(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;
|
|
- Zofia Marciniak
- 7 lat temu
- Przeglądów:
Transkrypt
1 10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory Homomorfizmy pierścieni, ideały pierścieni. Definicja Niech P, R będą pierścieniami. (1) Odwzorowanie φ : P R nazywamy homomorfizmem, jeśli φ(1 P )=1 R, a, b P [φ(a + b) =f(a)+f(b)], a, b P [φ(a b) =f(a) f(b)]. Zbiór wszystkich homomorfizmów pierścienia P wpierścieńr oznaczamy Hom(P, R). (2) Homomorfizm φ : P R nazywamy monomorfizmem, jeśli jest różnowartościowy. (3) Homomorfizm φ : P R nazywamy epimorfizmem, jeśli jest surjektywny. (4) Homomorfizm φ : P R nazywamy izomorfizmem, jeśli jest bijekcją. (5) Homomorfizm φ : P R nazywamy monomorfizmem kategoryjnym, jeśli dla każdego pierścienia S idlakażdychhomomorfizmówψ 1,ψ 2 : S P jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ; (6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia S idlakażdychhomomorfizmówψ 1,ψ 2 : R S jeśli ψ 1 φ = ψ 2 φ, to ψ 1 = ψ 2. (7) Homomorfizm φ : P P nazywamy endomorfizmem. Zbiór wszystkich endomorfizmów oznaczamy End(P ). (8) Izomorfizm φ : P P nazywamy automorfizmem. Zbiór wszystkich automorfizmów oznaczamy Aut(P ). (9) Jeśli φ : P R jest homomorfizmem, to zbiór ker φ = φ 1 (0 R )={a P : φ(a) =0 R } nazywamy jądrem homomorfizmu φ, zaśzbiór nazywamy obrazem homomorfizmu φ. imφ = φ(p )={b R : a P [b = φ(a)]} Uwaga Niech P, R będą pierścieniami, niech φ : P R będzie homomorfizmem. Wówczas: (1) φ(0 P )=0 R ; (2) φ( a) = φ(a), dlaa P ; (3) φ(a k )=(φ(a)) k oraz φ(ka) =kφ(a), dlaa P, k N {0}; (4) φ : P R jest homomorfizmem grup addytywnych (P, + P ) i R, + R. Twierdzenie Niech P, R będą pierścieniami, niech φ : P R będzie homomorfizmem. Wówczas: (1) imφ <R; (2) φ jest monomorfizmem wtedy i tylko wtedy, gdy ker φ = {0 P }; (3) φ jest epimorfizmem wtedy i tylko wtedy, gdy imφ = R; (4) φ jest izomorfizmem wtedy i tylko wtedy, gdy istnieje homomorfizm ψ : R P taki, że φ ψ = id R oraz ψ φ = id P ; 51
2 52 (5) φ jest monomorfizmem wtedy i tylko wtedy, gdy jest monomorfizmem kategoryjnym; (6) φ jest epimorfizmem wtedy i tylko wtedy, gdy jest epimorfizmem kategoryjnym. (1) φ : P P, φ(x) =x jest homomorfizmem; (2) φ : P X P, φ(f) =f(x 0 ) jest homomorfizmem, gdzie X oraz x 0 X jest ustalonym elementem; (3) φ : Z Z n, φ(x) = reszta z dzielenia x przez n jest homomorfizmem; (4) φ : Z P, φ(x) =x 1 P jest homomorfizmem. Twierdzenie Niech P, R będą pierścieniami, P 1 <P, R 1 <R,niechφ : P R będzie homomorfizmem. Wówczas: (1) φ(p 1 ) <R, (2) φ 1 (R 1 ) <R. Definicja Niech (R, +, ) będzie pierścieniem, niech I R. ZbiórI nazywamy ideałem pierścienia R, jeżeli: a, b I(a b I); a I x R(xa I). Oznaczamy I R. Uwaga Niech (R, +, ) będzie pierścieniem, niech I R. Wówczas I jest podgrupą normalną grupy (R, +). (5) Rozważmy pierścień (R, +, ). WówczasR R inazywamygoideałem niewłaściwym. (6) Rozważmy pierścień (R, +, ). Wówczas{0} R inazywamygoideałem zerowym. Ideały niewłaściwy i zerowy nazywamy ideałami trywialnymi. (7) Rozważmy pierścień Z. Wówczas3Z Z. (8) Rozważmy pierścień R R.WówczasI = {f R R : f(1) = 0} R R. Twierdzenie Niech P, R będą pierścieniami, niech φ : P R będzie homomorfizmem. Wówczas: (1) ker φ P, (2) jeśli J R, toφ 1 (J) P oraz ker φ φ 1 (J), (3) jeśli I P i φ jest epimorfizmem, to φ(i) P. Dowód. (1) Ustalmy a, b ker φ, x P.Wówczas φ(a b) =φ(a) φ(b) =0 0=0, azatema b ker φ. Ponadto: φ(xa) =φ(x)φ(a) =φ(x) 0=0, azatemxa ker φ.
