Plan wykładu. Sztuczne sieci neuronowe. Podstawowe pojcia logiki rozmytej. Logika ostra a logika rozmyta. Wykład 13: Sieci neuronowe o logice rozmytej
|
|
- Sabina Kozłowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Pan wyładu Sztuzne se neuronowe yład 3: Se neuronowe o oge rozmytej ałgorzata Krtowsa Katedra Orogramowana e-ma: mma@.b.baysto. Podstawy og rozmytej zbory rozmyte oeraje og rozmytej shemat systemu rozmytego Se neuronowe o oge rozmytej ogóny shemat agorytm gradentowy samoorganzujae s se rozmyte uzene na odstawe tabe rzej Sztuzne se neuronowe Loga ostra a oga rozmyta Podstawowe oja og rozmytej wyorzystane tyo nformaj numeryznej słe jednoznazne owzane nformaj wejowej wyjowej systemu Sztuzne se neuronowe ostra : : zarne bałe LOGIK rozmyta : : wyorzystane nformaj ngwstyznej oja osowe ne zwzane e z wartoam numeryznym: mały,redn, duy ade z oree jest ojem rozmytym, neostrym odene szaro 3 Zborem rozmytym w ewnej neustej rzestrzen X nazywany zbór ar: { u, u; u X } gdze jest funj rzynaeno zboru rozmytego. unja rzynaeno rzysuje ademu eementow u jego stoe rzynaeno do zboru rozmytego : u oznaza ełn rzynaeno eementu u do zboru u0 oznaza bra rzynaeno eementu u do zboru rozmytego 3 0 < u < oznaza zow rzynaeno eementu u do zboru rozmytego Sztuzne se neuronowe : X [0,] 4
2 Zbory rozmyte Jee X jest rzestrzen o sozonej zbe eementów, X{,,..., }, to zbór rozmyty zasuje s jao: + + Λ + Oeraje og rozmytej rzee Przee dwóh zborów rozmytyh, w rzestrzen X jest równe zborem rozmytym o funj rzynaeno da wszysth X osta: mn{, } zna / - oznaza rzyorzdowane oszzegónym eementom ston rzynaeno zna + - oznaza oeraj dodana eementu do zboru Sztuzne se neuronowe 5 Sztuzne se neuronowe 6 Oeraje og rozmytej suma Oeraje og rozmytej doełnene Suma dwóh zborów rozmytyh, w rzestrzen X jest równe zborem rozmytym o funj rzynaeno da wszysth X osta: ma{, } Doełnenem zboru rozmytego X jest zbór rozmyty o funj rzynaeno zdefnowanej w osta: Sztuzne se neuronowe 7 Sztuzne se neuronowe 8
3 Zasady wnosowana w zborah rozmytyh Ogóny zas wnosowana: jee rzesłana ogzna to onuzja Je G s odzboram zborów rozmytyh U V, to zas Sztuzne se neuronowe je to y G oznaza, ze jes zmenna jest eementem zboru rozmytego, to zmenna y naezy do zboru rozmytego G. Zas w forme maj: G. Jee jest n-wymarowym wetorem, rzesłan stanow ozyn ogzny sładowyh tego wetora: jes Κ gdze orea numer reguły wnosowana n n to y G 9 Interretaja reguł wnosowana w systeme weowymarowym Je zbory -tej reguły rozmytej dotyzej zmennyh,,...,, y oznazy s w osta,,...,, G, to owysza reaja moe by nterretowana jao maja B, w tórej Κ B G Sztuzne se neuronowe n ; unja rzynaeno osuja ta maj moe rzybera róne osta:, y mn, y osta wsónej z zborów [ ] B B osta ozynowa, y y B B osta mnmasowa, y ma{ mn[, y ], } B B unja rzynaeno dotyza wetora moe by nterretowana w osta: mnmanego zboru wsónego mn[, y, Κ, ] n y n ozynowej Κ 0 Shemat uładu rozmytego uzyfator onwersja do dzedzny rozmytej X uzyfator Reguły wnosowana Defuzyfator y Y s yso 70 Rodzaje funj rzynaeno: Zbór rozmyty X Człon deyzyjny Zbór rozmyty B Y Sztuzne se neuronowe funje gaussowse funje trójtne funje traezodane Sztuzne se neuronowe
