrego, Szczec, e-mal: m.ladowsk@am.szczec.pl Smmary. The arcle preses resls of applcao of hree decsos models for opmzao of plas prodco srcre ypcal agrclral farm. Codos ha coec every year of prodco clde crop roao. Correc crop roao s very mpora o oba he hghes crop. Słowa klczowe: model prodkc rośle, opymalzaca dyamcza, zasada opymalośc. Key words: dyamc opmzao, model of plas prodco, opmal rle. WSTĘP W arykle przedsawoo wyk zasosowaa rzech model opymalzac dyamcze do wyzaczea srkry prodkc w przecęym gospodarswe rolym. Celem pracy es przedsawee model opymalzac dyamcze wykorzysaych do poprawea syac ekoomcze gospodarswa przez meęe rozłożee płodozma. W perwsze częśc w sposób syeyczy zosały omówoe poszczególe modele opymalzac dyamcze. Nasępe przedsawoo rozwązaa opymale model prodkc rośle w przecęym gospodarswe rolym w woewódzwe zachodopomorskm obemące okres czerole ( ). Srkra prodkc w każdym rok była zależoa od welkośc srkry prodkc w laach poprzedch. Kolee laa były powązae warkam wążącym ze względ a koeczość respekowaa płodozma, co es warkem rzymaa gleby w dobre klrze. MODELE OPTYMALIZACJI DYNAMICZNEJ PRODUKCJI W GOSPODARSTWIE ROLNYM Przedsawoe poże modele opymalzac moą charaker dyamczy, poeważ kolee laa (eapy) są powązae odpowedm warkam. Zasadę programowaa dyamczego sformłował Bellma (957). W e myśl: Opymala sraega serowaa ma ę własość, że akkolwek by był sa począkowy decyza począkowa, o asępe decyze

2 8 A. Ladowska M. Ladowsk mszą worzyć opymalą sraegę serowaa względem sa wykaącego z perwsze (s. 8). Model es dzeloy a częśc składowe odpowadaące poszczególym laom. Opymalzaca w ramach poszczególych eapów es przeprowadzaa dywdale, z względeem warków wążących. Wprowadźmy asępące ozaczea: zmea decyzya w okrese, a -y edoskowy współczyk akładów a -ego rodza dzałalość w okrese, b lm -ego wark ograczaącego w okrese, dole ograczee -e zmee w okrese, v góre ograczee -e zmee w okrese, c dochód rolczy -ego rodza dzałalośc w okrese. Perwszym modelem es model szeregowy, kórego soa zawera sę w podzale całego model prodkc a czery eapy (będące czerema koleym okresam prodkc) opymalzac każdego eap koleo z względeem wyków opymalzac orzymaych podczas poprzedego eap. Przy powyższych ozaczeach maksymalzacę dochod dla lowe fkc cel lowych warków ograczaących w poszczególych eapach moża zapsać asępąco: perwszy eap: F ( ) = c ma = przy ograczeach: a = b, v, 0 drg eap: F ( ) = c ma = przy ograczeach: a b, = = = v, 0 rzec eap: F ( ) = c ma = przy ograczeach: a b, = = = v, 0 czwary eap: F ( ) = c ma = przy ograczeach: a b, = = = v, 0 Schema blokowy model szeregowego przedsawa rys..

3 Zasosowae wybraych model opymalzac dyamcze... 9 Eap Eap Eap Eap Wark Wark Wark ROK I ROK II ROK III ROK IV rok I II rok II III rok III IV Rys.. Model szeregowy prodkc w gospodarswe rolym Drgm modelem opymalzac dyamcze es model szeregowo-rówoległy. Jego soa zawera sę w podzale całego proces opymalzac a dwa eapy. Perwszy eap obeme opymalzacę prodkc rówocześe w dwóch perwszych okresach. Naomas podczas drgego eap opymalze sę rówocześe okresy rzec czwary. Należy podkreślć, że opymalzaca w każdym rok es zwązaa z rokem poprzedm, o zaczy względa wyk opymalzac z poprzedego okres. Model szeregowo-rówoległy dla poszczególych eapów moża zapsać: perwszy eap: F ( ) c ma = = = przy ograczeach: = = = a b, v, v, 0, 0 drg eap: F ( ) c ma = = = przy ograczeach: = = = a b, v, v, 0, 0 Na rys. przedsawoo schema blokowy model szeregowo-rówoległego. Eap ROK I Wark rok I II ROK II Wark rok II III Eap ROK III Wark rok III IV ROK IV Rys.. Model szeregowo-rówoległy

4 50 A. Ladowska M. Ladowsk Trzece podeśce maące posać model rówoległego polega a opymalzac całoścowe. Opymalzaca w koleych okresach opera sę a względe warków wążących poszczególe laa. Przy wcześe wprowadzoych ozaczeach zaps model maksymalzącego warość dochod rolczego dla rodzaów dzałalośc w czerech okresach es asępący: F ( ) = = = c ma przy ograczeach: = = = a b, v, 0 gdze: {,,,} Schema blokowy model rówoległego przedsawa rys.. Eap ROK I Wark rok I II ROK II Wark rok II III ROK III Wark rok III IV ROK IV Rys.. Model rówoległy opymalzac dyamcze W dalsze częśc arykł przedsawoo przykład empryczy zasosowaa powyższych model opymalzac dyamcze prodkc rośle w przecęym gospodarswe rolym. BUDOWA I ROZWIĄZANIA DYNAMICZNYCH DECYZYJNYCH MODELI PRODUKCJI ROŚLINNEJ W PRZECIĘTNYM GOSPODARSTWIE ROLNYM W procese bdowy decyzyych model prodkc rośle w gospodarswe rolym ależy względć zmaowae rośl. Nasępswem właścwego zmaowaa rośl es rzymae dobre klry gleby, co w kosekwec pozwol a orzymae wyższych plo-

5 Zasosowae wybraych model opymalzac dyamcze... 5 ów. Dae lczbowe doyczące paramerów model zaczerpęo z pblkac Główego Urzęd Saysyczego (0) za laa Modelowa poddao przecęe gospodarswo role w woewódzwe zachodopomorskm. Dyamczy charaker model decyzyych odoszący sę do koleych la przeawać sę będze przez wark. Wark e w koleych laach doyczyć będą prawdłowego zmaowae rośl (Węckowsk 98, Zaród 008). Zmaowae rośl, aogóle rzecz borąc, polega a podzele całego areał grów rolych a czery częśc, kóre są żykowae zgode z zasadam płodozma. Schema ogóly zmaowaa rośl przedsawoo a rys.. Obszar Obszar Obszar Obszar Rok I Rok II Rok III Rok IV Rys.. Schema zmaowaa rośl Maksymalzowaa będze łącza welkość dochod rolczego w całym okrese czerolem. Ocey edoskowych współczyków fkc cel zosały oblczoe ako przecęy dochód z prodkc poszczególych rośl prawych w daym rok z powerzch ha. Dochód rolczy oblczoo ako różcę warośc prodkc koszów prodkc dla każde z rośl, względaąc akże edole płaośc obszarowe (JPO) oraz edole płaośc zpełaące (JPU). W przeprowadzoych oblczeach wzęo róweż pod wagę bezpośrede, ak pośrede koszy prodkc. Do bezpośredch koszów prodkc zalczoo koszy maerał sewego, awozów, środków ochroy rośl, słg specalsycze e. Jako koszy pośrede przyęo koszy mechazac, a przykład podorywk, broowaa, raspor awozów, ork sewe, sew, awożea, oprysków, zbor kombaem, raspor plo, am ldz, podak rolego bezpeczea oraz koszy ogólogospodarcze (Węckowsk 98). Powerzcha grów orych przecęego gospodarswa w laach wyosła ha. W przeprowadzoych badaach przyęo, że gry ore mogą być przezaczoe pod prawę braków ckrowych, zemaków, ęczmea, pszecy, owsa meszaek zbożowych, rzepak rzepk, pszeżya oraz żya. Po przeprowadze oce paramerów za pomocą meody smpleks, sosowae w każdym eape (rok), orzymao opymalą srkrę prodkc. W abel przedsawoo srkrę zasew dla model szeregowego. W abel zesawoo wyk opymalzac model prodkc w gospodarswe rolym z wykorzysaem model szeregowo-rówoległego opymalzac dyamcze.