3 (2) Ustalmy a, b φ 1 (J), x P.Wówczas azatema b φ 1 (J). Ponadto: φ(a b) =φ(a) φ(b) J, φ(xa) =φ(x)φ(a) J, azatemxa φ 1 (J). Ustalmyponadtoc ker φ. Wówczas: azatemc φ 1 (J). (3) analogicznie. φ(c) =0 J, Twierdzenie Niech (R, +, ) będzie pierścieniem, niech I R. Następującewarunkisąrównoważne: (1) I = R; (2) I U(R) ; (3) 1 I. Dowód. (1) (2): oczywiste.(2) (3): ustalmya I U(R). Niechb R będzie taki, że ab =1. Skoro a I, b R, więc1=ab I. (3) (1): Ustalmya R. Skoro1 I, a R, toa =1 a I. Twierdzenie Niech (R, +, ) będzie pierścieniem. Wówczas: R jest ciałem wtedy i tylko wtedy, gdy R ma dokładnie dwa ideały, {0} i R. Dowód. ( ): załóżmy,żer jest ciałem. Ustalmy I R iniechi {0}. Pokażemy, że I U(R). Istotnie,skoroR jest ciałem, to U(R) =R \{0}. PonieważI {0}, więc dla a I \{0} zachodzi a U(R). Wobec poprzedniego twierdzenia I = R. ( ): załóżmy,że{0} i R są jedynymi ideałami pierścienia R. Ustalmya R \{0}. Pokażemy, że a U(R). NiechI a = {xa : a R}. Zauważmy,żeI a R: istotnie,ustalmyx 1 a, x 2 a I a, y R. Wówczas x 1 a x 2 a =(x 1 x 2 )a I a oraz x 1 ay =(x 1 y)a I a. Ponadto zauważmy, że a =1 a I a oraz a 0.TymsamymI a {0}. ZatemI a = R, wszczególności istnieje b R \{0} taki, że ba =1. Twierdzenie 10.6 (lemat o odpowiedniości między ideałami). Niech P, R będą pierścieniami, π : P R homomorfizmem surjektywnym i niech N =kerπ. Oznaczmy Wówczas odwzorowania są wzajemnie odwrotne. I = {I : I P oraz N I}, J = {J : J R}. φ : I J,φ(I) =π(i), ψ : J I,ψ(J) =π 1 (K) 53
4 Ideały generowane przez zbiory. Twierdzenie Niech J = {J i : i I} będzie rodziną ideałów pierścienia R; (1) i I J i jest ideałem pierścienia R, (2) i I J i jest ideałem pierścienia R, oilej jest łańcuchem. Definicja Niech (R, +, ) będzie pierścieniem oraz A R pewnym zbiorem. Najmniejszy w sensie inkluzji ideał pierścienia R zawierający zbiór A (tj. przekrój wszystkich ideałów pierścienia R zawierających A) nazywamyideałem generowanym przez A ioznaczamy(a). Uwaga Niech (R, +, ) będzie pierścieniem oraz P<R.Wówczas: (1) ({0}) ={0}, (2) (1) = R. Definicja Niech (R, +, ) będzie pierścieniem, niech I R. KażdyzbiórA otejwłasności,że (A) =I nazywamy zbiorem generatorów ideału I. JeśliA = {a 1,...,a n } to oznaczamy (a 1,...,a n )=(A). Mówimy, że ideał jest skończenie generowany, gdyistniejąelementya 1,...,a n R takie, że I =(a 1,...,a n ). Mówimy, że ideał jest główny, gdyistniejeelementa R taki, że I =(a). Mówimy, że pierścień R jest pierścieniem ideałów głównych (PID, principal ideal domain), gdy każdy jego ideał jest ideałem głównym. Twierdzenie 10.8 (o postaci elementów ideału generowanego przez zbiór). Niech (R, +, ) będzie pierścieniem oraz A R pewnym zbiorem. Wówczas (A) ={a 1 b a n b n : n N,a i A, b i R}. Wniosek Niech (R, +, ) będzie pierścieniem oraz a R. Wówczas: (1) Niech (R, +, ) będzie pierścieniem oraz a R. Wówczas: (a) ={ab : b R}. (2) Niech (R, +, ) będzie pierścieniem oraz a 1,...,a n R. Wówczas: (1) Rozważmy pierścień Z. Wówczas: oraz (a 1,...,a n )={a 1 b a n b n : b i R}. (5) = {k5 :k Z} =5Z (4, 6) = {k4+l6 :k, l Z}.
5 (2) Rozważmy pierścień R[x]. Wówczas: (x) ={f x : f R[x]} = {g R[x] :x g}. Definicja Niech (R, +, ) będzie pierścieniem, niech I, J R. (1) Ideał (I J) nazywamy sumą ideałów I i J ioznaczamyi + J. (2) Ideał ({i j : i I,j J}) nazywamy iloczynem ideałów I i J ioznaczamyi J. Twierdzenie 10.9 (o postaci elementów sumy i iloczynu ideałów). Niech (R, +, ) będzie pierścieniem, niech I,J R. (1) I + J = {i + j : i I,j J}; (2) I J = {a 1 b a n b n : n N,a i I,b i J} Twierdzenie Pierścień Z jest pierścieniem ideałów głównych. Dowód. Ustalmy I Z. JeśliI = {0}, toi =(0)jest ideałem głównym. Jeśli I {0}, toistniejea I, a 0.Oczywiście{ a, a} N, zdefiniujmywięc c = min{a N : a I}. Pokażemy, że I =(c). Inkluzja( ) jest oczywista, zaś dla dowodu inkluzji ( ) ustalmy b I. Dzieląc zresztąb przez c otrzymujemy b = qc + r dla pewnych q, r N {0}, 0 r<c. Zatem r = b qc. Skorob I, c I, q Z, więcr I. Ponadtor<c,więczwyboruc wynika, że r =0.Zatemb = qc (c). Twierdzenie Niech F będzie ciałem. Pierścień F [x] jest pierścieniem ideałów głównych. Dowód. Ustalmy I F [x]. JeśliI = {0}, toi =(0)jest ideałem głównym. Jeśli I {0}, toistnieje f I, f 0.Zdefiniujmywięc h = wielomian z I możliwie najmniejszego stopnia. Pokażemy, że I =(h). Inkluzja( ) jest oczywista, zaś dla dowodu inkluzji ( ) ustalmy g I. Dzieląc zresztąg przez h otrzymujemy g = qh + r dla pewnych q, r F [x], 0 deg r<deg h. Zatem r = g qh. Skorog I, h I, q F [x], więcr I. Ponadtodeg r<deg h, więczwyboruh wynika, że r =0.Zatemg = qh (h). 55
im = (P )={b 2 R : 9a 2 P [b = (a)]} nazywamy obrazem homomorfizmu.
61 7. Wyk ad 7: Homomorfizmy pierúcieni, idea y pierúcieni. Idea y generowane przez zbiory. PierúcieÒ ilorazowy, twierdzenie o homomorfizmie. Idea y pierwsze i maksymalne. 7.1. Homomorfizmy pierúcieni,
Bardziej szczegółowoWniosek Niech R będzie pierścieniem, niech I R. WówczasI R wtedy i tylko wtedy, gdy I jest jądrem pewnego homomorfizmu.
11. Wykład 11: Pierścień ilorazowy, twierdzenie o homomorfizmie. Ideały pierwsze i maksymalne. 11.1. Pierścień ilorazowy, twierdzenie o homomorfizmie. Definicja i Uwaga 11.1. Niech R będzie pierścieniem,
Bardziej szczegółowoDziałania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Bardziej szczegółowo1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Bardziej szczegółowo9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Bardziej szczegółowo14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe
14. Wykład 14: Grupa Galois wielomianu. Zasadnicze twierdzenia teorii Galois. Rozszerzenia rozwiązalne, cykliczne i abelowe. 14.1. Grupa Galois wielomianu. Definicja 14.1. Niech F będzie ciałem, niech
Bardziej szczegółowoUwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
Bardziej szczegółowoĆwiczenia 1 - Pojęcie grupy i rzędu elementu
Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające
Bardziej szczegółowoi=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian
9. Wykład 9: Jednoznaczność rozkładu w pierścieniach wielomianów. Kryteria rozkładalności wielomianów. 9.1. Jednoznaczność rozkładu w pierścieniach wielomianów. Uwaga 9.1. Niech (R, +, ) będzie pierścieniem
Bardziej szczegółowoALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ
ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem
Bardziej szczegółowoPodciała, podciała generowane przez zbiór, rozszerzenia ciał.
Podciała, podciała generowane przez zbiór, rozszerzenia ciał. Definicja Niech F będzie ciałem. Podzbiór L H zbioru F nazywamy podciałem ciała F (piszemy L ă F ), gdy pl, `æ LˆL, æ LˆL q jest ciałem. Jeżeli
Bardziej szczegółowo1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Bardziej szczegółowo13. Cia la. Rozszerzenia cia l.
59 13. Cia la. Rozszerzenia cia l. Z rozważań poprzedniego paragrafu wynika, że jeżeli wielomian f o wspó lczynnikach w ciele K jest nierozk ladalny, to pierścień ilorazowy K[X]/(f) jest cia lem zawieraja
Bardziej szczegółowo12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.
12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze. Rozszerzenia rozdzielcze i pojedyncze. Rozszerzenia normalne. 12.1.
Bardziej szczegółowo1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,
Bardziej szczegółowo= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Bardziej szczegółowo... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1
4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy
Bardziej szczegółowoZadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy
Bardziej szczegółowoFunkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
Bardziej szczegółowoUniwersytet w Białymstoku. Wykład monograficzny
Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr
Bardziej szczegółowo1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
Bardziej szczegółowoWykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
Bardziej szczegółowoAlgebra II Wykład 1. Definicja. Element a pierścienia R nazywamy odwracalnym, jeśli istnieje element b R taki, że ab = 1.
Algebra II Wykład 1 0. Przypomnienie Zbiór R z działaniami +, : R R R, wyróżnionymi elementami 0, 1 R i operacją : R R nazywamy pierścieniem, jeśli spełnione są następujące warunki: (1) a, b, c R : a +
Bardziej szczegółowo2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Bardziej szczegółowoCiała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Bardziej szczegółowoDefinicje- Algebra III
Definicje- Algebra III Opracowane na podstawie notatek z wykładu w semetrze zimowym roku 2007r. (mocno niekompletne- umieszczono kilka pierwszych wykładów) 21.11.2007r. Algebry Definicja1(K-algebra)- Przestrzeń
Bardziej szczegółowo5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Bardziej szczegółowo1 Pierścienie i ich homomorfizmy. Ideał, pierścień ilorazowy. Ideały pierwsze i maksymalne, dziedziny i ciała - definicje i przykłady
Tekst ten jest dostępny na stronie http://www-usersmatumkpl/ cstefan/ W razie potrzeby tam będą znajdowały się ewentualne poprawki i uzupełnienia 1 Pierścienie i ich homomorfizmy Ideał, pierścień ilorazowy
Bardziej szczegółowoAlgebra I. Grzegorz Bobiński. wykład z ćwiczeniami dla studentów II roku matematyki. Wydział Matematyki i Informatyki UMK w Toruniu
Algebra I wykład z ćwiczeniami dla studentów II roku matematyki Grzegorz Bobiński Wydział Matematyki i Informatyki UMK w Toruniu Toruń 2005 Spis treści Rozdział I. Pierścienie 3 1.1. Działania w zbiorach
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Bardziej szczegółowoDB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
Bardziej szczegółowo. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Bardziej szczegółowoWyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Bardziej szczegółowoZadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Bardziej szczegółowoBaza i stopień rozszerzenia.
Baza i stopień rozszerzenia. Uwaga Niech F będzie ciałem, L rozszerzeniem ciała F. Wówczas L jest przestrzenią liniową nad ciałem F. Definicja Niech F będzie ciałem, L rozszerzeniem ciała F. 1. Wymiar
Bardziej szczegółowoAlgebra liniowa 3. Kazimierz Szymiczek
Algebra liniowa 3 2008 2009 Kazimierz Szymiczek 2 Spis treści Przedmowa 5 1 Przestrzenie wektorowe 1 1.1 Podstawowe pojęcia............................... 1 1.2 Homomorfizmy.................................
Bardziej szczegółowoMatematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Bardziej szczegółowoPojęcie pierścienia.
Pojęcie pierścienia. Definicja: Niech R będzie zbiorem niepustym. 1. Algebrę pr, `, q nazywamy pierścieniem, gdy pr, `q jest grupą abelową, działanie jest łaczne oraz rozdzielne względem działania `, to
Bardziej szczegółowoTwierdzenie 5.1 Definicja i uwaga 5.1. relacjami zadana za pomocą zbioru generatorów i zbioru relacji kodem genetycz- nym
5. Wykład 5: Generatory i relacje. Kod genetyczny grupy. Twierdzenie Nielsena-Schreiera. Głównym celem dzisiejszego wykładu jest następujący rezultat: Twierdzenie 5.1 (Nielsena-Schreiera). Podgrupa grupy
Bardziej szczegółowoAlgorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
Bardziej szczegółowoZadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Bardziej szczegółowo2 Algebra 2 zarys wykładu Szymon Brzostowski Element b G spełniający warunek G3 dla danego a G i e G nazywamy elementem odwrotnym do a i oznaczamy prz
Algebra abstrakcyjna zarys wykładu Szymon Brzostowski 3. października 2018 r. Umowy. Wszędzie poniżej skrót gddy oznaczać będzie wtedy i tylko wtedy, gdy. Znak := ma na celu przypisanie nazwie od strony
Bardziej szczegółowoTreść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Bardziej szczegółowoAlgebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie
3. Wykłady 5 i 6: Semantyka klasycznego rachunku zdań. Dotychczas rozwinęliśmy klasyczny rachunek na gruncie czysto syntaktycznym, a więc badaliśmy metodę sprawdzania, czy dana formuła B jest dowodliwa
Bardziej szczegółowoRozdzia l 3. Elementy algebry uniwersalnej
Rozdzia l 3. Elementy algebry uniwersalnej 1. Podalgebry, homomorfizmy Definicja. Niech = B A oraz o bȩdzie n-argumentow a operacj a na zbiorze A. Mówimy, że zbiór B jest zamkniȩty na operacjȩ o, gdy dla
Bardziej szczegółowoBaza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Bardziej szczegółowoTopologia Algebraiczna 2 Zadania egzaminacyjne
Topologia Algebraiczna 2 Zadania egzaminacyjne Agnieszka Bojanowska, Stefan Jackowski 9 czerwca 2013 1 Kompleksy łańcuchowe Zad. 1. Niech I będzie odcinkiem w kategorii kompleksów łańcuchowych, czyli kompleksem
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH
ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji
Bardziej szczegółowoWykład 12 i 13 Macierz w postaci kanonicznej Jordana , 0 A 2
Wykład 12 i 13 Macierz w postaci kanonicznej Jordana Niech A - macierz kwadratowa stopnia n Jak obliczyć np A 100? a 11 0 0 0 a 22 0 Jeśli A jest macierzą diagonalną tzn A =, to Ak = 0 0 a nn Niech B =
Bardziej szczegółowoAlgebra i jej zastosowania - konspekt wykładu
Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2018/2019 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 3 13 Pierścienie Euklidesa
Bardziej szczegółowoAlgebra liniowa z geometrią. wykład I
Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych
Bardziej szczegółowoAlgebra liniowa nad pierścieniami
Algebra liniowa nad pierścieniami Wykład monograficzny Kazimierz Szymiczek Przedmowa Linear algebra, like motherhood, has become a sacred cow. Irving Kaplansky Niniejszy skrypt jest zapisem wykładu monograficznego
Bardziej szczegółowociałem F i oznaczamy [L : F ].
11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem
Bardziej szczegółowoPodstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoAlgebra Abstrakcyjna i Kodowanie Lista zadań
Algebra Abstrakcyjna i Kodowanie Lista zadań Jacek Cichoń, WPPT PWr, Wrocław 2016/17 1 Grupy Zadanie 1 Pokaż, że jeśli grupy G i H są abelowe, to grupa G H też jest abelowa. Zadanie 2 Niech X będzie niepustym
Bardziej szczegółowoWyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Bardziej szczegółowoPierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Bardziej szczegółowoA. Strojnowski - Twierdzenie Jordana 1
A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f
Bardziej szczegółowo1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler
GAL (Informatyka) Wykład - formy hermitowskie Wersja z dnia 23 stycznia 2014 Paweł Bechler 1 Formy hermitowskie Niech X oznacza przestrzeń liniową nad ciałem K. Definicja 1. Funkcję φ : X X K nazywamy
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY
ALGEBRA Z GEOMETRIĄ 1/10 LINIOWA NIEZALEŻNOŚĆ, ROZPINANIE I BAZY Piotr M. Hajac Uniwersytet Warszawski Wykład 10, 11.12.2013 Typeset by Jakub Szczepanik. Geometryczne intuicje Dla pierścienia R = R mamy
Bardziej szczegółowo1 Grupy. 1.1 Grupy. (2) dla działania istnieje element neutralny, tzn. istnieje e G taki, że ae = a = ea dla dowolnego a G;
1 Grupy 1.1 Grupy Definicja. Grupą nazywamy niepusty zbiór G z działaniem : G G G, (a, b) ab, spełniającym warunki: (1) działanie jest łączne, tzn. a(bc) = (ab)c dla dowolnych a, b, c G; (2) dla działania
Bardziej szczegółowoMaciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca
Bardziej szczegółowoGrzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Bardziej szczegółowoPraca domowa - seria 6
Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania
Bardziej szczegółowoCiała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Bardziej szczegółowoWyk lad 11 Przekszta lcenia liniowe a macierze
Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β
Bardziej szczegółowoZadania do wykładu Algebra DALG 201 Lato prof. Wojciech Gajda
Zadania do wykładu Algebra DALG 201 Lato 2015 prof. Wojciech Gajda Zadanie 1. Znaleźć rzędy wszystkich elementów w grupie G jeżeli: (a) G=Z/16 (b) G=(Z/36) (c) G=Q 8 (d) G=D 5 (e) G=Z/2 Z/8 (f) G=S 4.
Bardziej szczegółowoAlgebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Bardziej szczegółowoB jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.
8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą
Bardziej szczegółowoStruktury formalne, czyli elementy Teorii Modeli
Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j
Bardziej szczegółowoDefinicja. Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G,
Grupy rozwiązalne. Definicja Niech pg, q będzie grupą. Wówczas ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G p0q G, G piq rg pi 1q, G pi 1q s, dla i P N nazywamy górnym ciągiem centralnym grupy
Bardziej szczegółowoRodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Bardziej szczegółowo1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Bardziej szczegółowo1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Bardziej szczegółowoRozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu.
Rozszerzenie ciała o pierwiastek wielomianu. Ciało rozkładu wielomianu. Twierdzenie (Kroneckera) Niech F będzie ciałem, niech f P F rxs. Wówczas istnieje rozszerzenie L ciała F takie, w którym f ma pierwiastek.
Bardziej szczegółowoGrzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Bardziej szczegółowoPodstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Bardziej szczegółowoPodstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik
Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik 8 Funkcje 8.1 Pojęcie relacji 8.1 Definicja (Relacja). Relacją (binarną) nazywamy dowolny podzbiór produktu kartezjańskiego
Bardziej szczegółowoA i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Bardziej szczegółowoφ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Bardziej szczegółowoWyk lad 14 Formy kwadratowe I
Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można
Bardziej szczegółowoWykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,
Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych
Bardziej szczegółowoWykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Bardziej szczegółowoΦ(f) ={g 1,...,g n }, jeżeli f ma przedstawienie f = x j g j dla pewnych x i R \{0}.
10. Wykład 10: Moduły wolne. Definicja 10.1. Niech R będzie pierścienie z jedynką. Lewy unitarny R-oduł M nazyway odułe wolny, gdy M = i I f i, gdzie f i = R, i I. Rodzinę {f i : i I} nazyway bazą (lub
Bardziej szczegółowo1 Pierścienie, algebry
Podstawowe Własności Pierścieni Literatura Pomocnicza: 1. S.Balcerzyk,T.Józefiak, Pierścienie przemienne, PWN 2. A.Białynicki-Birula, Algebra, PWN 3. J.Browkin, Teoria ciał, PWN 4. D.Cox, J.Little, D.O
Bardziej szczegółowo1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
Bardziej szczegółowoElementy algebry ogólnej 2
Elementy algebry ogólnej 2 Notatki do wykładu w semestrze letnim 2012/2013 Ewa Cygan Wersja z 17 maja 2013 Spis treści 1 Pierścienie - wiadomości ogólne 5 1.1 Podstawowe definicje i przykłady........................
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoPrzekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Bardziej szczegółowo2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
Bardziej szczegółowoWyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm
Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy
Bardziej szczegółowoZestaw zadań 14: Wektory i wartości własne. ) =
Zestaw zadań 4: Wektory i wartości własne () Niech V = V V 2 będzie przestrzenią liniową nad ciałem K, w którym + 0 Znaleźć wszystkie podprzestrzenie niezmiennicze rzutu V na V wzdłuż V 2 oraz symetrii
Bardziej szczegółowoAlgebra i jej zastosowania - konspekt wykładu
Algebra i jej zastosowania - konspekt wykładu Agata Pilitowska MiNI - rok akademicki 2016/2017 Spis treści 1 Pierścienie i ciała 1 11 Definicja i przykłady 1 12 Pierścienie całkowite 2 13 Ciało ułamków
Bardziej szczegółowoopracował Maciej Grzesiak Grupy
opracował Maciej Grzesiak Grupy 1. Określenie i przykłady grup Definicja 1. Zbiór G z określonym na nim działaniem dwuargumentowym nazywamy grupą, gdy: G1. x,y,z G (x y z = x (y z; G2. e G x G e x = x
Bardziej szczegółowoEgzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Bardziej szczegółowoZadania z Algebry liniowej 3 semestr zimowy 2008/2009
Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując
Bardziej szczegółowoCiągłość funkcji f : R R
Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +
Bardziej szczegółowo