4 Tworzene reguł wnosowana: Sztuzne se neuronowe Reguły wnosowana zastosowane wedzy eserta - esert na odstawe zdobytego wzenej dowadzena ma ore sosób ostowana da oszzegónyh rzyadów, tóre mog s zdarzy w trae roesu. Zadane eserta bdze onstruja reguły wnosowana, ja doboru funj rzynaeno da adego rzyadu. zastosowane bada eserymentanyh - odstaw reguł s wyn numeryzne eserymentów, oreaje zarówno reguły wnosowana ja funje rzynaeno. 3 S Sztuzne se neuronowe Rodzaje defuzyfatorów: według rednh warto entrów y Defuzyfator onwertuje zbór rozmyty do dzedzny ostrej Defuzyfator y y wyso według waony rednh warto entrów, - entrum dysersja zboru rozmytego G ; - funja rzynaeno zborów rozmytyh odowadajyh danemu wetorow wejowemu 4 Defuzyfator Korzystaj z osów defuzyfatora dowon funj gł f o n- eementowym wetorze mona osa rzy wyorzystanu oj og rozmytej. Stosuj nterretaj ozynow funj rzynaeno y Κ n otrzymuje s da defuzyfatora: a warto rednh entrów b waonyh rednh warto entrów Se neuronowe o oge rozmytej owo rerezentaj dowonej funj nenowej weu zmennyh za omo sumy funj rozmytyh sharateryzowanyh rzez funje rzynaeno uzasadna mowo zastosowana funj rozmytyh do odwzorowana dowonyh roesów nenowyh stanow aternatywne odeje do asyznyh se neuronowyh jednoerunowyh f f Posta funj f umowa jej mementaj jao równoegłej strutury weowarstwowej, odobne ja w rzyadu se sgmodanyh radanyh gdze,,.., oznaza oejn reguł ogzn. Sztuzne se neuronowe 5 Sztuzne se neuronowe 6
5 Sztuzne se neuronowe 7 Se neuronowe o oge rozmytej Przyjmuj gaussows osta funj rzynaeno da -tej zmennej odowadajej -tej regue w osta: funj arosymuj f wyraon rzez redne warto entrów mona zasa jao w tórej jest entrum zboru rozmytego zmennej wyjowej. e f e e Sztuzne se neuronowe 8 Se neuronowe o oge rozmytej Shemat se neuronowej rozmytej Sztuzne se neuronowe 9 etoda gradentowa Zadanem se jest odwzorowane ar danyh weje-wyje,d w ta sosób, aby warto dana d stanowa odan odowed systemu, była odwzorowana rzez funj f. Uzene se oega na doborze arametrów, oraz,,..,,,,..., Uzene rzerowadza s rzez mnmazaj błdu wadratowego mdzy warto dan d a jej odwzorowanem f: [ ] d f Sztuzne se neuronowe 0 etoda gradentowa agorytm wsteznej roagaj błdu Stosuj do mnmazaj metod najwszego sadu otrzymujemy w - tym rou uzym nastuje warto arametrów: + η + η η +
6 azy agorytmu roagaj wsteznej odane na weje se sygnałów wejowyh tworzyh wetor oreene wszysth sygnałów wewntrznyh oraz wyjowyh se, wystujyh w wyraenu oreajym gradent oreene warto funj błdu na wyju se rzez jego roagaj w erunu weja wyznazene wszysth sładowyh wetora gradentu; adataja arametrów se odbywa s z rou na ro według wybranej metody gradentowej z roem uzena η stałym bd zmennym. Cehy haraterystyzne haraterystyzna nterretaja arametrów funj, wynaja z fatu, e osta funj f jest odzweredenem zasady wnosowana ogznego w zborah rozmytyh zaweraj z warunow je... oraz z wynow to... : arametry oraz s odowedno entram szerooam z je wag odowadaj e entrom z to mowo włzena w roes uzena nformaj ngwstyznej, zawerajej s we wnosowanu ogznym edza eserta równoege do danyh omarowyh moe zosta wrzgnta w roes uzena, szzegóne na etae wstnym rzy doborze oztowyh warto arametrów otymazayjnyh. Sztuzne se neuronowe Sztuzne se neuronowe Uzene samoorganzuje s se rozmytyh Uzene samoorganzuje s se rozmytyh Załadamy, e mamy ar uzyh, rzy zym ada z nh jest rerezentantem reguły ogznej : ; d. Załadaj e otrzymujemy: d e f e gdze warto arametru, taa sama da adej reguły rozmytej, deyduje o głado odwzorowana. Im mnejsza warto warto tym esze doasowane w danym une jednozene gorsza głado funj. Sztuzne se neuronowe 3 Dobór a wławego; b newławego arametru funj rozmytej. Sztuzne se neuronowe 4
7 Sztuzne se neuronowe Uzene samoorganzuje s se rozmytyh Gdy zba jest dua rzyje jest neratyzne. Dane wówzas mog by rerezentowane rzez < astrów. gorytm automatyznego odzału rzestrzen danyh na astry odmana agorytmu K-rednh: Startuj z erwszej ary danyh, d jest tworzony erwszy aster o entrum. Załada s d oraz zno zboru L. eh r bdze oznaza odegło wetora eh od entrum, onej tórej dane bd tratowane jao naee do danego astera. Załadamy, ew hw startu stneje astrów. Po wzytanu -tej ary uzej, d nastuje wyznazene odegło -,,...,. Oreono, e najbszym entrum jest z. jee - z > r załada s nowy aster ustaa odowedno jego arametry atrz t. 5 Sztuzne se neuronowe Uzene samoorganzuje s se rozmytyh jee - z < r uatuanane s arametry astra z: z z -+d L z L z -+ z [ z -L z -+ ] / L z Przerowadzaj owysze ro do otrzymujemy odzał obszaru danyh na astrów odowedno da rzyjtej warto r. Lzebno adego z nh jest oreona rzez L, entrum rzez ; warto sumuowanej funj rzez. Posta funj arosymujaej e f L e 6 Uzene na odstawe tabe rzej tay uzena: Podzał rzestrzen danyh wejowyh wyjowyh na odzbory rozmyte z rzyorzdowan odowedn funj rzynaeno Generowane reguł rozmytyh na odstawe danyh uzyh h odzału na zbory rozmyte Herarhzaja reguł - owzane z ad reguł jej stona w herarh. rzyadu srzezno za obowzuj rzyjmuje s reguł o najwszym stonu Oreene tabe reguł wynowyh odejmowana deyzj: Interretaja: f X and y Y then z Z f X and y Y4 then z Z4 - Defuzyfaja Sztuzne se neuronowe 7
System M/M/c/L. H 0 µ 1 λ 0 H 1 µ 2 λ 1 µ c λ c-1 H c µ c+1 λ c µ c+l λ c+l-1 H c+l = 2 = 3. Jeli załoymy, e λ λ = λ = Lλ. =1, za.
System M/M// System osada dentyznyh, nezalene raujyh anałów obsług ozealn o ojemno, gdze <
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
Parametry stanu w przemianie izobarycznej zmieniają się według zależności
Przyad szzegóne rzemany otroowej /6 5.4. Przemana zobaryzna Przemana rzy stałym śnen, zy zobaryzna jest rzemaną otroową o wyładn m = 0, gdyż m = 0 == onst. Przemana ta zahodz, gdy ogrzewa sę gaz zamnęty
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
ZADANIE 9.5. p p T. Dla dwuatomowego gazu doskonałego wykładnik izentropy = 1,4 (patrz tablica 1). Temperaturę spiętrzenia obliczymy następująco
ZADANIE 9.5. Do dyszy Bendemanna o rzekroju wylotowym A = mm doływa owetrze o cśnenu =,85 MPa temeraturze t = C, z rędkoścą w = 5 m/s. Cśnene owetrza w rzestrzen, do której wyływa owetrze z dyszy wynos
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji
Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy
Rozkłady zmiennych losowych
ZIP 007/008 (zaoczne) Rozłady zmiennych losowych I. X zmienna losowa soowa. Rozład zero jedynowy X rzybiera dwie wartości: i 0 Jeśli P(X ), to (X ) q P gdyż P(X ) P(X ) Rozład zmiennej losowej jest rozładem
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzane kompresja danyh dr nż.. Wojeh Zają Wykład 4. Dyskretna transformata kosnusowa Shemat przetwarzana danyh w systeme yfrowym Cyfryzaja danyh Dekorelaja kwantyzaja ompresja FEC + przeplot
Metody probabilistyczne Rozwiązania zadań
Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi
I zasada termodynamiki
W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do
SYSTEM NEURONOWO-ROZMYTY W ZASTOSOWANIU DO BADAŃ DEFORMACJI KONSTRUKCJI APPLICATION OF NEURAL-FUZZY SYSTEM IN STRUCTURE DEFORMATION ANALYSIS
MRI MRÓWCZYŃSK, JÓZEF GIL SYSTEM EUROOWO-ROZMYTY W ZSTOSOWIU DO DŃ DEFORMCJI KOSTRUKCJI PPLICTIO OF EURL-FUZZY SYSTEM I STRUCTURE DEFORMTIO LYSIS Streszczene Dynamczny rozwój dzedzny przetwarzana nformacj
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
F - wypadkowa sił działających na cząstkę.
PRAWA ZACHOWAIA Podstawowe termny Cała tworzące uład mechanczny oddzałują mędzy sobą z całam nenależącym do uładu za omocą: Sł wewnętrznych Sł zewnętrznych - Sł dzałających na dane cało ze strony nnych
Modelowanie struktur mechanicznych
odelowane strutur mehanznyh Zasady reduj uładów mehanznyh odelowane uładów z elementam podatnym U - strutury mehanzne - lteratura Wrotny L.: Dynama uładów mehanznyh. OWPW, Warszawa, 995 Osńs Z.: Teora
3. Kinematyka podstawowe pojęcia i wielkości
3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny
Funkcje wielu zmiennych różniczkowalność
Funcje weu zmennyc różnczowaność Zajmemy sę teraz różnczowanem funcj weu zmennyc. Zacznemy od pojęca pocodnej cząstowej, bo jest ono najważnejszym zarazem najprostszym z tyc, tórym przyjdze nam sę zająć.
Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004
Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego
System M/M/1/L. λ = H 0 µ 1 λ 0 H 1 µ 2 λ 1 H 2 µ 3 λ 2 µ L+1 λ L H L+1. Jeli załoymy, e λ. i dla i = 1, 2,, L+1 oraz
System M/M// System ten w odrónenu do wczenej omawanych systemów osada kolejk. Jednak jest ona ogranczona, jej maksymalna ojemno jest wartoc skoczon
6. Inteligentne regulatory rozmyte dla serwomechanizmów
6. Inteligentne regulatory rozmyte dla serwomechanizmów Pojęcie regulatorów inteligentnych, w onteście niniejszego rozdziału, oreśla ułady sterowania owstałe rzy użyciu techni wywodzących się z ludzich
System M/M/c/N. System róni si od wyej omawianego tym, e posiada c kanałów obsługi. ródła zgłosze. Stanowiska obsługi. 2 kolejka
System M/M// System rón s od wyej omawanego tym, e posada kanałów obsług. ródła zgłosze kolejka Stanowska obsług Rysunek Przykład welostanowskowego systemu ze skozonym ródłem Stany systemu: H 0 brak zgłosze
Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 6: Ocena jakoci sieci neuronowej Sieci RBF KLASYFIKATOR
Plan wykładu Wykład 6: Ocena jakoc sec neuronowej Sec RBF Małgorzata Krtowska Katedra Orogramowana e-mal: mmac@.b.balystok.l Metody oceny jakoc sec neuronowych roblem klasyfkacj metody szacowana jakoc
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 4-5: Ocena jakości sieci neuronowej Sieci RBF
Plan wyładu Wyład 4-5: Ocena jaośc sec neuronowej Sec RBF Małgorzata Krętowsa Wydzał Informaty PB Metody oceny jaośc sec neuronowych roblem lasyfacj metody szacowana jaośc lasyfacj ocena jaośc lasyfacj
TERMODYNAMIKA TECHNICZNA I CHEMICZNA
TRMODYNAMIKA TCHNICZNA I CHMICZNA Część IV TRMODYNAMIKA ROZTWORÓW TRMODYNAMIKA ROZTWORÓW FUGATYWNOŚCI I AKTYWNOŚCI a) Wrowadzene Potencjał chemczny - rzyomnene de G n na odstawe tego, że otencjał termodynamczny
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
Ćw. 2. Wyznaczanie wartości średniego współczynnika tarcia i sprawności śrub złącznych oraz uzyskanego przez nie zacisku dla określonego momentu.
Laboratorum z Podstaw Konstrukcj aszyn - - Ćw.. Wyznaczane wartośc średnego współczynnka tarca sprawnośc śrub złącznych oraz uzyskanego przez ne zacsku da okreśonego momentu.. Podstawowe wadomośc pojęca.
Minimalizacja funkcji jednej lub wielu zmiennych
Mnmlzj funj jednej lu welu zmennyh Otymlzj wyznzene mnmum funj rzezywstej welu zmennyh w dnym oszrze (wrz z untem w tórym to mnmum wystęuje). Jeśl funj jest nelnow zwer wele mnmów lolnyh zdne jest trudne
Inżynieria Wiedzy i Systemy Ekspertowe. Logika rozmyta. dr inż. Michał Bereta Politechnika Krakowska
Inżynieria Wiedzy i Systemy Ekspertowe Logika rozmyta dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Wyostrzanie Ostateczna, ostra wartość
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?
Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Artur Kasprzycki, Ryszard Knosala Politechnika Opolska, Katedra InŜynierii Produkcji artkasp@polo.po.opole.pl
MODELOWANIE ROZMYTE WIELOKRYTERIAEJ OCENY TAKTYCZNEGO PLANU PRODUKCJI Streszczenie Artur Kasrzyci, Ryszard Knosala Politechnia Oolsa, Katedra InŜynierii Produci artas@olo.o.ole.l W artyule adany est rolem
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi
Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.
VIII. MODELE PROCESÓW EKSPLOATCJI OBIEKTÓW TECHNICZNYCH
VIII. MODL PROCSÓW KSPLOATCJI OBIKTÓW TCHNICZNYCH. WSTP Ja ju nejednorone swerdzono model w uroszczony sosób osuje rzebeg rzeczywsych rocesów esloaacj obeów echncznych w sysemach dzałana, na rzyład: rzemysłowych,
ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH
ĆWICZENIE 4 Klasyczny Rachunek Zdań (KRZ): metoda tablic analitycznych, system aksjomatyczny S (aksjomaty, reguła dowodzenia), dowód w systemie S z dodatkowym zbiorem założeń, tezy systemu S, wtórne reguły
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Reprezentacje grup symetrii. g s
erezentace ru ymetr Teora rerezentac dea: oeracom ymetr rzyać oeratory dzałaące w rzetrzen func zwązać z nm funce, tóre oeratory te rzerowadzaą w ebe odobne a zb. untów odcza oerac ymetr rozważmy rzeztałcene
4. ZASTOSOWANIE METODY ELEMENTÓW SKOŃCZONYCH (MES) W AKUSTYCE
4. ZAOOWAIE E W AUYCE Astya w bdowtwe. 4. ZAOOWAIE EODY ELEEÓW OŃCZOYCH (E) W AUYCE ożej zostae rzedstawoe sorłowae ateatyze słżąe do aalzy staów staloyh ja estaloyh, rzebeg al astyzej, zastosowayh w rograe
ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i
ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP
Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych
Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki
Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12
Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy
8 7 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I G A Z O W Y C H K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
2.5. Ciepło właściwe gazów doskonałych
Gazy dosonałe i ółdosonałe /3.. ieło właśiwe gazów dosonałyh Definija ieła właśiwego: es o ilość ieła orzebna do ogrzania jednosi asy subsanji o. W odniesieniu do g ieło właśiwe ilograowe; wyraża się w
Teoria informacji i kodowania Ćwiczenia Sem. zimowy 2016/2017
Teoria informacji i kodowania Ćwiczenia Sem. zimowy 06/07 Źródła z amięcią Zadanie (kolokwium z lat orzednich) Obserwujemy źródło emitujące dwie wiadomości: $ oraz. Stwierdzono, że częstotliwości wystęowania
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
Prosta w 3. t ( t jest parametrem).
Prosta w 3 by wyacy rówaie prostej w 3 wystarcy a jede put tej prostej i wetor adajcy jej ierue (way wetore ieruowy) Jei P = ( P yp P ) = [ p] to rówaia paraetryce prostej aj posta = P t : y = yp t t (
Ź Ł Ęć ę ę ę ę Ę ń ę ń Ę Ś Ę ę ę ę ę ę ę ć ę ę ę ę Ę ę ń ź ć ć ć Ź ę Ę ć Ś ę ę ń ć Ę ź ę ę Ś Ę ę ę ę ę Ł ę Ź ć Ęę ę ę ń Ł Ś Ą ę ź ę ę Ę Ź Ę ę ń ę Ą ę ę Ę ę ę Ś Ś ź ź ń ń ź Ź ę ń Ę Ą ę Ę Ą ź ć Ę ę ń ę Ę
Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.
Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie
Modelowanie przepływu cieczy przez ośrodki porowate
Modelowanie rzeływu cieczy rzez ośrodi orowate Wyład IV Model D dla rzyadu rzeływu cieczy nieściśliwej rzez ory nieodształcalnego szieletu. 4.. Funcja otencjału rędości. Rozwiązanie onretnego zagadnienia
Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego
Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:
5. MES w mechanice ośrodka ciągłego
. MES w mechance ośroda cągłego P.Pucńs. MES w mechance ośroda cągłego.. Stan równowag t S P x z y n ρb(x, y, z) u(x, y, z) P Wetor gęstośc sł masowych N/m 3 ρb ρ g Wetor gęstośc sł powerzchnowych N/m
8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic
Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k
Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe
WICZENIE NR II PODSTAWY PROCESÓW OBRÓBKI PLASTYCZNEJ WŁASNOCI MATERIAŁÓW KSZTAŁTOWANYCH PLASTYCZNIE - ANIZOTROPIA BLACH -
WICZENIE N II PODSTAWY POCESÓW OBÓBKI PLASTYCZNEJ WŁASNOCI MATEIAŁÓW KSZTAŁTOWANYCH PLASTYCZNIE. Cel wiczenia - ANIZOTOPIA BLACH - Celem wiczenia jest zaoznanie ze zjawiskiem, metod oceny i rodzajami anizotroii
ATRYBUTY FUNKCJI BUDYNKU I GENERALIZACJA. 1.Oznaczenia rodzajów i typów sieci uzbrojenia terenu. 1. Stosowanie atrybutu <przewaŝająca funkcja budynku
ATRYBUTY FUNKCJI BUDYNKU I GENERALIZACJA 1. Stosowanie atrybutu
Ruchy ciała sztywnego i przekształcenia jednorodne
uh iała twnego i retałenia jednorodne Definija: uład wółrędnh Zbiór n baowh wetorów ortonormalnh roinająh n Na rład ereentują unt muim odać uład wółrędnh Wględem o : Wględem o : ora ą niemiennimi obietami
v! są zupełnie niezależne.
Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze
KINEMATYKA MANIPULATORÓW
KIEMK MIULOÓW WOWDEIE. Manpulator obot można podzelć na zęść terująą mehanzną. Część mehanzna nazywana jet manpulatorem. punktu wdzena Mehank ta zęść jet najbardzej ntereująa. Manpulator zaadnzo można
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwenia: WYZNACZANIE WYKŁADNIKA IZENTROPY κ DLA POWIETRZA Wyznazanie wykłnika
Decyzyjny rachunek kosztów w zarządzaniu jakością. Ocena ekonomicznej efektywności systemów operacyjnego sterowania jakością
Deyzyjny rahnek koztów w zarządzani jakośią Oena ekonomiznej efektywnośi ytemów oerayjnego terowania jakośią za d rowe energia informaja odbiorza kontrola jakośi rowe energia informaja AGREGAT PRODUYJNY
Logika rozmyta - wprowadzenie
Metody Sztuznej Inteligenji w Sterowaniu Ćwizenie 4 Logika rozmyta - wprowadzenie Przygotował: mgr inż. Marin Peli Instytut Tehnologii Mehaniznej Politehnika Poznańska Poznań, 2011 1 Logika rozmyta Logika
ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO
OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami
8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log
Uniwersalny sumator kodu naturalnego (NB) i uzupełnieniowego U2. dopełnienie arytmetyczne (1 x) negacja logiczna x logiczna funkcja nadmiaru: v = c k
Unweraln uator odu naturalnego (NB) uzupełnenowego U2 X X ulp dopełnene artetzne ( ) negaja logzna logzna funja nadaru: v. odejowane dodawane dopełnena (negaj) odjena oraz 2 2 2 2 C 2 Welopozjn uator odów
sin θ, (2) sin θ Rθ cos θ. (3) L 2 R < 0. 1
Rozwi zanie zad 1 Rozstrzygni cia, czy oisane ustawienie rostoadªo±cianu jest stanem równowagi trwaªej mo»na dokona analizuj c rzemieszczenie ±rodka masy S odczas wychylenia (atrz rysunek) Zauwa»my,»e
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
Relaksacja. Chem. Fiz. TCH II/19 1
Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT. c 3. L 5 c.* Cl* 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 LTJ CO H 17 AD7 U C-"
PC 3 PC^ TIMER IN RESET PC5 TIMER OUT 10/H CE RO WR ALE ADO AD1 AD2 AD3 AD4 A05 A06 AD7 U ss c 3 L 5 c.* Cl* S 9 10 11 12 13 U 15 H 17 Cu C-" ln LTJ CO 2.12. Wielofunkcyjne układy współpracujące z mikroprocesorem
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Wyznaczenie współczynnika podziału kwasu octowego pomiędzy fazą organiczną a wodną
Ćwzene 13 Wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną a wodną Cel ćwzena Celem ćwzena jest wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną (butanolem) a wodną w oparu
PROWIZJE Menad er Schematy rozliczeniowe
W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo
METODA PROJEKTU BADAWCZEGO. Przedszkole Nr 407 w Warszawie
METODA PROJEKTU BADAWCZEGO Przedszkole Nr 407 w Warszawie JABŁKO 2014/2015 grupa 4-latków I semestr W pierwszym etapie dokonaliśmy wyboru tematu. Dzieci dość często dostawały jabłka na śniadanie. Większość
SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA
( n) Łańcuchy Markowa X 0, X 1,...
Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}