6 5 A. Ladowska M. Ladowsk Naomas wyk oblczeń doyczące srkry prodkc rośle dla model rówoległego przedsawoo w abel. Iformace zaware w osach dwóch werszach abel zosaą wykorzysae w aalzach porówawczych. Z formac w ch zawarych wyka, że welkośc dochod rolczego w koleych laach są porówywale dla model szeregowo-rówoległego rówoległego. Naomas wysokość ego dochod w przypadk model szeregowego w drgm rok es w przyblże o 50% ższa, a w rok rzecm prawe o 0% ższa od orzymaych dla model szeregowo-rówoległego rówoległego. Kszałowae sę wysokośc dochod w poszczególych laach przedsawoo a rys. 5. Tabela. Srkra prodkc rośle orzymaa za pomocą szeregowego model opymalzac dyamcze Rośla Brak ckrowe (ha),8 0,00 0,00 0,00 Zemak (ha) 0,00 0,00,8,96 Jęczmeń (ha) 7,8 0,00 0,00 0,00 Pszeca (ha),96,96 0,00,8 Owes meszak zbożowe (ha) 0,00 5,6 0,00 0,56 Rzepak rzepk (ha),8,0,96 0,00 Pszeżyo (ha) 0,00 0,56 5,6 0,00 Żyo (ha) 0,00,8,96 7, Dochód rolczy (zł) 959,99 5,60 88,8 0070,0 Sma dochod rolczego (zł) 985,9 Tabela. Srkra prodkc role orzymaa za pomocą model szeregowo-rówoległego opymalzac dyamcze Rośla Brak ckrowe (ha),8,80 0,00 0,00 Zemak (ha) 0,00 0,00,9,96 Jęczmeń (ha) 0,00 0,00,9 0,00 Pszeca (ha),96,96,96,96 Owes meszak zbożowe (ha) 0,00 0, 0,8, Rzepak rzepk (ha),8,0,96,68 Pszeżyo (ha) 5,0 0,56 0,, Żyo (ha),80 6,86,96,8 Dochód rolczy (zł) 885,77 695,80 90,60 99,00 Sma dochod rolczego (zł) 55776,7 Tabela. Srkra prodkc rośle orzymaa za pomocą model rówoległego opymalzac dyamcze Rośla Brak ckrowe (ha),8,80 0,00 0,00 Zemak (ha) 0,00 0,00,9,5 Jęczmeń (ha),6 0,00 0,00 0,00 Pszeca (ha),96,96,96,96 Owes meszak zbożowe (ha) 0,56,78 0,8 0,98 Rzepak rzepk (ha),8,0,96,68 Pszeżyo (ha),,,78, Żyo (ha),80,9,5 5,7 Dochód rolczy (zł) 998,6 5,77 90,0 85,50 Sma dochod rolczego (zł) 5778,99

7 Zasosowae wybraych model opymalzac dyamcze... 5 Rys. 5. Dochód rolczy w koleych laach orzymay a podsawe poszczególych model opymalzac dyamcze Spośród rozparywaych model prodkc przecęego gospodarswa rolego w rozparywaych laach awyższą ego welkość orzymao dla model rówoległego (5778,99 zł). Nższe wysokośc dochod rolczego dla ego model szeregowego w drgm rzecm rok wpłyęły w decydący sposób a smaryczą ego welkość w całym okrese czerolem. Łączy dochód rolczy orzymay za pomocą model szeregowego wyos 7,9% dochod dla model rówoległego oraz 77,07% dochod rolczego orzymaego za pomocą model szeregowo-rówoległego. Udzał łączego dochod rolczego orzymaego za pomocą model szeregowo-rówoległego saow 97,% ego welkośc dla model rówoległego. Welkośc łącze dochodów przedsawoo a rys. 6. Rys. 6. Dochód rolczy przecęego gospodarswa rolego w laach w zależośc od zasosowaego model opymalzac dyamcze PODSUMOWANIE W pracy przedsawoo zasosowae rzech model opymalzac dyamcze prodkc rośle w gospodarswe rolym różące sę sposobem powązań koleych eapów (la). Model szeregowo-rówoległy oraz rówoległy dały porówywale wyk welkośc dochod

8 5 A. Ladowska M. Ladowsk rolczego. Naomas welkość dochod orzymaego a podsawe model szeregowego była w przyblże o 0 5% ższa. Wykorzysae w pracy podeśce, polegaące a wprowadze do model warków wążących poszczególe okresy prodkc zwązae z prawdłowym zmaowaem rośl, okazało sę zasade. PIŚMIENNICTWO Bellma R Dyamc programmg. Prceo, NJ, Prceo Uversy Press. Główy Urząd Saysyczy. 0. Poral saysyk pblcze, dosęp:.0.0. Mrozek B., Mrozek Z. 00. Malab Smlk. Glwce, Wydaw. Helo, ISBN Węckowsk W. 98. Opymalzaca plo prodkc przedsęborswa rolego przy życ rozwązań sadardowych. Warszawa, PWN, ISBN Zaród J Programowae lowo-dyamcze ako arzędze aalzące zmay w fkcoowa gospodarsw rolych. Łódź, Wydaw. Uwersye Łódzkego, 9 5.

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 00, Oeconomica 0 (), Anna Landowska LINIOWY MODEL W DYNAMICZNEJ OPTYMALIZACJI PRODUKCJI ROŚLINNEJ GOSPODARSTWA

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej

Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

WYKORZYSTANIE METODY PROGRAMOWANIA DYNAMICZNEGO DO BADANIA ZRÓWNOWAŻONEGO ROZWOJU GOSPODARSTWA ROLNEGO

WYKORZYSTANIE METODY PROGRAMOWANIA DYNAMICZNEGO DO BADANIA ZRÓWNOWAŻONEGO ROZWOJU GOSPODARSTWA ROLNEGO FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Fola Uv. Agrc. Stet. 2007, Oecoomca 256 (48), 335 342 Jadwga ZARÓD WYKORZYSTANIE METODY PROGRAMOWANIA DYNAMICZNEGO DO BADANIA ZRÓWNOWAŻONEGO ROZWOJU GOSPODARSTWA

Bardziej szczegółowo

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM

SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM SZEREGI CZASOWE W PLANOWANIU PRODUKCJI W PRZETWÓRSTWIE SPOŻYWCZYM Arur MACIĄG Sreszczee: W pracy przedsawoo echk aalzy szeregów czasowych w zasosowau do plaowaa progozowaa produkcj w przewórswe spożywczym.

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja

Szeregi czasowe, modele DL i ADL, przyczynowość, integracja Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min

WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować

Bardziej szczegółowo

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu.

Sprzedaż finalna - sprzedaż dóbr i usług konsumentowi lub firmie, którzy ostatecznie je zużytkują, nie poddając dalszemu przetworzeniu. W 1 Rachu maroeoomcze 1. Produ rajowy bruo Sprzedaż fala - sprzedaż dóbr usług osumeow lub frme, órzy osaecze je zużyują, e poddając dalszemu przeworzeu. Sprzedaż pośreda - sprzedaż dóbr usług zaupoych

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM

08 Model planowania sieci dostaw 1Po_2Pr_KT+KM Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń

Zastosowanie metody najmniejszych kwadratów do pomiaru częstotliwości średniej sygnałów o małej stromości zboczy w obecności zakłóceń Zasosowae meody ajmejszych kwadraów do pomaru częsolwośc średej sygałów o małej sromośc zboczy w obecośc zakłóceń Elgusz PAWŁOWSKI, Darusz ŚWISULSKI Podsawowe meody pomaru częsolwośc Zlczae okresów w zadaym

Bardziej szczegółowo

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI

Niezawodność i diagnostyka Kierunek AiR, sem. V, rok. ak. 2010/11 STRUKTURY I MIARY PROBABILISTYCZNE SYSTEMÓW METODA DRZEWA (STANÓW) NIEZDATNOŚCI Nezawodość dagosyka Keruek, sem. V, rok. ak. 00/ STUKTUY I MIY POILISTYCZNE SYSTEMÓW METOD DZEW STNÓW NIEZDTNOŚCI. Srukury obeków złożoych ch rerezeace Wsółczese obeky sysemy echcze, a szczególe wększe

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW KOLEJKOWYCH

ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW KOLEJKOWYCH STUDIA INFORMATICA 1 Volume 33 Number 3A (17) Mchał MATAŁYCKI Polechka Częsochowska, Isyu Maemayk Swaosław STATKIEWICZ Grodzeńsk Uwersye Pańswowy ANALIZA ASYMPTOTYCZNA WYKŁADNICZEJ SIECI ZAWODNYCH SYSTEMÓW

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 DOI: 10.21005/oe.2017.88.3.01 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 Anna LANDOWSKA ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59),

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 129 136 Jadwiga Zaród DYNAMICZNE MODELE GOSPODARSTW ROLNYCH O RÓŻNEJ POWIERZCHNI ZE

Bardziej szczegółowo

Reprezentacja krzywych...

Reprezentacja krzywych... Reprezeacja rzywych... Reprezeacja przy pomocy fcj dwóch zmeych rzywe płase płase - jedej: albo z z f x y x [ x x2] y [ y y2] f x y g x x [ x x2] Wady: rzywe óre dla pewych x y mogą przyjmować wele warośc

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 )

R n. i stopa procentowa okresu bazowego, P wartość początkowa renty, F wartość końcowa renty. R(1 ) Maeayka fasowa ubezpeczeowa Ćwczea 4 IE, I rok SS Tea: achuek re oęce rey Warość począkowa końcowa rey ey o sałych raach ea o zeych raach ea uogóoa osawowe poęca rachuku re ea es o cąg płaośc okoywaych

Bardziej szczegółowo

INŻYNIERIA RZECZNA Konspekt wykładu

INŻYNIERIA RZECZNA Konspekt wykładu INŻYNIERIA RZECZNA Kospekt wykładu Wykład 4 Charakterystyka przepływu wody w korytach rzeczych Klasyfkacja ruchu wody. Ruch eustaloy zmey przepływ a długośc rzek w czase: ruch fal wezbraowych ruch wody

Bardziej szczegółowo

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:

W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki: Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

Badania Operacyjne (dualnośc w programowaniu liniowym)

Badania Operacyjne (dualnośc w programowaniu liniowym) Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Czy w Polsce zachodzi polaryzacja ekonomiczna?

Czy w Polsce zachodzi polaryzacja ekonomiczna? Zeszyy aukowe Workg papers Czy w Polsce zachodz polaryzacja ekoomcza? Tomasz Tyuł arykułu Paek Ja Zwerzchowsk Zeszyy aukowe Isyu Saysyk Demograf SH Nr 49, rok 07 Sreszczee W osach laach przedmo welu badań

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego

Bardziej szczegółowo

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika WYKŁAD IV Aalza przejśca fal powodzowej Odpływ ze zborka może być: - kotroloway: regulacja wydatku urządzeń zrzutowych a stały przepływ sekudowy (Q odp =cost.) przy pomocy zamkęć ruchomych. - ekotroloway:

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

ELEMENTY TEORII MOŻLIWOŚCI

ELEMENTY TEORII MOŻLIWOŚCI ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech

Bardziej szczegółowo

1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA

1. WSTĘP. METODA EULERA 1 1. WSTĘP. METODA EULERA . WSTĘP. MTODA ULRA. WSTĘP. MTODA ULRA Wprowadzee Mowacja pozawaa meod umerczc:. Rozwązwae bardzo dużc kosrukcj o złożoej geomer welu sopac swobod powżej mloa prz różorodm zacowau maerałów.. Śwadome wkorzswae

Bardziej szczegółowo

teorii optymalizacji

teorii optymalizacji Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

ROZWÓJ DEMOGRAFICZNY WOJEWÓDZTW POLSKI DEMOGRAPHIC DEVELOPMENT OF POLISH PROVINCES. Wstęp

ROZWÓJ DEMOGRAFICZNY WOJEWÓDZTW POLSKI DEMOGRAPHIC DEVELOPMENT OF POLISH PROVINCES. Wstęp STOWARZYSZENIE EKONOMISTÓW Rozwó ROLNICTWA demografczy I AGROBIZNESU woewódzw Polsk Roczk Naukowe om XV zeszy 4 237 Lda Luy Uwersye Rolczy m. Hugoa Kołłąaa w Krakowe ROZWÓJ DEMOGRAFICZNY WOJEWÓDZTW POLSKI

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru:

Ćwiczenie 3. H 1 : p p 0 H 3 : p > p 0. b) dla małej próby statystykę testową oblicza się za pomocą wzoru: Ćwiczeie ERYFIKACJA IPOTEZ Tesowaie hipoez: Zakładamy że wszyskie hipoezy będą weryfikowae a poziomie isoości α.. eryfikacja hipoezy o wskaźik srkry jedej zmieej losowej dyskreej Rozparjemy próbkę elemeową

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

ANALIZA INPUT - OUTPUT

ANALIZA INPUT - OUTPUT Aalza put - output Notatk S Dorosewcz J Staseńko Stroa z 28 SŁAWOMIR DOROSIEWICZ JUSTYNA STASIEŃKO ANALIZA INPUT - OUTPUT NOTATKI Istytut Ekoometr SGH Aalza put - output Notatk S Dorosewcz J Staseńko Stroa

Bardziej szczegółowo

MOŻLIWOŚCI UNIFIKACJI ROZWOJU GOSPODARCZEGO WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ W ASPEKCIE DYNAMIKI WZROSTÓW PKB

MOŻLIWOŚCI UNIFIKACJI ROZWOJU GOSPODARCZEGO WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ W ASPEKCIE DYNAMIKI WZROSTÓW PKB Tomasz Misiak Kaedra Ekoomii Poliechika Rzeszowska MOŻLIWOŚCI UNIFIKACJI ROZWOJU GOSPODARCZEGO WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ W ASPEKCIE DYNAMIKI WZROSTÓW PKB Wprowadzeie Moywy iegracji mają zazwyczaj

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

Matematyka II. x 3 jest funkcja

Matematyka II. x 3 jest funkcja Maemayka II WYKLD. Całka eozaczoa. Rachuek całkowy. Twerdzea o całkach eozaczoych. Całkowae wybraych klas fukcj. Całkowae fukcj wymerych. Całkowae fukcj rygoomeryczych.. Defcja fukcj perwoej. Fukcję F

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI

ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI Inżynieria Rolnicza 7(125)/2010 ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI Jadwiga Zaród Katedra Zastosowań Matematyki

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej

Modelowanie niezawodności i wydajności synchronicznej elastycznej linii produkcyjnej Dr hab. ż. Ato Śwć, prof. adzw. Istytut Techologczych ystemów Iformacyych oltechka Lubelska ul. Nadbystrzycka 36, 2-68 Lubl e-mal: a.swc@pollub.pl Dr ż. Lech Mazurek aństwowa Wyższa zkoła Zawodowa w Chełme

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem

D P. Rys. 1 Schemat hydrauliczny obliczeń filtracji przez zaporę ziemną z drenażem Kostrukcje budowle zeme OBLICZENIA WSPÓŁCZYNNIKA STATECZNOŚCI SKAPY ODWODNEJ METODĄ FELLENIUSA DLA ZAPOY ZIEMNEJ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DENAŻEM Zapora zema posadowoa a podłożu przepuszczalym

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach

Przestrzenno-czasowe zróżnicowanie stopnia wykorzystania technologii informacyjno- -telekomunikacyjnych w przedsiębiorstwach dr ż. Jolata Wojar Zakład Metod Iloścowych, Wydzał Ekoom Uwersytet Rzeszowsk Przestrzeo-czasowe zróżcowae stopa wykorzystaa techolog formacyjo- -telekomukacyjych w przedsęborstwach WPROWADZENIE W czasach,

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK

PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK PODSTAWOWE MIERNIKI DYNAMIKI ZJAWISK Założena Nech oznacza ozom (warość) badanego zjawska (zmennej) w kolejnch momenach czasu T0, gdze T 0 0,1,..., n 1 oznacza worz szereg czasow. zbór numerów czasu. Cąg

Bardziej szczegółowo

1. Wstęp DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1. Michał Krawiec. Zbigniew Palmowski

1. Wstęp DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1. Michał Krawiec. Zbigniew Palmowski DETEKCJA ZMIANY DRYFU W MODELOWANIU NATĘŻENIA ŚMIERTELNOŚCI 1 Mchał Krawec Uwersye Wrocławsk Zbgew Palmowsk Polechka Wrocławska e-mals: mchalkrzyszofkrawec@gmalcom; zbgewpalmowsk@gmalcom ISSN 1644-6739

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA w LOGISTYCE

STATYSTYKA EKONOMICZNA w LOGISTYCE TATYTYKA EKONOMICZNA w LOGITYCE Meody saysycze w aalze procesów dysrybucj dr Zbgew Karwack Kaedra Badań operacyjych UŁ Zakres przedmo logsyk procesów dysrybucj Przedmoem logsyk procesów dysrybucj jes przemeszczae

Bardziej szczegółowo

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody

t - kwantyl rozkładu t-studenta rzędu p o f stopniach swobody ZJAZD ANALIZA DANYCH CIĄGŁYCH ramach zajęć będą badae próbki pochodzące z poplacji w kórych badaa cecha ma rozkład ormaly N(μ σ). Na zajęciach będą: - wyzaczae przedziały fości dla warości średiej i wariacji

Bardziej szczegółowo

Kier. MTR Programowanie w MATLABie Laboratorium

Kier. MTR Programowanie w MATLABie Laboratorium Ker. MTR Programowane w MATLABe Laboraorum Ćw. Zasosowane bbloecznych funkcj MATLABa do numerycznego rozwązywana równań różnczkowych. Wprowadzene Układy równań różnczkowych zwyczajnych perwszego rzędu

Bardziej szczegółowo

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu

Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu Poltechka Pozańska WMRT ZST Tytuł: 05 Lokalzaca obektów. Model PoPr Zastosowae prograowaa lowego Autor: Potr SAWICKI Zakład Systeów Trasportowych WMRT PP potr.sawck@put.poza.pl www.put.poza.pl/~potr.sawck

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzyczej Uwersytetu Łódzkego Wyzaczae współczyka podzału Nersta w układze: woda aceto chloroform metodą refraktometryczą opracowała dr hab. Małgorzata Jóźwak ćwczee r 0 Zakres zagadeń obowązujących

Bardziej szczegółowo

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)

ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7) PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

KRYTERIUM OCENY EFEKTYWNOŚCI INWESTYCYJNEJ OFE, SYSTEM MOTYWACYJNY PTE ORAZ MINIMALNY WYMÓG KAPITAŁOWY DLA PTE PROPOZYCJE ROZWIĄZAŃ

KRYTERIUM OCENY EFEKTYWNOŚCI INWESTYCYJNEJ OFE, SYSTEM MOTYWACYJNY PTE ORAZ MINIMALNY WYMÓG KAPITAŁOWY DLA PTE PROPOZYCJE ROZWIĄZAŃ KRYTERIU OCENY EFEKTYWNOŚCI INWESTYCYJNEJ OFE, SYSTE OTYWACYJNY PTE ORAZ INIALNY WYÓG KAPITAŁOWY DLA PTE PROPOZYCJE ROZWIĄZAŃ Urząd Komsj Nadzoru Fasowego Warszawa 0 DEPARTAENT NADZORU INWESTYCJI EERYTALNYCH

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska aysyka Iżyierska dr hab. iż. Jacek Tarasik AG WFiI 4 Wykład 5 TETOWANIE IPOTEZ TATYTYCZNYC ipoezy saysycze ipoezą saysyczą azywamy każde przypszczeie doyczące iezaego rozkład o prawdziwości lb fałszywości

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Wpływ redukcji poziomu szumu losowego metodą najbliższych sąsiadów 161

Wpływ redukcji poziomu szumu losowego metodą najbliższych sąsiadów 161 Kaarzya Zeug-Żebro WPŁYW REDUKCJI POZIOMU SZUMU LOSOWEGO MEODĄ NAJBLIŻSZYCH SĄSIADÓW NA WAROŚĆ NAJWIĘKSZEGO WYKŁADNIKA LAPUNOWA Wprowazee W aalze szeregów czasowych zakłaa sę, że w aych moża wyorębć skłak

Bardziej szczegółowo

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć

Badania operacyjne. Algorytm simpleks. Organizacja zajęć. Zaliczenie. Literatura. Program zajęć Algorytm smpleks adaa operacyje Wykład adaa operacyje dr hab. ż. Joaa Józefowska, prof.pp Istytut Iformatyk Orgazacja zajęć 5 godz wykładów dr hab. ż. J. Józefowska, prof. PP Obecość a laboratorach jest

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Zaawasowae metod umercze Programowae lowe (problem dual, program low w lczbach całkowtch) Dualość est kluczowm poęcem programowaa lowego. Pozwala a udowodee że otrzmwae rozwązaa są optmale. Zagadee duale

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula

MATERIAŁY I STUDIA. Efektywność sektora publicznego na poziomie samorządu lokalnego. Zesz y t nr 242. Barbara Karbownik, Grzegorz Kula MATERAŁY STUDA Zesz y t r 242 Efektywość sektora publczego a pozome samorządu lokalego Barbara Karbowk, Grzegorz Kula Warszawa 2009 Barbara Karbowk Narodowy Bak Polsk, barbara.karbowk@bp.pl Grzegorz Kula

Bardziej szczegółowo