ROZPRAWY INŻYNIERSKIE
|
|
- Michalina Kamińska
- 7 lat temu
- Przeglądów:
Transkrypt
1 P O L S K A A K A D E M I A N A U K INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI ROZPRAWY INŻYNIERSKIE KWARTALNIK TOM V ZESZYT 3 WARSZAWA 1957 P A Ń S T W O W E W Y D A W N I C T W O tf A U K O W E
2 STAN NAPRĘŻENIA WYWOŁANY W PRZESTRZENI SPRĘŻYSTEJ DZIAŁANIEM ŹRÓDŁA CIEPŁA ZMIENIAJĄCEGO SIĘ W CZASIE W SPOSÓB, HARMONICZNY Niech w punkcie A, który przyjmiemy za początek układu współrzędnych, działa skupione źródło ciepła o wydajności W, zmieniające się w sposób harmoniczny. Źródło to wywoła również w sposób harmoniczny zmieniające się pole temperatury T oraz w sposób harmoniczny zmieniające się,pole naprężeń aij. Załóżmy, że częstotliwość drgań źródła ciepła jest nieznaczna, tak że zjawisko rozpatrywane traktować można jako quasi-statyczne. Pominiemy zatem w równaniach przemieszczeniowych teorii sprężystości wyrazy zawierające przyśpieszenia przemieszczeń. Pole temperatury określone jest przez (ii) v * T ^ We wzorze tym k A/gc, przy czym X jest-przewodnictwem właściwym, Q gęstością a c jest ciepłem właściwym. Ilość ciepła Q wytwarzana przez źródło na jednostkę czasu i objętości wynosi Q =WQC. Symbol <5 oznacza funkcję > i r a c a. Ze względu na harmoniczny charakter działania źróldła przyjmiemy (12) T(x v z t) = U(x y g)e''"'" 8 ' W(t) =W 1 e'' lll '~ s '.- Równanie (1.1) doprowadzimy zatem do postaci Rozwiązaniem tego równania w układzie współrzędnych walcowych przy założeniu, że w nieskończoności T = 0, jest funkcja Wn CC -f2 2\l/2 J J o o Po wykonaniu odpowiednich całkowań otrzymamy (1.5) U =-. vr^'expl Ri/iti), R = {x 2 + y 2 -f- z a ) 1 f2. 4 nic 511
3 Zważywszy na wzór (1.2) otrzymujemy (1.6) T = -^~R- 1 exp i(cot e) 4 &t rc Pole temperatu-ry 1 T otrzymamy jako część rzeczywistą funkcji (1.6): Dla wyznaczenia stanu naprężenia wygodnie jest posłużyć się potencjałem termosiprężystego odkształcenia $. Funkcja ta związana jest z polem temperatury związkiem, [1], (1.8) F a 0 = -;j^a,t. Tutaj v jest stałą Poissona, a at jest współczynnikiem rozszerzalności cieplnej. Ze względu na harmoniczne działanie źródła przyjmujemy, że (1.9) ' 0(x,y,z,t) = W(x,y,z)e i^t- \ Zatem (1.10) f 72^=X=^a ' u - Rozwiązanie tego równania, zważywszy na związek (1.4), ma postać (1.11) W= ^ ^ f fatf+y 2 )- 1 (tf+yz+ir!)- 1 J Q (ar)cosyzdady t o d albo po wykonaniu zaznaczonych całkowan (1.12) tp=^± Część rzeczywista funkcji 0 ze wzoru (1.9) przyjmuje postać 2 cot + ej + sin(wt e). 1 Zakładamy, że W (t) = W o cos (ut E). "W przypadku W<t) = Wosin (cot e)"należy brać 'Urojoną część funkcji T. 2 Zakładamy, że i tutaj W (t) =» Wo cos (<ut e).' 512
4 Znajomość funkcji 0 zezwala na wyznaczenie stanu naprężenia ze związków (1.14) <ry didj (i, j = x,y, z). Tutaj dij oznacza symbol K r o n e c k e r a. W -rozpatrywanym zagadnieniu mamy do czynienia z symetrią sferyczną. We współrzędnych sferycznych, otrzymamy też najprostsze wyrażenia na składowe stanu naprężenia. Mamy mianowicie Orr = 2 G dr a (1.15) " ""tlś-"'*!' G r cp z== 0, = 0, CT/,ł = 0, d0 Korzystając ze wzoru (1-13) znajdziemy, że w (1.16) ( -7i v) 2n co cos w t ==; 0! a r # = 0,. = 0. Na rysunku la podano wykres funkcji a 9V, na rysunku lb wykres funkcji o rr dla kilku wartości parametrów /J, = R yio/2k, r = iot e. Niech w przestrzeni sprężystej działają źródła ciepła jednostajnie, rozmieszczone na osi z. Mamy tu do czynienia z zagadnieniem osiowo symetrycznym. Równanie przewodnictwa cieplnego tna tu postać.. 1rn d2 T 1 dt _ 1 dt_w., v ll- 17) d^ + T~dV~ k dt k 6{r> - 51S
5 Dla źródła liniowego o wydajności W na jednostkę długości i przy założeniu, że zmienia się ono w czasie w sposób harmoniczny, przyjmiemy, że (1.18) T(r,t) = L7(r)e'^- E >, W = W o e'<«"- >. v W 0 Ga t l v 2 ni Sr T f Rys. la Równanie (1.17) doprowadzamy zatem do postaci Rozwiązaniem równania (1.19) jest funkcja ( L 2 0 ) 514
6 Tutaj K Q (r]/irj) jest zmodyfikowaną funkcją Bessę la trzeciego rodzaju tzw. funkcją Basseta, Tak więc (1.21) l + vw 0 Gat-./ a> l v ' 2nk V 2fc co 2k T 9n T 8 8 Zważywszy, że Rys. lb fcw/a K v (r i/i łj) = ker (r i kei v (r gdzie funkcje ker v (z), kei v (z) są funkcjami Relvina, możemy rzeczywistą część funkcji (1.21) wyrazić wzorem T = r l/^) cos Rozprawy Inżynierskie s i n
7 Z równania (1.23) +! J dr* r dr 1 v wyznaczymy funkcję 0 korzystając ze wzoru (1.20) w postaci Znajomość funkcji CP pozwala na wyznaczenie naprężeń zespolonych na podstawie wzorów (1.24) a? r = -2Gyp 4 2G^J a% 0 Otrzymamy tutaj (1.25) = G* 1 + " r, 9 C T rr r a/ Z Lr 1, Naprężenia a rr i a v g> uzyskamy jako część rzeczywistą funkcji a% i ctycp. Otrzymamy mianowicie 1 V JICO co w (1.26) / r / \1 1 1 i l / TTT) sin (cot e) -\ ;sin (cot e)\, \ V 2/c/J r J :r u rl/ ^- cos (cot e) kei 0 I r 1 / ^r- I sin (co t e), Gry = 0. Rozważmy jeszcze następujące zagadnienie. Niech w przestrzeni sprężystej w płaszczyźnie x = działają równomiernie rozłożone źródła ciepl- 5.16
8 ne. Wydajność tych źródeł na 1 jednostkę płaszczyzny x = $ oznaczamy przez W = W o e' (u '~*'. Równanie przewodnictwa ciepła ma tu postać d 2 T 1 d T' Wprowadzając funkcję T (x, t) U(x) e' {lól ~^ doprowadzamy równanie różniczkowe cząstkowe (1.27) do równania zwyczajnego (1.28) ^~- Rozwiązaniem tego równania jest (1.29) U = ^Ł fia^ + iri)- 1 cos a(x f) da = ~^- Ci*7>~ i/2 exp [ (a S) ]/ii]] Stąd o (1.30). T=^(i 5? )~ 1 / 2 exp[i.(a)t «) (a Część rzeczywista powyższej funkcji określa poszukiwane pole temperatury: (1.31) T = 4^- (r?)" 1 ' 2 exp [ (x f) }/rj ] cos [co t e (x i Równanie (1.8) redukuje się do postaci (1.32) Ze wzorów (1.14) widoczne jest, że a xx = 0, a zx = 0, oz y = 0, a xy = oraz (1.33) a yy = azz = Zatem X cos \cot e (x i Na rysunku 2 przedstawiono funkcję a yy dla rozmaitych wartości parametrów ii (x ) ]/co/2 k oraz % co t e. 517
9 518] g,
10 1519]
11 Niech w płaszczyźnie ar = działa dodatnie płaskie źródło ciepła,, a w płaszczyźnie x = ujemne źródło ciepła. W tym przypadku w płaszczyźnie x = 0 mamy T = 0 oraz o>y = 0, a xx = Q. Mamy tutaj do czynienia z przypadkiem półprzestrzeni sprężystej (x > 0), w której w płaszczyźnie x = działa płaskie źródło ciepła. W przypadku x> naprężenia Oyy, Ozz otrzymamy ze wzorów (1.35) a a a 2k[1 _ v) [ ) jexp ~(a: Xcos Dla x<l należy na miejsce (x I) wstawić {i x). Na rysunku 3 przedstawiono funkcję a yy dla rozmaitych wartości parametrów n i T. Uzyskane rozwiązania dla źródła ciepła zmieniającego się w czasie w.sposób harmoniczny posłużyć mogą dla skonstruowania rozwiązań dla. źródeł ciepła zmieniających się w sposób periodyczny w czasie. Rozwijając funkcję W (t) w szereg Fouriera (1.36) W(t)= ^ A n cos (n co t e ), otrzymamy pole temperatury i pole naprężeń jako wynik superpozycji poszczególnych wyrazów harmonicznych. I tak w przypadku działania w nieograniczonej przestrzeni sprężystej źródła o wydajności W (t) zmieniającego się w czasie w sposób periodyczny otrzymamy dla pola temperatury następujące wyrażenie: Ponadto uzyskane rozwiązania posłużyć mogą do wyznaczenia pola temperatury i naprężeń w przypadku źródeł ciepła rozmieszczonych w dowolnym obszarze F przestrzeni sprężystej. Jeśli w obszarze F działa źródło ciepła harmoniczne w czasie i będące funkcją miejsca, to pole temperatury wyrazimy w następujący sposób: co gdzie 520 ID R=[(x X cos I cot e Rl/ - ) 2 + (y : iff -j~(z C) s ] i^2.
12 Literatura cytowana w tekście [1] E. M e 1 a n i H. P a r c u s, Wdrmespannungen stationdrer Temperaturfelder, Wiedeń Pesrałie HAIIPHJ-KEHHOE COCTOHHHE B yjipyrom npoctpahctbe, BbI3BAHH0E flehctbhem HCTOHeHKATBnJIA, H3MEHflIOin;ErOCH rapmohhheokh ' BO BPEMEHH Pa6oTa 3a,o;aeTca identic* onpe^ejimtb HanpajKeHHoe coctoanne, BBIeMCTBMeM MCTo^HMKa TenJia, r3meh.hioiri;eroch rapmohj-raeckm BO PaccMaTpMBaHDTCH nocjieaobatejibho: fleiictbwe coc.peflotoneh- MCTOHHMKa, JIWHeMHOro MCTOHHMKa M HaKOHeij; rtjiockoro MCTO t IHMKa, B 6ecK0HeHH0M ynpyrom npoctpahctbe. M3 peniehmh ypab- TenjionpoBo^HocTM (1.1) nojiynaiot nójie TeMnepaTypt.1. IIpK MC- TeHu;M:ajia Tepaioynpyroro nepemerąehmh 0, cbh3ahhoro c TeMnepaTypopł ypabhehwem (1.8)., onpeflenniot M3 ypabhehmm (1.14) co- CTaBJiaroni;He HanpHJKeHHoro COCTOHHMH ay, 3aflaHa pemaetch npm rrpe- He6pejKeHMM jihepu;wohh&imjt. Summary THE STATE OF STRESS IN AN ELASTIC SiPAOE DUE TO A SOURCE OF HEAT VARYING-, WITH TIME UN A HARMONIC MANNER This paper seeks to determine stresses due to a heat source varying with time in a harmonic manner. A concentrated, linear and plane source is considered in an infinite elastic space. From the solution of the heat equation (1.1), the temperature field is obtained. Using the thermoelastic potential of displacements 0, related to the temperature by the Eq. (1.8), the stress components at) are found from the Eqs. (1.14). The problem is solved disregardmg the inertia forces. It is therefore considered to be a quasi-static problem. ZAKŁAD MECHANIKI OSltODKOW CIĄGŁYCH IPPT PAN Praca została złożona w Redakcji dnia 12 -marda 1957 r.
ROZPRAWY INŻYNIERSKIE
P O L S K A A K A D E M I A N A U K INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI ROZPRAWY INŻYNIERSKIE KWARTALNIK TOM V ZESZYT 3 WARSZAWA 1957 P A Ń S T W O W E W Y D A W N I C T W O tf A U K O W E O PEWNYM
ARCHIWUM BUDOWY MASZYN
POLITECHNIKI Warszawa P O L S K A A K A D E M I A N A U K KOMITET BUDOWY MASZYN fl, J«dno*ci Robołnlbzel «ARCHIWUM BUDOWY MASZYN KWARTALNIK TOM IV ZESZYT 3 W A R S Z A W A 1 9 5 7 P A Ń S T W O W E W Y
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa
Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI
10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 1 10. 10. ROZWIĄZYWANIE ZADAŃ Z TEORII SPRĘŻYSTOŚCI 10.1. Zastosowanie funkcji Airy'ego =0 (10.1) Zakładamy, że istnieje funkcja F(x,y) spełniająca następujące
ROZPRAWY INŻYNIERSKIE
P O L S K A A K A D E M I A N A U K INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI ROZPRAWY INŻYNIERSKIE KWARTALNIK TOM V ZESZYT 3 WARSZAWA 1957 P A Ń S T W O W E W Y D A W N I C T W O tf A U K O W E O PEWNYM
1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
13 Równanie struny drgającej. Równanie przewodnictwa ciepła.
Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu
Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)
Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy
Równanie przewodnictwa cieplnego (I)
Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca
3.1 Zagadnienie brzegowo-początkowe dla struny ograniczonej. = f(x, t) dla x [0; l], l > 0, t > 0 (3.1)
Temat 3 Metoda Fouriera da równań hiperboicznych 3.1 Zagadnienie brzegowo-początkowe da struny ograniczonej Rozważać będziemy następujące zagadnienie. Znaeźć funkcję u (x, t) spełniającą równanie wraz
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA
3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Defi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN
Inżynieria Rolnicza 4(10)/008 ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN Yuri Chigarev, Rafał Nowowiejski, Jan B. Dawidowski Instytut
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1
Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem
y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.
1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA CIEPŁA
39/19 ARCHIWUM ODLEWNICTWA Rok 006, Rocznik 6, Nr 19 Archives of Foundry Year 006, Volume 6, Book 19 PAN - Katowice PL ISSN 164-5308 WYKORZYSTANIE SYSTEMU Mathematica DO ROZWIĄZYWANIA ZAGADNIEŃ PRZEWODZENIA
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Stochastyczne równania różniczkowe, studia II stopnia
Stochastyczne równania różniczkowe, studia II stopnia Niech W t (ewentualnie W, W (t)), t oznacza proces Wienera oraz niech W = Niech W = (W, W 2,, W n ) oznacza n-wymiarowy proces Wienera Pokazać, że
Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania
Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Równanie przewodnictwa cieplnego (II)
Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.
Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej
Przekształcenia liniowe
ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przekształcenia liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
ROZPRAWY INŻYNIERSKIE CLXV
WITOLD NOWACKI USTALONE NAPRĘŻENIA W WALCU ORTOTROPOWYM ORAZ W TARCZY ORTOTROPOWEJ ROZPRAWY INŻYNIERSKIE CLXV TOM VIII ZESZYT 3 ROK 1960 SPIS TREŚCr 1. Walec ortotropowy 568 2. Tarcza ortotropowa 572 1.
ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:
ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz
Linie wpływu w belce statycznie niewyznaczalnej
Prof. Mieczysław Kuczma Poznań, styczeń 215 Zakład Mechaniki Budowli, PP Linie wpływu w belce statycznie niewyznaczalnej (Przykład liczbowy) Zacznijmy od zdefiniowania pojęcia linii wpływu (używa się też
Analiza matematyczna dla informatyków 3 Zajęcia 14
Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH
TRAJEKTORIE WARTOŚCI WŁASNYCH PÓL SIŁ WEWNĘTRZNYCH W TARCZACH I PŁYTACH ANIZOTROPOWYCH Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI Instytut Mechaniki Konstrukcji Inżynierskich PW. WSTĘP W przypadku
FUNKCJE ZESPOLONE Lista zadań 2005/2006
FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
ALGEBRA z GEOMETRIA, ANALITYCZNA,
ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y
ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.
ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ
ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ FUNKCJE DWÓCH ZMIENNYCH RZECZYWISTYCH Definicja 1. Niech A będzie dowolnym niepustym zbiorem. Metryką w zbiorze A nazywamy funkcję rzeczywistą
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
entralna Komisja Egzaminacyjna rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 010 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.
Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty..
4. Proste równoległe i prostopadłe Dwie proste mogą być względem siebie prostopadłe, równoległe albo przecinać się pod kątem innym niż prosty.. Jeśli przecinają się w dowolnym miejscu, i to pod kątem prostym,
Lista zadań nr 2 z Matematyki II
Lista zadań nr 2 z Matematyki II dla studentów wydziału Architektury, kierunku Gospodarka Przestrzenna. Wyznaczyć dziedzinę funkcji f(x, y) = ln(4 x 2 y 2 ), f(x, y) = x 2 + y 2, f(x, y) = ln(4 x 2 y 2
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Metoda elementów skończonych
Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Procesy stochastyczne 2.
Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut
LUBELSKA PRÓBA PRZED MATURĄ 07 poziom podstawowy Kod ucznia Nazwisko i imię M A T E M A T Y K A 8 LUTEGO 07 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron (zadania -34).
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.
Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model
Rozdział 8. Analiza fourierowska. 8.1 Rozwinięcie w szereg Fouriera
Rozdział 8 Analiza fourierowska 8.1 Rozwinięcie w szereg Fouriera Rozważmy funkcję rzeczywistą f określoną na okręgu o promieniu jednostkowym. Parametryzując okrąg przy pomocy kąta φ [, π] otrzymujemy
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1
Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym
Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4
RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,
ANALIZA MATEMATYCZNA 2.2B (2017/18)
ANALIZA MATEMATYCZNA.B (7/8) ANALIZA MATEMATYCZNA.A,.A LISTA. (na ćwiczenia) Całki niewłaściwe Część A. Zadania do samodzielnego rozwiązania, czyli to, co należy umieć z poprzedniego semestru... Podać
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy M A T E M A T Y K A 14 MARCA Instrukcja dla zdającego Czas pracy: 170 minut
Kod ucznia Nazwisko i imię M A T E M A T Y K A 14 MARCA 2018 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
α k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
4. Elementy liniowej Teorii Sprężystości
4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.
1 Równania różniczkowe zwyczajne
Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Rys. 1Stanowisko pomiarowe
ĆWICZENIE WYZNACZANIE MOMENTU BEZWŁADNOŚCI CIAŁ METODĄ WAHADŁA FIZYCZNEGO GRAWITACYJNEGO I SPRAWDZANIE TWIERDZENIA STEINERA Wykaz przyrządów: Stojak z metalową pryzmą do zawieszania badanych ciał Tarcza
d J m m dt model maszyny prądu stałego
model maszyny prądu stałego dit ut itr t Lt E u dt E c d J m m dt m e 0 m c i. O wartości wzbudzenia decyduje prąd wzbudzenia zmienną sterująca strumieniem jest i, 2. O wartości momentu decyduje prąd twornika
Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44
Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły
PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania
Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,
PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI
Zadania zamknięte (0- pkt) Zadanie Jeżeli a = log 6 to a jest równe: 4 A. B. C. - Zadanie Warunek x ; 8 jest rozwiązaniem nierówności: A. x + 5 > B. x 5 C. x 5 x + 5 Zadanie Wskaż warunek, który opisuje
Praca domowa - seria 2
Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Wytrzymałość materiałów
Wytrzymałość materiałów Wykład 3 Analiza stanu naprężenia i odkształcenia w przekroju pręta Poznań 1 3.1. Podstawowe założenia Charakterystyka materiału Zakładamy na początek, że mamy do czynienia z ośrodkiem
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
METODA ELEMENTÓW SKOŃCZONYCH
METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Anna Markowska Michał Marczyk Grupa: IM Rok akademicki: 2011/2012 Semestr: VII Spis treści: 1.Analiza ugięcia sedesu...3
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 2 KWIETNIA 204 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Liczba 2 2 3 2 3 jest równa
Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie
Wykład 14 i 15 Równania różniczkowe Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (x, y, y, y,..., y (n) ) = 0 (1) gdzie: y = y(x) niewiadoma funkcja zmiennej rzeczywistej
1. Liczby zespolone i
Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich