n 02 + n 02 ) / (n e2 polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta.

Wielkość: px
Rozpocząć pokaz od strony:

Download "n 02 + n 02 ) / (n e2 polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta."

Transkrypt

1 Interferometria polaryzacyjna Po zapoznaniu się ze zjawiskiem podwójnego załamania w płytce z materiału anizotropowego moŝemy powrócić do części wykładu dotyczącej interferometrii, w szczególności interferometrii z rozdwojeniem czoła fali. Poprzednio omówiono róŝne układu interferometrów, w których rolę elementu światłodzielącego i rekombinującego spełniały klasyczne elementy optyczne lub elementy dyfrakcyjne. Bardzo waŝna grupę interferometrów z rozdwojeniem (repliką) czoła fali odgrywają układy wykorzystujące elementy dwójłomne, przede wszystkim z uwagi na kompaktowość rozwiązania. Układy z elementem polaryzacyjnym pracującym w wiązce skolimowanej W wiązce skolimowanej rozdwojenie moŝna uzyskać za pomocą pojedynczej płytki z materiału anizotropowego; o osi optycznej pochylonej względem powierzchni tworzących płytki (patrz rys. 9). Ulepszoną wersję (wyrównane drogi optyczne) stanowi tzw. polaryskop Savarta, który składa się z dwóch płytek wyciętych z kryształu jednoosiowego tak, Ŝe osie optyczne tworzą kąt 45 0 z płaszczyznami tworzącymi (w pierwszej płytce w płaszczyźnie yz, w drugiej płytce w płaszczyźnie xz), patrz rys. 28. oś optyczna polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta. Płytki są sklejone przekrojami głównymi wzajemnie prostopadle (oś optyczna jednej płytki jest zwichrowana w stosunku do osi drugiej płytki). Wiązka padająca jest spolaryzowana liniowo pod kątem 45 0 i ulega rozdzieleniu w pierwszej płytce na część zwyczajną (propagacja bez załamania) i nadzwyczajną (ugięcie do góry, w kierunku osi optycznej). W drugiej płytce promień będący promieniem zwyczajnym w pierwszej płytce staje się promieniem nadzwyczajnym i vice versa (płytki są obrócone o 90 0 ). Na wyjściu otrzymuje się dwa wzajemnie równoległe promienie przesunięte poprzecznie o = 2 1/2 d (n e2 n 02 ) / (n e2 + n 02 ); gdzie d oznacza grubość płytek. Zaburzenia interferują za analizatorem. Dla małych kątów padania otrzymuje się prąŝki prostoliniowe zlokalizowane w nieskończoności.

2 Większe pole daje zmodyfikowany polaryskop Savarta, rys. 29. oś optyczna Podobnie jak poprzednio, płaszczyzny tworzące płytek są wycięte pod kątem 45 0 względem osi optycznych, ale teraz druga płytka jest obrócona o Płaszczyzny przekroju głównego płytek są więc równoległe, a osie wzajemnie prostopadłe. Oś półfalówki tworzy kąt 45 0 z płaszczyznami przekroju głównego. Rozsunięcie (rozdwojenie) wiązek na wyjściu wynosi = 2 d (n e2 n 02 ) / (n e2 + n 02 ) Interferometr z dwoma polaryskopami Savarta Rys. 29 Zmodyfikowany polaryskop Savarta umoŝliwiający uzyskiwanie prąŝków prostoliniowych w większym polu widzenia. Oś optyczna półfalówki biegnie pod kątem 45 0 do płaszczyzn przekroju głównego Q 1 i Q 2. Rozdwojenie wprowadzane przez Q 1 jest kompensowane przez Q 2. MoŜna stosować źródło rozciągłe, polichromatyczne. RóŜnica dróg optycznych nie zaleŝy silnie od kąta padania wiązki oświetlającej. obiekt Rys. 30 Interferometr z poprzecznym rozdwojeniem czoła fali wykorzystujący dwa polaryskopy Savarta. Układy z elementem polaryzacyjnym pracującym w wiązce zbieŝnej/rozbieŝnej W układach tego typu, powszechnie stosowanych w mikroskopii interferencyjnej, stosuje się pryzmat Wollastona. Dwie z jego wielu wersji pokazuje rys. 31 (patrz równieŝ rysunki 15 i 16).

3 a) b) Schemat układu optycznego mikroskopu polaryzacyjnointerferencyjnego z poprzecznym rozdwojeniem czoła fali z wykorzystaniem pryzmatu Wollastona pokazuje rys. 32. n 0 <n e Rys. 31. Podstawowa wersja pryzmatu Wollastona (a), i jej modyfikacja umoŝliwiająca zwiększenie uŝytecznego pola widzenia (b). Gdy środek pryzmatu W (płytki Q) pokrywa się z płaszczyzną ogniskową obiektywu mikroskopu i przedmiot nie wprowadza zaburzenia fazowego, występuje stała róŝnica fazy między interferującymi wiązkami i otrzymuje się jednorodny rozkład intensywności (detekcja w polu jednorodnym). RóŜnica dróg optycznych między Σ 0 i Σ e zaleŝy od miejsca, w którym wiązka przechodzi przez pryzmat Wollastona. Przesuwając pryzmat w kierunku prostopadłym do osi optycznej układu moŝna w ciągły sposób zmieniać róŝnicę dróg optycznych, a tym samym jasność i barwę w obrazie interferencyjnym. Pokazano przykładowe połoŝenie elementów polaryzacyjnych P, Q i A. Warunkiem koniecznym we wszystkich wariantach jest, jednakŝe, umieszczenie elementu Q między P i A. W wyniku interferencji fal Σ e i Σ 0 w płaszczyźnie obrazu π powstaje rozkład intensywności zaleŝny od l i e oraz deformacji czoła falowego wprowadzanej przez badany przedmiot. Najkorzystniejsze warunki obserwacji i detekcji (azymuty P, Q i A). Rys. 32. Bieg promieni w mikroskopie polaryzacyjnointerferencyjnym z pryzmatem Wollastona do realizacji poprzecznego rozdwojenia czoła fali. Jednorodne pole interferencyjne tylko w przypadku, gdy płaszczyzna lokalizacji prąŝków w pryzmacie Wollastona pokrywa się z ogniskiem obrazowym obiektywu (wymagane jest przesunięcie skośnopoprzeczne ).

4 MoŜna tego uniknąć stosując symetryczny pryzmat Wollastona z płaszczyzną lokalizacji prąŝków równoległą do powierzchni tworzących pryzmatu. W przypadku przesuwu pryzmatu W wzdłuŝ osi układu mikroskopu tworzone są prąŝki prostoliniowe, prostopadłe do płaszczyzny rysunku (równoległe do krawędzi pryzmatu W) czoła falowe interferujących wiązek są pochylone. Dodatkowo, przy poprzecznym przesuwie pryzmatu prąŝki równieŝ przesuwają się poprzecznie. Kierunek przesuwu zaleŝy od tego, czy pryzmat jest przed czy za ogniskiem obiektywu mikroskopu. Przesuw poprzeczny pryzmatu zmienia rząd interferencji, okres prąŝków pozostaje bez zmiany. Zwiększając przesuw poprzeczny prąŝek achromatyczny przesuwa się coraz bardziej względem środka pola widzenia. Zmiana kierunku i okresu prąŝków. Układ z dwoma pryzmatami Wollastona. a) b) c) d) e) f) Rys. 33 Całkowicie i częściowo rozdwojone obrazy szklanych mikrobaloników otrzymane w mikroskopie Biolar PI : detekcja w polu prąŝkowym (a, c, e) i jednorodnym (b, d, f). Obiektyw PI 10 x /0.24; powiększenie fotografii 300 x.

5 Dwójłomność wymuszona Pod wpływem oddziaływania róŝnych czynników takich jak pole elektryczne, pole magnetyczne lub oddziaływanie mechaniczne ciała izotropowe nabierają właściwości ciała anizotropowego. NiŜej ograniczymy się do przypadku obciąŝenia mechanicznego. Oś optyczna obciąŝonej płytki (zakłada się płaski stan obciąŝenia) wykazującej właściwości ośrodka anizotropowego pokrywa się z jednym z kierunków napręŝeń głównych. W przypadku ogólnym, w róŝnych punktach płytki kierunek napręŝeń głównych jest róŝny. A więc zmianie współrzędnych x,y towarzyszy zmiana kierunku osi optycznej ośrodka. Ciało izotropowe, pod wpływem napręŝeń, stało się niejednorodnym ciałem anizotropowym. Niejednorodności kierunku osi towarzyszy zmiana dwójłomności n e n 0, dla której obowiązuje zaleŝność n e n 0 = c (σ 1 - σ 2 ), gdzie σ 1 i σ 2 oznaczają napręŝenia główne, c stała elastooptyczna. Rys. 34 Płytka z płaskim stanem obciąŝenia analizowana w polaryskopie liniowym. ObciąŜoną płytkę moŝna rozpatrywać jako zbiór kryształów o róŝnie połoŝonych osiach optycznych i róŝnym przesunięciu l zaburzenia nadzwyczajnego względem zaburzenia zwyczajnego l(m) = d (n e n 0 ) = c d [σ 1 (M) - σ 2 (M)]. Badaną płytkę wstawia się między polaryzator i analizator (wzajemnie skrzyŝowane), elementy te tworzą polaryskop liniowy. Za analizatorem obserwuje się rozkład intensywności, dla którego minimalne wartości intensywności występują w punktach: 1) w których osie optyczne pokrywają się z płaszczyzną drgań analizatora lub polaryzatora. W tych miejscach przez płytkę przechodzi jedynie zaburzenie zwyczajne lub nadzwyczajne, płytka nie zmienia stanu polaryzacji. 2) w których zgodnie z poprzednimi wzorami (α = π/4; β = 3π/4) jest spełnione l = c d (σ 1 - σ 2 ) = mλ; m = 0, +/-1, +/ σ 1 - σ 2 = mλ/cd

6 Pierwszy zbiór tworzy prąŝki (miejsca geometryczne) nazywane izoklinami dającymi informację o punktach próbki, w których kierunek napręŝeń głównych (oś optyczna obciąŝonej płytki pokrywa się z jednym z kierunków napręŝeń głównych) odpowiada płaszczyźnie drgań polaryzatora lub analizatora. PrąŜki wyznaczają miejsca ustalonego kierunku napręŝeń głównych. Obracając P i A o pewien kąt moŝna wyznaczyć trajektorie, dla których kierunek napręŝeń głównych jest wyznaczony przez nowe połoŝenie płaszczyzn drgań P i A. Drugi zbiór linii (prąŝków) pozwala wyznaczyć miejsca, w których róŝnica napręŝeń głównych wynosi 0, +/-λ/cd; +/-2λ/cd, itd. Linie o stałej róŝnicy napręŝeń głównych nazywane są izochromami. W świetle białym róŝne wartości (σ 1 - σ 2 ) występują w postaci róŝnych barw. Przy większych obciąŝeniach izokliny występują jednocześnie z izochromami, co uniemoŝliwia dokładne wyznaczenie ich połoŝenia, rys. 35 Przez dodanie dwóch ćwierćfalówek o osiach optycznych pod katem 45 0 do płaszczyzny drgań polaryzatora, w obrazie interferencyjnym pozostają tylko izochromy. Na badany model pada światło spolaryzowane kołowo, brak jest wyróŝnionego kierunku drgań w badanym modelu. Rys. 35. NałoŜone izochromy i izokliny wynik przykładowych badań elastooptycznych. Rys. 36 Schemat optyczny polaryskopu kołowego. Aby otrzymać pełne rozwiązanie rozkładu napręŝeń (dla modelu dwuwymiarowego) naleŝy wyznaczyć absolutne wartości σ 1 i σ 2. Konieczne jest więc wyznaczenie sumy napręŝeń głównych σ 1 + σ 2. Sumę tę moŝna wyznaczyć metodą interferometrii holograficznej (prąŝki sumy napręŝeń głównych - izopachy). Znajdowanie trójwymiarowego rozkładu napręŝeń: polaryskopia światła rozproszonego - model prześwietla się wiązką o małej średnicy. Obserwacja przez analizator w kierunku prostopadłym do kierunku wiązki oświetlającej.

7 Filtr Lyota Zasadę polaryskopu wykorzystuje równieŝ tzw. filtr Lyota jedno z wielu rozwiązań filtrów polaryzacyjnych charakteryzujące się mała połówkową szerokością spektralną i wysokim współczynnikiem transmisji dla środka piku. Filtr składa się z N szeregowo rozmieszczonych polaryskopów zawierających jednoosiowe kryształy Q i o narastającej róŝnicy dróg optycznych tzn.: l 1, 2l 1, 4l 1,..., 2 N-1 l 1, patrz rysunek 39. I 0 P 0 P 1 P 2 P 3 P N I Rys. 37 Izochromy uzyskane w polaryskopie kołowym (P i A skrzyŝowane detekcja w ciemnym polu ). ψ 0 p = 0 l 1 2l 1 4l 1 2 N-1 l 1 o o ψq i = Rys. 38 Izochromy uzyskane w polaryskopie kołowym (P i A równoległe detekcja w jasnym polu ). λ 1 λ 2 Rys. 39 Model filtra Lyota, spektralne rozkłady natęŝenia światła po przejściu przez kaŝdy segment filtra z osobna (1 do 6), oraz rozkład wynikowy.

8 Kolejne polaryzatory układu są wzajemnie równoległe lub skrzyŝowane, a znajdujące się między nimi kryształy (płytki dwójłomne) mają ten sam azymut i tworzą z polaryzatorami kąt NatęŜenie na wyjściu filtra Lyota dane jest iloczynem transmisji kolejnych polaryskopów. Dla polaryzatorów ustawionych równolegle mamy: I = I 0 cos 2 (πl 1 /λ) cos 2 (π2l 1 /λ) cos 2 (π4l 1 /λ)... cos 2 (π2 N-1 l 1 /λ), gdzie I 0 oznacza względne natęŝenie światła wchodzącego, l 1 róŝnica dróg optycznych w pierwszym polaryskopie, λ - długość fali. Wartości l 1, I 0 i I zaleŝą od długości fali. Na kolejnych wykresach, rys. 39, maksima tworzą się dla tych długości fali λ, dla których l 1 jest całkowitą wielokrotnością λ. NaleŜy zauwaŝyć, Ŝe kolejne piki przepuszczania filtra pokrywają się z maksimami dla wykresu 1. Z tego faktu wyznacza się wartość l 1 dla zadanej odległości między pikami λ 2 - λ 1. MoŜna udowodnić Ŝe: l 1 = λ 1 λ 2 / (Dλ 1 - λ 2 ), gdzie D = (n s n f ) 2 / (n s n f ) 1, gdzie n s i n f oznaczają współczynniki załamania fali szybszej i wolniejszej. Zbędne maksima transmisyjne naleŝy obciąć filtrem szerokopasmowym. Dla filtra składającego się z 6 warstw otrzymano przepuszczalność w piku równą 40% przy jego szerokości połówkowej 0.3 nm. W przypadku 10 warstw szerokość połówkowa wynosiła 0.05 nm.

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Interferencja. Dyfrakcja.

Interferencja. Dyfrakcja. Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal

Bardziej szczegółowo

WYZNACZANIE SUCHEJ MASY KRWINEK CZERWONYCH PRZY UśYCIU MIKROSKOPU POLARYZACYJNO-INTERFERENCYJNEGO

WYZNACZANIE SUCHEJ MASY KRWINEK CZERWONYCH PRZY UśYCIU MIKROSKOPU POLARYZACYJNO-INTERFERENCYJNEGO WYZNACZANIE SUCHEJ MASY KRWINEK CZERWONYCH PRZY UśYCIU MIKROSKOPU POLARYZACYJNO-INTERFERENCYJNEGO Mikroskop polaryzacyjno-interferencyjny jest przyrządem opartym na podobnej zasadzie działania co mikroskop

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.

20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę. Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

2. Propagacja światła w ośrodkach dwójłomnych

2. Propagacja światła w ośrodkach dwójłomnych 2. Propagacja światła w ośrodkach dwójłomnych Dotychczas rozwaŝano jednorodne, transmisyjne ośrodki optyczne, które moŝna scharakteryzować stałą dielektryczną ε (zaleŝną od długości fali), n = ε. Monochromatyczna

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

α k = σ max /σ nom (1)

α k = σ max /σ nom (1) Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Optyka Ośrodków Anizotropowych. Wykład wstępny

Optyka Ośrodków Anizotropowych. Wykład wstępny Optyka Ośrodków Anizotropowych Wykład wstępny Cel kursu Zapoznanie z podstawami fizycznymi w optyce polaryzacyjnej. Jak zachowuje się fala elektromagnetyczna w ośrodku materialnym? Omówienie zastosowania

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ

INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ Cel ćwiczenia Celem ćwiczenia jest poznanie interferometru wspólnej drogi wykorzystującego podwójną

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania

Bardziej szczegółowo

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga

Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 5 PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE 5.1 Cel ćwiczenia Zapoznanie się z zależnościami opisującymi kształt wiązki laserowej (mod

Bardziej szczegółowo

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Optyka falowa. dr inż. Ireneusz Owczarek CMF PŁ  2012/13 Optyka falowa dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale elektromagnetyczne 2 1.1. Model falowy światła...........................................

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów OLITECHNIK ŁÓDZK INSTYTUT FIZYKI LBORTORIUM FIZYKI KRYSZTŁÓW STŁYCH ĆWICZENIE Nr 1 Optyczne badania kryształów Cel ćwiczenia Celem ćwiczenia jest poznanie przyrządów i metod do badań optycznych oraz cech

Bardziej szczegółowo

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie 1 Ćwiczenie 1 Rozróżnianie izoklin, izochrom i obszarów osobliwych w świetle białym i monochromatycznym. Ocena różnicy dróg optycznych za pomocą barw z użyciem płytek falowych. Oznaczanie azymutu fal własnych

Bardziej szczegółowo

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie. HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia

Bardziej szczegółowo

Rys. 1 Geometria układu.

Rys. 1 Geometria układu. Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04 RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) 174585 PO LSK A (13)B1 U rząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 304405 (22) Data zgłoszenia: 22.07.1994 (51) Int.Cl.6: G01N

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE DYFRAKCJA ŚWIATŁA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE I. Cel ćwiczenia: zapoznanie ze zjawiskiem dyfrakcji światła na pojedynczej i podwójnej szczelinie. Pomiar długości fali świetlnej, szerokości szczeliny

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 1. Modulator akustooptyczny Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 1. Modulator akustooptyczny Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp Ogromne zapotrzebowanie na informację oraz dynamiczny

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

+ (z 2 / n e2. (x 2 + y 2 ) / n 02

+ (z 2 / n e2. (x 2 + y 2 ) / n 02 Rys. 4 pokazuje indykatrysy dla kryształu jednoosiowego: dodatniego i ujemnego. Długości półosi są proporcjonalne do wartości współczynników załamania kryształu. Każdy przekrój przechodzący przez oś optyczną

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 6. Badanie właściwości hologramów Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk 2006 1. Cel

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

4.Wprowadzenie do zagadnienia elastooptyki

4.Wprowadzenie do zagadnienia elastooptyki 4.Wprowadzenie do zagadnienia elastooptyki Definicja Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. Jednak

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność

ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność ELEMENTY OPTYKI Fale elektromagnetyczne Promieniowanie świetlne Odbicie światła Załamanie światła Dyspersja światła Polaryzacja światła Dwójłomność Holografia FALE ELEKTROMAGNETYCZNE Fale elektromagnetyczne

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

6. Badania mikroskopowe proszków i spieków

6. Badania mikroskopowe proszków i spieków 6. Badania mikroskopowe proszków i spieków Najprostszy układ optyczny stanowią dwie współosiowe soczewki umieszczone na końcach tubusu (rysunek 42). Odwzorowanie mikroskopowe jest dwustopniowe: obiektyw

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Analiza stanów naprężenia metodą elastooptyczną

Analiza stanów naprężenia metodą elastooptyczną LABORATORIUM KONSTRUKCJI NOŚNYCH INSTYTUT MASZYN ROBOCZYCH CIĘŻKICH WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH POLITECHNIKA WARSZAWSKA ul. Narbutta 84, 0-54 Warszawa Ćwiczenie K3 Analiza stanów naprężenia metodą

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229959 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 421970 (22) Data zgłoszenia: 21.06.2017 (51) Int.Cl. G01C 3/00 (2006.01)

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 1. Przestrzenna filtracja szumu optycznego

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 1. Przestrzenna filtracja szumu optycznego Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 1. Przestrzenna filtracja szumu optycznego Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 18.03.2011 aboratorium Techniki Świetlnej Ćwiczenie nr 2. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓśYCH WŁAŚCIWOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

18 K A T E D R A F I ZYKI STOSOWAN E J

18 K A T E D R A F I ZYKI STOSOWAN E J 18 K A T E D R A F I ZYKI STOSOWAN E J P R A C O W N I A F I Z Y K I Ćw. 18. Wyznaczanie długości fal świetlnych diody laserowej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło jest promieniowaniem

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski Nakładając na pewne podłoże (np. powierzchnię soczewki) kilka warstw dielektrycznych (przez naparowanie / napylenie) o odpowiednio dobranych współczynnikach

Bardziej szczegółowo

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017

Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017 Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo