przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły

Wielkość: px
Rozpocząć pokaz od strony:

Download "przepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły"

Transkrypt

1 Hydrodynamika równanie Naviera-Stokesa przepływ Hagena-Poseuille a 22 października 2013

2 Ośrodki ciągłe równanie ruchu Zjawiska zachodzące w poruszających się płynach (cieczach lub gazach) traktujemy makroskopowo płyn jest ośrodkiem ciągłym. Do opisu formalnego naszego płynu w funkcji czasu (t) i współrzędnych przestrzennych (r) używamy: prędkości u(r, t) i dwóch (z trzech) parametrów stanu np. ciśnienia p i gęstości ρ. Na element płynu działają siły objętościowe (np. grawitacja) i powierzchniowe (ciśnienie, tarcie lepkie). Równanie ruchu takiego elementu to (1) masa du dt = F obj + F pow. Warto zauważyć, że siły objętościowe (F obj ) są proporcjonalne do objętości elementu, a więc do trzeciej potęgi jego charakterystycznego wymiaru (L 3 ), a siły powierzchniowe do powierzchni (L 2 ). Przy L 0 dominują więc te drugie.

3 Siły powierzchniowe Siły powierzchniowe to siły ciśnienia i siły tarcia lepkiego, występujące pomiędzy sąsiednimi warstwami cieczy. Z ich natury wynika, że powinno dać się je zapisać w postaci całki po powierzchni zamkniętej (Σ) i zamykającej w sobie rozważany element płynu (V ). Tak jak widzieliśmy reguły rachunku tensorowego wymagają aby (2) F i τ ik x k = τ i1 x 1 + τ i2 x 2 + τ i3 x 3. Przy tak określonej i-tej składowej siły możemy zastosować twierdzenie O-G w postaci tensorowej (3) V F i dv = V τ ik dv = τ ik dσ k. x k Σ

4 Siły powierzchniowe Wyrażenie pod całką powierzchniową τ ik dσ k τ i1 dσ 1 + τ i2 dσ 2 + τ i3 dσ 3 to iloczyn skalarny składowych tensora τ ik (pierwszy wskaźnik ustalony) i wektora dσ = (dσ 1, dσ 2, dσ 3 ) skierowanego elementu powierzchni całkowania Σ. Interpretacja τ ik Z formalnych dezyderatów zapisania siły powierzchniowej w postaci całki po powierzchni pojawia się potrzeba istnienia tensora τ ik. Tensor ten to właśnie tensor naprężeń (napięć). Funkcjonuje on z równym powodzeniem (a może i większym) w opisie deformacji sprężystych ośrodków ciągłych.

5 Interpretacja τ ik Z równania (3) wynika jego prosta interpretacja τ ik to i-ta składowa siły, działającej na element jednostkowy powierzchni, prostopadły do osi k. Tensor ten musi być tensorem symetrycznym. Jeżeli siły działające na daną objętość płynu wyrażają się poprzez całkę powierzchniową to i ich moment musi mieć postać takiej samej całki. M l = ɛ lki x k F i Oczekujemy, że składowa l (gdzie l i, l k, i k momentu siły powinna dać się zapisać w postaci całki ( τil (F i x k F k x i )dv = x k τ ) kl x i dv. x l x l V V

6 Tensor τ ik jest symetryczny V (F i x k F k x i )dv = V ( τil x k τ ) kl x i dv. x l x l Całkę tę, przekształcamy (całkowanie przez części) ( τil x k τ ) kl x i dv = [τ il x k τ kl x i ] dv V x l x l V x l ( ) x k x i τ il τ kl dv. x l x l Pierwsza z dwóch całek jest całką z dywergencji a więc można ja przekształcić do całki powierzchniowej; druga całka to ( ) x k x i τ il τ kl dv = (τ il δ kl τ kl δ il ) dv = (τ ik τ ki ) dv. x l x l V Aby moment siły dał się przedstawić w postaci wyłącznie całki powierzchniowej tensor τ ik musi być tensorem symetrycznym. V V V

7 Tensor τ ik jest symetryczny τ ik = τ ki. Zawsze może być on przedstawiony w odpowiednim układzie układzie osi własnych w którym tylko diagonalne składowe są różne od zera, a składowe poza przekątną główną znikają. Suma składowych diagonalnych jest to tzw. ślad tensora τ ii τ 11 + τ 22 + τ 33 skalarna wielkość, będąca niezmienikiem transformacji.

8 Tensor τ ik a hydrostatyka Dla płynu w równowadze, tensor naprężeń wyraża się jednoznacznie przez ciśnienie panujące w otoczeniu (nieskończenie małego) elementu cieczy. Z prawa Pascala wynika, że wszystkie trzy składowe tensora (układ osi własnych) są sobie równe. Ponieważ reprezentują one siły działające na jednostkowe powierzchnie, prostopadłe do trzech głównych osi mamy (4) τ 11 = τ 22 = τ 33 = 1 3 τ ii = p (ujemny znak, bo siła działa w kierunku przeciwnym do kierunku skierowanego na zewnątrz wektora dσ).

9 Przypadek ogólny; składowe ścinania W przypadku, kiedy mamy do czynienia z ruchem względnym warstw płynu tensor τ ik zapisujemy w postaci (5) τ ik = pδ ik + d ik. Pierwszy składnik po prawej stronie to przyczynek od sił ciśnienia; drugi tensor d ik związany jest właśnie z ruchem cieczy. Już Newton postulował, że aby ten drugi przyczynek był różny od zera, to pomiędzy przyległymi warstwami płynu musi być pewna różnica prędkości. Na przykład, jeżeli rozpatrywać ruch w kierunku osi 0x (albo x 1 ), możemy mieć do czynienia z pewnym zróżnicowaniem prędkości w kierunku osi 0y (albo x 2 ) i wyrażenie u 1 x 2 będzie różne od zera. Możemy skojarzyć z tym odpowiednią siłę (na jednostkę powierzchni) d 12 = µ u 1 x 2, gdzie współczynnik µ jest stałą materiałową i zależy, w pierwszym rzędzie, od rodzaju płynu.

10 Przypadek ogólny; składowe ścinania, c.d. Tensor d ij powinien być symetryczny, bo stanowi część symetrycznego tensora τ ik ; zresztą symetria zresztą wynika z założenia o izotropowych własnościach płynu konkretnie, określona zmiana składowej (np.) x-owej wzdłuż y powinna skutkować pojawieniem się takiej samej siły tarcia jak taka sama zmiana składowej y-owej wzdłuż x. Aby tak było zapisujemy tensor d ik w postaci (6) d ik = 2µ(e ik 1 3 δ ik ), gdzie tensor e ik e ik = 1 ( ui + u ) k 2 x k x i to naocznie symetryczny tensor, w którym występują pierwsze pochodne składowych wektora prędkości; natomiast (7) = u i x i = div u = e ii to ślad tego tensora (skalar).

11 Przypadek ogólny; składowe ścinania, c.d. = u i x i = div u = e ii d ik = 2µ(e ik 1 3 δ ik ), Dodanie takiego (formalnie przekształconego do wielkości tensorowej mnożnik δ ik ) skalara niewiele zmienia określenie sił (pochodne tensora τ ik ) pozostaje bez zmian. Tak określony tensor ma ślad (sumę składowych diagonalnych) równy zeru łatwo to sprawdzić, o ile uzmysłowimy sobie że ślad delty Kroneckera (też tensor!) δ ii = 3. Takie zerowanie się dywergencji tensora pozwala na formułowanie dodatkowych wniosków.

12 Równanie Naviera-Stokesa Powracamy do równania masa du dt = F obj + F pow. masa elementu objętości dv to ρdv (8) ρdv du i dt = F iρdv + τ ik x k dv, i = 1, 2, 3 gdzie F i to gęstość sił objętościowych (siła na jednostkę masy), a za siły powierzchniowe dywergencję tensora naprężeń. Dzielimy przez dv i podstawiamy jawną postać tensora naprężeń (9) ρ du i dt = ρf i p x i + x k [ 2µ(e ik 1 ] 3 δ ik ). To właśnie równanie nazywamy równaniem Naviera-Stokesa.

13 Równanie Naviera-Stokesa c.d. Dla gęstości ρ stałej w czasie i przestrzeni mamy (równanie ciągłości!) divu = e ii = = 0. Mamy wówczas też 2µ e ik x k = µ x k ( ui x k + u k x i ) ( 2 u i = µ x 2 + ) e kk = µ 2 u i k x i x 2 k (wymieniamy szyk liczenia pochodnych mieszanych i jeszcze raz korzystamy z zerowania się dywergencji prędkości). Równanie (9) w zapisie wektorowym przybiera wówczas postać (10) ρ du dt = ρf p + µ u.

14 Równanie N-S bez tensorów Równanie N-S można też wyprowadzić bez tensorów, stosując proste rachunki, z których wynikają te same postacie przyczynków do sił powierzchniowych. Zobaczmy Siły powierzchniowe ciśnienia (a) i lepkości(b)

15 Siły ciśnienia Na element cieczy dxdydz działa z lewej siła F x (x, y, z) = p(x, y, z)dydz, natomiast z prawej ta sama składowa ma postać F x (x + dx, y, z) = p(x + dx, y, z)dydz. Korzystamy z rozwinięcia w szereg Taylora, zachowując tylko wyrazy nieskończenie małe pierwszego rzędu [ F x = p(x + dx, y, z)dydz p(x, y, z) + p ] x dx dydz. Za ruch w kierunku osi 0x odpowiedzialna jest F wypadkowa x = p x dxdydz, (x,y,z) a więc na jednostkę objętości F wypadkowa x /dv = p x. (x,y,z)

16 Siły lepkości Na dolną podstawę elementu działa zgodnie z założeniem Newtona siła µ u x(x, y, z) dxdy z na górną µ u x(x, y, z + dz) z [ ux (x, y, z) = µ + z z ] u x (x, y, z) dz dxdy; z ich wypadkowa odniesiona do elementu o rozmiarach dxdydz to µ 2 u x (x, y, z) z 2 dxdydz.

17 Pochodna śledcza Ostatni komentarz dotyczy pochodnej prędkości elementu płynu względem czasu, występującej po lewej stronie równania masa du dt = F obj + F pow. Ta zmiana ma charakter globalny i związana jest zarówno z upływem czasu, jak i przesunięciem się elementu do innego położenia, co również może zmieniać jego prędkość. Formalnie wystarczy obliczyć pochodną prędkości jako pochodną zupełną, pamiętając, że u = u(x, y, z, t) du dt = u t + u x dx dt + u dy y dt + u z du i dt = u i t + u k dz dt = u t + u x u x + u y u y + u z u z u i x k, i = 1, 2, 3. W żargonie mechaniki ośrodków ciągłych mamy pochodną śledczą.

18 Pochodna śledcza, c.d. pamiętając, że du i dt = u i t + u k grad = e i u i x k, i = 1, 2, 3. x i, i ostatecznie u k u i x k = (u )u i du i dt = u i t + (u )u i

19 Równanie ruchu Dla (jednostkowego elementu objętości) nieściśliwej cieczy lepkiej równaniem dynamicznym jest (11) ρ u t + ρ(u )u = P + µ 2 u + ρg. Oznaczenie jak zwykle: ρ gęstość płynu (z założenia stała; założenie nieco dyskusyjne dla gazów, chociaż przy prędkości powietrza poniżej 50 m/s nieźle spełnione); u prędkość; P ciśnienie; g - przyspieszenie ziemskie; µ wsp. lepkości. Pierwszy wyraz po lewej stronie (11) nazywa się pochodną lokalną (wzgl.czasu); drugi to przyspieszenie konwekcyjne elementu objętości. Prawa strona równania to oczywiście siły działające na element objętości: gradient ciśnienia, siły lepkie i ciążenie. (12) ρ u i t + ρu k u i = P + µ x k x i 2 u i x j x j + ρg i. (i = 1, 2, 3) sumujemy po powtarzających się wskaźnikach.

20 Równanie ruchu zapis in extenso ρ u ( ) 1 t + ρ u 1 u 1 u 1 u 1 + u 2 + u 3 x 1 x 2 x 3 = P ( 2 ) u 1 + µ + 2 u u 1 + ρg 1 x 1 x 1 x 1 x 2 x 2 x 3 x 3 dla i = 1 i analogicznie dla i = 2, 3. Trzy równania skalarne typu (13) zawierają cztery niewiadome: trzy składowe prędkości i ciśnienie. Brakującym czwartym równanie jest równanie ciągłości (rozdz. 1). Rozwiązanie układu czterech równań różniczkowych o pochodnych cząstkowych wymaga też sformułowania adekwatnych warunków brzegowych (początkowych).

21 Hydrostatyka Nieruchomy płyn w polu sił ciężkości Najprostszy przypadek równań N-S to u = 0: (13) P = ρg. Dla jednowymiarowego przypadku (por. rysunek) rozwiązaniem (13) jest (14) P = ρgx 2 + P 0, gdzie P 0 jest ciśnieniem na powierzchni.

22 Ciśnienie wewnętrzne; powierzchnia swobodna Ciśnienie P występujące w równ. N-S można zapisać w postaci sumy trzech wyrazów: (15) P = p 0 + ρg x + p, gdzie: p 0 to pewne stałe ciśnienie zewnętrzne (np. atmosferyczne); ρg x to ciśnienie hydrostatyczne i w końcu p właściwe ciśnienie wewnętrzne, albo zmodyfikowane, związane z ruchem płynu. Jeżeli nie interesuje nas hydrostatyka (np. zaniedbujemy zmiany ciśnienia z głębokością), ani to, co dzieje się na(d) powierzchni(ą) swobodnej (-ną) płynu to podstawiając z (15) do (11) otrzymujemy nieco prostsze równanie (16) ρ Du Dt = p + µ 2 u.

23 Przepływy ustalone: jednokierunkowe i okrężne Rozważamy ustalone przepływy jednokierunkowe takie, w których wszystkie cząstki poruszają się w jednym kierunku. Wektory prędkości cząstek są równoległe, a w dodatku nie zmieniają się wzdłuż linii prądu przepływ jest ustalony, albo stacjonarny, pochodne cząstkowe względem czasu równe są zeru. Gradient prędkości (jej wartości bezwzględnej) będzie więc prostopadły do tych linii prądu (bo to jest kierunek najszybszych zmian wartości prędkości), a jeżeli tak to konwekcyjny wyraz w pochodnej śledczej prędkości jest równy zeru. (u )u = 0.

24 Przepływy ustalone: Przykłady Górna ścianka porusza się w kierunku 0x

25 Przepływy ustalone: Przykłady (1) Górna ścianka porusza się w kierunku 0x Mamy tylko jedną składową prędkości u x ; tensor naprężeń (17) τ xy = µ u x y µdu x dy. siła lepkości w danym kierunku jest proporcjonalna do zmiany prędkości w kierunku normalnym, przypadającej na jednostkę tej normalnej wysokości.

26 Przepływy ustalone: Przykłady (2) Obie ścianki poruszają się w kierunkach przeciwnych z równymi prędkościami

27 Przepływy ustalone: Przykłady (3) przepływ tłokowy (wywołany przez pewien gradient ciśnienia)

28 Przepływy ustalone: Przykłady (4) Przepływ rotacyjny w pierścieniu, którego zewnętrzna ścianka obraca się ze stałą prędkością kątową

29 przepływ tłokowy (wywołany przez pewien gradient ciśnienia) (18) dp dx = µd2 u x dy 2. Pochodna dp/dx musi mieć stałą wartość wynika to ze stałości przepływu wzdłuż osi 0x. Warunki brzegowe: du x /dy = 0 dla y = 0 (symetria względem osi 0y) i u x = 0 dla y = ±a (na stałej powierzchni prędkość płynu znika ze względu na lepkość; mówimy o przepływach bez poślizgu). Rozwiązaniem (18) spełniającym oba te warunki jest (19) u x = 1 dp 2µ dx (a2 y 2 ), (zauważmy, że aby przepływ zachodził w dodatnim kierunku osi 0X musimy mieć dp/dx < 0.)

30 przepływ tłokowy w rurze o promieniu a (20) dp dz = µd2 u z dr 2. wzór Hagena-Poiseuille a. (21) u z = 1 dp 4µ dz (a2 r 2 ), (r odległość od osi rury). Uśredniając po całym przekroju rury, możemy wyliczyć średnią prędkość (22) u z = 1 dp 8µ dz a2.

31 przepływ tłokowy w rurze o promieniu a tensor naprężeń W układzie współrzędnych cylindrycznych, składowa τ a zr to ( ur (23) τ zr = µ z + u ) z = µ u z r r (składowa radialna u r = 0). Podstawiając za u r z (21) dostaniemy (24) τ zr = µ d [ 1 ] dp dr 4µ dz (a2 r 2 ) = 1 dp 2 dz r. To bardzo ważny wynik naprężenie pomiędzy kolejnymi warstwami (o symetrii cylindrycznej) płynu rośnie liniowo, w miarę jak odsuwamy się od osi rury i osiąga maksymalną wartość na ściance rury. Ten liniowy wzrost spotkamy także w przypadku przepływów turbulentnych płynów newtonowskich!! a W oryginale autor konsekwentnie zmienia szyk wskaźników tensora τ. Tensor jest symetryczny, ale siłę tarcia lepkiego, z jaką ścianka rury działa na poruszający się wzdłuż osi 0z płyn ( na jednostkową powierzchnię, normalną do promienia r) oznaczamy τ zr a nie jak u Clarka τ rz.

Tensory mały niezbędnik

Tensory mały niezbędnik 28 października 2013 Rozkład wektora V na współrzędne: α = (0x, V ), β = (0y, V ), γ = (0z, V ). Rozkład wektora r, r = (x, y) na współrzędne w dwóch różnych układach współrzędnych. x = x cos θ + y sin

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Laminarna warstwa graniczna. 3 listopada Hydrodynamika Prawo Darcy ego równanie Eulera

Laminarna warstwa graniczna. 3 listopada Hydrodynamika Prawo Darcy ego równanie Eulera Hydrodynamika Prawo Darcy ego równanie Eulera i Bernoulliego Laminarna warstwa graniczna 3 listopada 2013 Prawo Darcy ego przepływ przez ośrodki porowate Henri Darcy, francuski inżynier-hydrolog. W połowie

Bardziej szczegółowo

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski

Zasady zachowania, równanie Naviera-Stokesa. Mariusz Adamski Zasady zachowania, równanie Naviera-Stokesa Mariusz Adamski 1. Zasady zachowania. Znaczna część fizyki, a w szczególności fizyki klasycznej, opiera się na sformułowaniach wypływających z zasad zachowania.

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Spis treści 11 Uzupełnienia do rozdziałów 5 i 6

Spis treści 11 Uzupełnienia do rozdziałów 5 i 6 Spis treści 11 Uzupełnienia do rozdziałów 5 i 6 1 11.1 Równania hydrodynamiki krótkie wprowadzenie.............. 1 11.1.1 Tensor naprężeń (napięć)........................ 1 11.1.2 Hydrostatyka..............................

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17

WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA 1/17 WYKŁAD 8 RÓWNANIE NAVIERA-STOKESA /7 Zaczniemy od wyprowadzenia równania ruchu dla płynu newtonowskiego. Wcześniej wyprowadziliśmy z -ej Zasady Dynamiki ogólne równanie ruchu, którego postać indeksowa

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14

WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE 1/14 WYKŁAD 5 RÓWNANIE EULERA I JEGO CAŁKI PIERWSZE /4 RÓWNANIE EULERA W Wykładzie nr 4 wyprowadziliśmy ogólne r-nie ruchu płynu i pokazaliśmy jego szczególny (de facto najprostszy) wariant zwany Równaniem

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych

Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Fizyka dla Informatyków Wykład 7 Mechanika Ośrodków Ciągłych Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało sprężyste Spis treści Spis treści 1 Wstęp 2 3 4 5 Ciało

Bardziej szczegółowo

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11 WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Transport masy w ośrodkach porowatych

Transport masy w ośrodkach porowatych grudzień 2013 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni.

Ciśnienie definiujemy jako stosunek siły parcia działającej na jednostkę powierzchni do wielkości tej powierzchni. Ciśnienie i gęstość płynów Autorzy: Zbigniew Kąkol, Bartek Wiendlocha Powszechnie przyjęty jest podział materii na ciała stałe i płyny. Pod pojęciem substancji, która może płynąć rozumiemy zarówno ciecze

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Numer Nota albumu Robert G

Numer Nota albumu Robert G FIZYKA TRANSPORTU, 3 TERMIN, 16/03/07 1 Fizyka transportu, 3 termin, 16/03/07 Egzamin zaliczyła pozytywnie jedna osoba: 124 948 +dst) Fizyka transportu, 2 termin, 7/03/07 Egzamin zaliczyła pozytywnie jedna

Bardziej szczegółowo

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów

J. Szantyr -Wykład 2 Poważne wprowadzenie do Mechaniki Płynów J. Szantyr -ykład Poważne wprowadzenie do Mechaniki Płynów Stany skupienia materii: ciała stałe płyny, czyli ciecze i gazy -Ciała stałe przenoszą obciążenia zewnętrzne w taki sposób, że ulegają deformacji

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Analiza stanu naprężenia - pojęcia podstawowe

Analiza stanu naprężenia - pojęcia podstawowe 10. ANALIZA STANU NAPRĘŻENIA - POJĘCIA PODSTAWOWE 1 10. 10. Analiza stanu naprężenia - pojęcia podstawowe 10.1 Podstawowy zapisu wskaźnikowego Elementy konstrukcji znajdują się w przestrzeni fizycznej.

Bardziej szczegółowo

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych 6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 14 Rachunekwektorowy W celu zdefiniowania wektora a należy podać: kierunek(prostą na której leży wektor)

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem: WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Przepływy laminarne - zadania

Przepływy laminarne - zadania Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo