i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0

Wielkość: px
Rozpocząć pokaz od strony:

Download "i 0,T F T F 0 Zatem: oprocentowanie proste (kapitalizacja na koniec okresu umownego 0;N, tj. w momencie t N : F t F 0 t 0;N, F 0"

Transkrypt

1 Maemayka finansowa i ubezpieczeniowa - 1 Sopy procenowe i dyskonowe 1. Sopa procenowa (sopa zwrou, sopa zysku) (Ineres Rae). Niech: F - kapiał wypoŝyczony (zainwesowany) w momencie, F T - kapiał zwrócony (odzyskany) w momencie T, F T F - zysk za okres, T. Sopa zwrou: Zaem: i,t F T F F F T F F i,t F 1 i,t gdzie: F i,t - odseki od kapiału q,t 1 i,t - czynnik kumulujący. Uwagi: 1. Procen sopa procenowa 1%. 2. Mając na myśli sopy procenowe na jednoskowe okresy czasu ;1, 1;2,..., (najczęściej laa ale równie dobrze mogą o być kwarały, miesiące) nazywać je będziemy umownie sopami rocznymi (kwaralnymi, miesięcznymi). 2. Oprocenowanie: ZałóŜmy,Ŝe w okresie ;N sopy procenowe na jednoskowe okresy czasu są idenyczne, zn. i ;1 i 1;2... i N 1;N i ; F - warość kapiału w momencie ;N, F - naliczona warość kapiału w momencie. F N - warość przyszła (w momencie N, kapiału (Fuure Value); F - warość obecna (w momencie, kapiału (Presen Value); oprocenowanie prose (kapializacja na koniec okresu umownego ;N, j. w momencie N : F F 1 i, F F ;N, ;N, 1 2

2 F N F N F 1 in oprocenowanie składane (kapializacja odseek na koniec podokresów k 1, k ;N : oprocenowanie składane - kapializacja zgodna z okresem sopy i (kapializacja odseek w momenach n 1, 2,..., N F n F n 1 1 i F n 1 q, n 1, 2,..., N, F n F 1 i n F q n, n, 1, 2,..., N, F F n 1 i n, n;n 1, F N F 1 i N F

3 F n n, n 1, 2, 3, 4 oprocenowanie składane - kapializacja niezgodna z okresem sopy i, z częsością m (kapializacja w momenach k m, k 1, 2,..., mn : F k m F k 1 m 1 i m 1, k 1, 2,..., mn, F k m F 1 i 1 m k, F F k m 1 i k m, k, 1, 2,..., mn, k m ; k 1 m, F N F 1 i 1 m mn F 1 i 1 m m N F k k, k 1,..., 8 5 6

4 oprocenowanie składane - kapializacja ciągła (nieskończenie częso, i ciągła sopa procenowa) F F lim m F 1 i 1 m m km m 1e lim m F 1 i 1 m m F lim m 1 1 m i m i i Liczba Eulera e 2, , y ln x x e y F e i gdzie k m m k m 1 m 3 Sąd (i z w. o rzech ciągach) gdy m o k mm gdyŝ 1 m k m m Przykład: F 1e.3 7 8

5 Sopa nominalna i. 3, częsości m Tempo przyrosu kapiału F oraz empo procenowego przyrosu kapiału F przy F nominalnej sopie rocznej i : w oprocenowaniu prosym: df d df F d F F i F F i 1 i w oprocenowaniu ciągłym: F F e i i F F i 9 1

6 i. 3, F 1; F F i (zielony); F F e i i (fiole) i. 3; F F F F i 1 i i (fiole) (zielony); 3. RównowaŜność sóp procenowych Niech: i - nominalna sopa procenowa na okres jednoskowy (Nominal), m - częsość kapializacji w okresie jednoskowym, w momenach m k, k 1, 2,..., wg sopy i m 1 na kaŝdy z podokresów k 1 m, m k. Sopa efekywna (Effecive) równowaŝna sopie nominalnej i przy 11 12

7 kapializacji składanej z częsością m o aka sopa i ef na okres jednoskowy,ŝe efek dopisania odseek wg ej sopy raz po okresie jednoskowym jes aki sam jak efek dopisywania m razy - co m 1 a okresu jednoskowego - ze sopą i m 1 za kaŝdy podokres k 1 m ; m k, k 1, 2,... m, zn.: Sąd Uwagi. i ef m i gdy 1 i ef 1 i 1 m m. i ef m i gdy i m m 1 i ef 1 1. Gdy m 1, (kapializacja zgodna), o sopa nominalna sopa efekywna i i ef. 2. Sopa efekywna i ef równowaŝna sopie nominalnej przy kapializacji ciągłej m : i ef 1 i ef lim m 1 1 m m e, lim m m m 1 i ef 1 ln 1 i ef - siła oprocenowania albo ciągła sopa procenowa 1 i ef e - czynnik kumulujący (oprocenowujący) na okres,

8 Przykład: Dla i ef. 8 m m inom i ef : inom m m 1 i ef 1, m m inom Dyskonowanie, sopa dyskonowa (Discoun Rae) d,t F T F F T F m k 1 1 i m nom m m 1, 2, 4, F F T F T d,t F T 1 d,t F T F 1 1 d,t F F d,t 1 d,t k F d,t - odseki z góry od kapiału F F d,t 1 d,t - odseki ( z dołu ) od kapiału F. 1 d d 2 d d 1 d 1 1 d, 1 d ZałóŜmy,Ŝe sopa dyskonowa d n 1,n d dla n 1, 2,..., N; dyskonowanie prose d,n dn F N F 1 1 dn sopa procenowa i i sopa dyskonowa d równowaŝne w momencie N : F 1 i,n F N F 1 1 d,n 1 i,n 1 1 d,n 1 in 1 1 dn d i 1 in 15 16

9 dyskonowanie składane dyskonowanie składane- kapializacja zgodna: F n 1 F n 1 d F F n 1 d n F n F 1 n, n 1, 2,..., N, 1 d dyskonowanie składane- kapializacja niezgodna (kapializacja w momenach k m, k 1, 2,..., mn : F k 1 m F k m 1 d m F F 1 m 1 d m... F k m 1 d m k F k m F 1 1 d m k, k 1, 2,..., mn, sopa procenowa i i sopa dyskonowa d równowaŝne w kaŝdym momencie n : 1 i 1 1 d, 1 m 1 1 d m m przy częsości m 1 d 1, -czynnik dyskonujący 1 i na okres, 1, d i 1 i i d d i 1 i dyskonowanie składane - kapializacja ciągła (nieskończenie częso) 17 18

10 F lim m F 1 d m m F e d F lim m F 1 1 d m m F e d F lim m F 1 m m F e Uwaga: i d e -czynnik dyskonujący na okres,. 2 F() F F e

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q, Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

Matematyka finansowa 20.03.2006 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Akuariuszy XXXVIII Egzamin dla Akuariuszy z 20 marca 2006 r. Część I Maemayka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minu 1 1. Ile

Bardziej szczegółowo

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,

Bardziej szczegółowo

Ryzyko stopy procentowej. Struktury stóp procentowych. Konwersje

Ryzyko stopy procentowej. Struktury stóp procentowych. Konwersje Ryzyko sopy procenowej. Srukury sóp procenowych. Konwersje. Definicja sopy procenowej. Definicja pieniądza.. Pojęcie sopy wolnej od ryzyka. Sopy NBP. 3. Sopy na rynku depozyów międzybankowych. 4. Srukura

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE PYTANIA KONTROLNE Czym charakeryzują się wskaźniki saycznej meody oceny projeku inwesycyjnego Dla kórego wskaźnika wyliczamy średnią księgową

Bardziej szczegółowo

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH

METODA ZDYSKONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH METODA ZDYSONTOWANYCH SALD WOLNYCH PRZEPŁYWÓW PIENIĘŻNYCH W meodach dochodowych podsawową wielkością, kóa okeśla waość pzedsiębioswa są dochody jakie mogą być geneowane z powadzenia działalności gospodaczej

Bardziej szczegółowo

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r.

Wykaz zmian wprowadzonych do skrótu prospektu informacyjnego KBC Parasol Funduszu Inwestycyjnego Otwartego w dniu 04 stycznia 2010 r. Wykaz zmia wprowadzoych do skróu prospeku iformacyjego KBC Parasol Fuduszu Iwesycyjego Owarego w diu 0 syczia 200 r. Rozdział I Dae o Fuduszu KBC Subfudusz Papierów DłuŜych Brzmieie doychczasowe: 6. Podsawowe

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Analiza opłacalności inwestycji logistycznej Wyszczególnienie

Analiza opłacalności inwestycji logistycznej Wyszczególnienie inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Stopy spot i stopy forward. Bootstrapping

Stopy spot i stopy forward. Bootstrapping Sop spo i sop orward. Boosrapping. Rnkowe a eorecne (implikowane) sop spo i sop orward. Zależności pomięd sopami spo a sopami orward. Sop orward dla insrumenów rnku kapiałowego. 4. Sop orward dla insrumenów

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-echniczne aspeky wykorzysania gazu w energeyce Janusz Koowicz Wydział Inżynierii i Ochrony Środowiska Poliechnika zęsochowska Inerpreacja wskazników NPV oraz IRR Janusz Koowicz W7 Wydział Inżynierii

Bardziej szczegółowo

Obligacja i jej cena wewnętrzna

Obligacja i jej cena wewnętrzna Obligacja i jej cea wewęrza Obligacja jes o isrume fiasowy (papier warościowy), w kórym jeda sroa, zwaa emieem obligacji, swierdza, że jes dłużikiem drugiej sroy, zwaej obligaariuszem (jes o właściciel

Bardziej szczegółowo

Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek

Założenia metodyczne optymalizacji ekonomicznego wieku rębności drzewostanów Prof. dr hab. Stanisław Zając Dr inż. Emilia Wysocka-Fijorek Założenia meodyczne opymalizacji ekonomicznego wieku rębności drzewosanów Prof. dr hab. Sanisław Zając Dr inż. Emilia Wysocka-Fijorek Plan 1. Wsęp 2. Podsawy eoreyczne opymalizacji ekonomicznego wieku

Bardziej szczegółowo

Alternatywny model pomiaru kapitału ludzkiego An alternative model of measuring human capital

Alternatywny model pomiaru kapitału ludzkiego An alternative model of measuring human capital Zeszyy Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Seria: Adminisracja i Zarządzanie Nr 105 2015 dr Wojciech Kozioł 1 Uniwersye Ekonomiczny w Krakowie, Kaedra Rachunkowości Alernaywny

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

1. Na stronie tytułowej dodaje się informacje o dacie ostatniej aktualizacji. Nowa data ostatniej aktualizacji: 1 grudnia 2016 r.

1. Na stronie tytułowej dodaje się informacje o dacie ostatniej aktualizacji. Nowa data ostatniej aktualizacji: 1 grudnia 2016 r. Wykaz zmia wprowadzoych do prospeku iformacyjego: KBC PORTFEL VIP Specjalisyczy Fudusz Iwesycyjy Owary KBC Porfel VIP SFIO w diu grudia 206 r.. Na sroie yułowej dodaje się iformacje o dacie osaiej akualizacji.

Bardziej szczegółowo

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych

Efektywność projektów inwestycyjnych. Statyczne i dynamiczne metody oceny projektów inwestycyjnych Efekywość projeków iwesycyjych Saycze i dyamicze meody ocey projeków iwesycyjych Źródła fiasowaia Iwesycje Rzeczowe Powiększeie mająku rwałego firmy, zysk spodzieway w dłuższym horyzocie czasowym. Fiasowe

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

I = F P. P = F t a(t) 1

I = F P. P = F t a(t) 1 6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia

Bardziej szczegółowo

Wyższa Szkoła Marketingu i Zarządzania w Lesznie

Wyższa Szkoła Marketingu i Zarządzania w Lesznie Wyższa Szkoła Markeingu i Zarządzania w Lesznie MATERIAŁY ROBOCZE NA ZAJĘCIA Z PRZEDMIOTU BIZNES PLAN Opracowali: dr Jacek Kowalewski mgr Kazimierz Linowski Leszno 2008 2 S P I S T R E Ś C I WPROWADZENIE.

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces

Bardziej szczegółowo

Wpływ rentowności skarbowych papierów dłużnych na finanse przedsiębiorstw i poziom bezrobocia

Wpływ rentowności skarbowych papierów dłużnych na finanse przedsiębiorstw i poziom bezrobocia Wpływ renowności skarbowych papierów dłużnych na inanse przedsiębiorsw i poziom bezrocia Leszek S. Zaremba Sreszczenie W pracy ej wykażemy prawidłowość, kóra mówi, że im wyższa jes renowność bezryzykownych

Bardziej szczegółowo

INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak

INWESTYCJE. Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak INWESTYCJE Makroekonomia II Dr Dagmara Mycielska Dr hab. Joanna Siwińska-Gorzelak Inwesycje Inwesycje w kapiał rwały: wydaki przedsiębiorsw na dobra używane podczas procesu produkcji innych dóbr Inwesycje

Bardziej szczegółowo

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,

Bardziej szczegółowo

Arytmetyka finansowa Wykład 5 Dr Wioletta Nowak

Arytmetyka finansowa Wykład 5 Dr Wioletta Nowak Aymeyka finansowa Wykład 5 D Wiolea Nowak Bon skabowy Insumen dłużny, emiowany pzez Skab ańswa za pośednicwem Miniseswa Finansów. Temin wykupu dzień w kóym emien dokonuje wykupu, Skab ańswa zwaca dług

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

Makroekonomia 1 Wykład 14 Naturalna stopa bezrobocia i krzywa Philipsa

Makroekonomia 1 Wykład 14 Naturalna stopa bezrobocia i krzywa Philipsa Makroekonomia Wykład 4 Naralna sopa bezrobocia i krzywa hilipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handl Zagranicznego Oryginalne badanie hilipsa A. W. hilips (LSE, 958: obserwacja empiryczna

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Ł ń ń ć ź Ą ć Ń ć Źń Ą ć ź ź ń ź ń ń ń Ą ń ź Ą ć Ą ń Ą ń ń Źń ń ć ń ń ć ń ć ń ź ź ź ź ć Źń ń Ń ć ć ć ń ć ń ź ń ć Ł ć ć Ł Ń ć Ń ć ń ć ć ć ź ć ć ńń ź ź ć ń ć ć Źń ń ź ć ń ń źć ć ń ć ń ć ć ń ń ć ć ź ń ć ć

Bardziej szczegółowo

Metody oceny efektywności projektów inwestycyjnych

Metody oceny efektywności projektów inwestycyjnych Opracował: Leszek Jug Wydział Ekoomiczy, ALMAMER Szkoła Wyższa Meody ocey efekywości projeków iwesycyjych Niezbędym warukiem urzymywaia się firmy a ryku jes zarówo skuecze bieżące zarządzaie jak i podejmowaie

Bardziej szczegółowo

Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji

Wykład 5. Kryzysy walutowe. Plan wykładu. 1. Spekulacje walutowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji Wykład 5 Kryzysy waluowe Plan wykładu 1. Spekulacje waluowe 2. Kryzysy I generacji 3. Kryzysy II generacji 4. Kryzysy III generacji 1 1. Spekulacje waluowe 1/9 Kryzys waluowy: Spekulacyjny aak na warość

Bardziej szczegółowo

Makroekonomia II. Plan

Makroekonomia II. Plan Makroekonomia II Wykład 5 INWESTYCJE Wyk. 5 Plan Inwesycje 1. Wsęp 2. Inwesycje w modelu akceleraora 2.1 Prosy model akceleraora 2.2 Niedosaki prosego modelu akceleraora 3. Neoklasyczna eoria inwesycji

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. wrzesień Projekt dofinansowała Fundacja mbanku

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. wrzesień Projekt dofinansowała Fundacja mbanku INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie wrzesień 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY wrzesień 2017 1 / 40 Spis treści 1 Wprowadzenie

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1

EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 GRZEGORZ MICHALSKI EFEKTYWNOŚĆ INWESTYCJI W ZAPASY W OPODATKOWANYCH I NIE OPODATKOWANYCH ORGANIZACJACH 1 1. Wsęp Organizacje, mogą działać jako opodakowane przedsiębiorswa działające na zasadach komercyjnych

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

Makroekonomia 1 Wykład 14 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa

Makroekonomia 1 Wykład 14 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa Makroekonomia 1 Wykład 14 Inflacja jako zjawisko monearne: długookresowa krzywa Phillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Plan wykładu Krzywa Pillipsa: przypomnienie

Bardziej szczegółowo

Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś

Bardziej szczegółowo

Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

Zastosowanie metod oceny ekonomicznej efektywności obiektów wodociągowych i kanalizacyjnych

Zastosowanie metod oceny ekonomicznej efektywności obiektów wodociągowych i kanalizacyjnych MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Se The Environmen Proecion Rocznik Ochrona Środowiska Volume/Tom 18.

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

PORÓWNANIE DYSKONTOWYCH WSKAŹNIKÓW OCENY OPŁACALNOŚCI EKONOMICZNEJ INWESTYCJI NA WYBRANYM PRZYKŁADZIE

PORÓWNANIE DYSKONTOWYCH WSKAŹNIKÓW OCENY OPŁACALNOŚCI EKONOMICZNEJ INWESTYCJI NA WYBRANYM PRZYKŁADZIE POZA UIVE RSITY OF TE CHOLOGY ACADE MIC JOURALS o 86 Elecrical Engineering 2016 Jusyna MICHALAK* PORÓWAIE DYSKOTOWYCH WSKAŹIKÓW OCEY OPŁACALOŚCI EKOOMICZEJ IWESTYCJI A WYBRAYM PRZYKŁADZIE W arykule przedsawiono

Bardziej szczegółowo

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r.

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r. DZIENNIK URZĘDOWY NARODOWEGO BANKU POLSKIEGO Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO z dnia 2 czerwca 2017 r. zmieniająca uchwałę w sprawie wprowadzenia

Bardziej szczegółowo

Makroekonomia 1 Wykład 15 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa

Makroekonomia 1 Wykład 15 Inflacja jako zjawisko monetarne: długookresowa krzywa Phillipsa Makroekonomia 1 Wykład 15 Inflacja jako zjawisko monearne: długookresowa krzywa Phillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Plan wykładu Prawo Okuna Związek między bezrobociem,

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

ńń Ż Ń Ł Ś Ś Ń Ł Ż Ł ń Ź Ś ń ń ń ń ń ć ń ć Ś Ż ć ń ń ć ń ń Ś ń ć ć Ź ć ć ć Ż ń ć ź Ś Ć ć ń ć Ż ć Ź Ź ń ń Ż ć ć ń ć Ż Ż Ż ć Ż Ż Ż Ż Ż ć Ż ć ć ć ć Ż ńł ć ć Ź Ż ć ć Ść Ść Ż ź Ś Ż ć ń ć ć ć Ź Ść ć ć ć ńł Ś

Bardziej szczegółowo

Wykaz zmian wprowadzonych do prospektu informacyjnego: KBC Parasol Fundusz Inwestycyjny Otwarty (KBC Parasol FIO) w dniu 1 kwietnia 2016 r.

Wykaz zmian wprowadzonych do prospektu informacyjnego: KBC Parasol Fundusz Inwestycyjny Otwarty (KBC Parasol FIO) w dniu 1 kwietnia 2016 r. Wykaz zmia wprowadzoych do prospeku iformacyjego: KBC Parasol Fudusz Iwesycyjy Owary KBC Parasol FIO w diu kwieia 206 r.. Na sroie yułowej dodaje się iformację o dacie osaiej akualizacji. Nowa daa osaiej

Bardziej szczegółowo

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów

U b e zpieczenie w t eo r ii użyteczności i w t eo r ii w yceny a ktywów dr Dariusz Sańko Kaedra Ubezpieczenia Społecznego Szkoła Główna Handlowa dariusz.sanko@gmail.com lisopada 006 r., akualizacja i poprawki: 30 sycznia 008 r. U b e zpieczenie w eo r ii użyeczności i w eo

Bardziej szczegółowo

Inne kanały transmisji

Inne kanały transmisji Wykład 4 Inne kanały ransmsj Plan wykładu. Ceny akywów 3. Ceny akywów Wzros sopy procenowej powoduje spadek cen domów akcj. gdze C warość kuponu, F warość nomnalna gdze dywdenda, g empo wzrosu dywdendy

Bardziej szczegółowo

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak Inwesycje Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak CIASTECZOWY ZAWRÓT GŁOWY o akcja mająca miejsce w najbliższą środę (30 lisopada) na naszym Wydziale. Wydarzenie o związane jes z rwającym od

Bardziej szczegółowo

Ą ń Ź Ą ń ń Ą ń Ą ń Ć ń Ń Ą ń ń ńń ń ń ń ń Ś ń Ó ń ń ń Ć ń ń Ś ń ń Ś ń ń ń ń Ą ń Ą ń Ć ń ń Ó ń Ń Ł Ą Ą ń ń ń Ż ń Ą ń Ą Ą ń ńń Ł Ś ń ń ń ń ń ń ń ń Ś Ś Ż ń Ś ń ń ń Ż ń Ń Ś Ś Ś ń ń ń Ó Ą ń ń ń ń Ś Ó Ó Ó ń

Bardziej szczegółowo

WZROST GOSPODARCZY A BEZROBOCIE

WZROST GOSPODARCZY A BEZROBOCIE Wojciech Pacho & WZROST GOSPODARCZ A BEZROBOCIE Celem niniejszego arykułu jes pokazanie związku pomiędzy ezroociem a dynamiką wzrosu zagregowanej produkcji. Poszukujemy oowiedzi na pyanie czy i jak silnie

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak 2 Plan wykładu Zakłócenia w modelu DAD/DAS: Wzros produkcji poencjalnej; Zakłócenie podażowe o sile

Bardziej szczegółowo

Makroekonomia 1 Wykład 13 Naturalna stopa bezrobocia i krzywa Phillipsa

Makroekonomia 1 Wykład 13 Naturalna stopa bezrobocia i krzywa Phillipsa Makroekonomia Wykład 3 Nauralna sopa bezrobocia i krzywa hillipsa Gabriela Grokowska Kaedra Makroekonomii i Teorii Handlu Zagranicznego Oryginalne badanie hillipsa A. W. hillips (LSE, 958: obserwacja empiryczna

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )

Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( ) Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

OeconomiA copernicana. Adam Waszkowski Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

OeconomiA copernicana. Adam Waszkowski Szkoła Główna Gospodarstwa Wiejskiego w Warszawie OeconomiA copernicana 2012 Nr 3 ISSN 2083-1277 Adam Waszkowski Szkoła Główna Gospodarswa Wiejskiego w Warszawie MECHANIZM TRANSMISJI IMPULSÓW POLITYKI MONETARNEJ DLA POLSKIEJ GOSPODARKI Klasyfikacja JEL:

Bardziej szczegółowo

PROGRAM PRIORTYTETOWY. Program dla przedsięwzięć w zakresie odnawialnych źródeł energii i obiektów wysokosprawnej kogeneracji Część 1)

PROGRAM PRIORTYTETOWY. Program dla przedsięwzięć w zakresie odnawialnych źródeł energii i obiektów wysokosprawnej kogeneracji Część 1) Tyuł Programu: PROGRAM PRIORTYTETOWY Program dla przedsięwzięć w zakresie odnawialnych źródeł energii i obieków wysokosprawnej kogeneracji Część 1) 1. Cel Programu Dofinansowanie duŝych inwesycji wpisujących

Bardziej szczegółowo

SENAT RZECZYPOSPOLITEJ POLSKIEJ. Warszawa, dnia 28 maja 2001 r. Druk nr 646

SENAT RZECZYPOSPOLITEJ POLSKIEJ. Warszawa, dnia 28 maja 2001 r. Druk nr 646 SENAT RZECZYPOSPOLITEJ POLSKIEJ IV KADENCJA Warszawa, dnia 28 maja 2001 r. Druk nr 646 MARSZAŁEK SEJMU RZECZYPOSPOLITEJ POLSKIEJ Pani Alicja GRZEŚKOWIAK MARSZAŁEK SENATU RZECZYPOSPOLITEJ POLSKIEJ Zgodnie

Bardziej szczegółowo

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2,

Czym jest ciąg? a 1, a 2, lub. (a n ), n = 1,2, Ciągi liczbowe Czym jest ciąg? Ciąg liczbowy, to funkcja o argumentach naturalnych, której wartościami są liczby rzeczywiste. Wartość ciągu dla liczby naturalnej n oznaczamy symbolem a n i nazywamy n-tym

Bardziej szczegółowo

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy

Bardziej szczegółowo

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta.

Dlaczego jedne kraje są bogate a inne biedne? Model Solowa, wersja prosta. Maroeonomia II Dlaczego jedne raje są bogae a inne biedne? Model Solowa, wersja prosa. Maroeonomia II Joanna Siwińsa-Gorzela Plan wyładu Funcja producji. San usalony Deerminany poziomu PKB na pracownia

Bardziej szczegółowo

OeconomiA copernicana. Katarzyna Czech Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

OeconomiA copernicana. Katarzyna Czech Szkoła Główna Gospodarstwa Wiejskiego w Warszawie OeconomiA copernicana 2012 Nr 3 IN 2083-1277 Kaarzyna Czech zoła Główna Gospodarswa Wiejsiego w Warszawie NIEZABEZPIECZONY PARYTET TÓP PROCENTOWYCH NA RYNKU JENA JAPOŃKIEGO Klasyfiacja JEL: F31 łowa luczowe:

Bardziej szczegółowo

WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU

WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/2, 2011, sr. 48 57 WPŁYW PUBLIKACJI DANYCH MAKROEKONOMICZNYCH NA KURS EUR/PLN W KONTEKŚCIE BADANIA MIKROSTRUKTURY RYNKU Kaarzyna Bień-Barkowska 1 Insyu

Bardziej szczegółowo

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach

Jerzy Czesław Ossowski Politechnika Gdańska. Dynamika wzrostu gospodarczego a stopy procentowe w Polsce w latach DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Poliechnika Gdańska Dynamika wzrosu

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

MATERIA Y I STUDIA. Zeszyt nr 150. Terminowa struktura dochodowoêci. skarbowych papierów wartoêciowych w Polsce w latach

MATERIA Y I STUDIA. Zeszyt nr 150. Terminowa struktura dochodowoêci. skarbowych papierów wartoêciowych w Polsce w latach MATERIA Y I STUDIA Zeszy nr 50 Terminowa srukura dochodowoêci skarbowych papierów waroêciowych w Polsce w laach 998-200 Marek Âwi oƒ Warszawa, lisopad 2002 r. Praca powsa a pod kierunkiem naukowym prof.

Bardziej szczegółowo

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe

Kobiety w przedsiębiorstwach usługowych prognozy nieliniowe Pior Srożek * Kobiey w przedsiębiorswach usługowych prognozy nieliniowe Wsęp W dzisiejszym świecie procesy społeczno-gospodarcze zachodzą bardzo dynamicznie. W związku z ym bardzo zmienił się sereoypowy

Bardziej szczegółowo

Podstawy zarządzania finansami przedsiębiorstwa

Podstawy zarządzania finansami przedsiębiorstwa Podsawy zarządzaia fiasami przedsiębiorswa I. Wprowadzeie 1. Gospodarowaie fiasami w przedsiębiorswie polega a: a) określeiu spodziewaych korzyści i koszów wyikających z form zaagażowaia środków fiasowych

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo