Transport masy w ośrodkach porowatych
|
|
- Janina Markowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 grudzień 2013
2 Dyspersja... dyspersja jest pojęciem niesłychanie uniwersalnym. Możemy zrekapitulować: dyspersja to w ogólnym znaczeniu rozproszenie, rozrzut, rozcieńczenie. Możemy nazywać dyspersją roztwór emulsyjny (cząsteczki rozproszone w nośniku, będącym jakimś płynem). Niemniej jednak dyspersja w ośrodkach porowatych to termin nieco specjalny: często dla wyróżnienia go dodajemy dyspersja (hydro)mechaniczna patrz niżej. Dla prostoty będziemy mówić o jednowymiarowych problemach, w ośrodkach nasyconych, czyli takich, w których podróżujący płyn wypełnia całkowicie wolną przestrzeń pomiędzy ziarnami (włóknami) ośrodka. Ponieważ odległości pomiędzy takimi ziarnami są (zwykle) bardzo małe ograniczamy się w pierwszym rzędzie do przepływów laminarnych
3
4 Na rysunku widzimy dyspersję znacznika w czasie (przy injekcji punktowej) w: (a) laminarnym przepływie w rurce; (b) przepływie turbulentnym w rurze; (c) jednowymiarowym przepływie przez ośrodek porowaty. Trzy profile koncentracji (krzywe Gaussa) są podobne, a więc pomiędzy transportem w ośrodku porowatym i transportem w jednorodnych mediach muszą zachodzić spore podobieństwa.
5 Wiemy na przykład, że w przepływie turbulentnym za dyspersję znacznika są w znacznym stopniu odpowiedzialne, zachodzące w mikroskali, fluktuacje prędkości (bardziej niż jego naturalna dyfuzja molekularna). W ośrodkach porowatych, jak już powiedzieliśmy mamy zwykle do czynienia z przepływem laminarnym. Towarzysząca mu dyfuzja molekularna jest istotnym mechanizmem dyspersyjnym, ale często sama ona nie tłumaczy ilościowo obserwowanej dyspersji. Ta ostatnia wynika z mechanizmu dyspersji mechanicznej śledząc mikro-obrazy przepływu przez ośrodek porowaty widzimy, że taki jedno-wymiarowy przepływ to suma wielu przepływów po krzywoliniowych torach linie prądu rozdzielają się pomiędzy poszczególnymi ziarnami. Mamy do czynienia z ciągłym rozdzielaniem się i powtórnym mieszaniem się małych objętości płynu, zachodzącymi losowo. Tu z kolei pojawia się analogia z turbulencją, w której mieliśmy też do czynienia z rozmaitością wirowych ruchów, zachodzących w różnych skalach (od mniejszych do większych).
6 Porowatość, prędkość, ośrodek porowaty stosunek objętości porów V v do całkowitej objętości V T próbki (1) ε = V v V T ; tzw. frakcja stała s to stosunek objętości części próbki zajętej przez ośrodek V s do całkowitej objętości V T próbki ośrodka (2) s = V s V T = V T V v V T = V T εv T V T = 1 ε. Pojęcie porowatości wymaga uściślenia. czy porowatość objętościowa jest równa porowatości płaskiej (w płaszczyźnie prostopadłej do przepływu)? W sytuacjach praktycznych odpowiedź brzmi: tak. Po drugie: niektóre ścieżki w ośrodku porowatym są ślepymi uliczkami i przepływ w nich nie zachodzi (np. kawerny, pory na powierzchni ziaren). wprowadza się pojęcie porowatości efektywnej, reprezentującej tę część pustych przestrzeni, przez które przepływ może zachodzić.
7 Pojęcie ośrodka porowatego funkcjonuje w kontekście pojęcia ośrodka ciągłego. Mówiąc o parametrach ośrodka: gęstości i porowatości mamy na myśli parametry uśrednione po odpowiednio dużej objętości, tzw. reprezentatywnej objętości elementarnej (ang. representative elementary volume REV). Definicja prędkości w ośrodku porowatym powinna więc zawierać aspekty uśredniające. Np. (3) u = Q A, gdzie Q to przepływ (wydatek) w REV, a A to powierzchnia prostopadła do lokalnego kierunku przepływu. Taką prędkość nazywa się wydatkiem właściwym (ang. specific discharge) będzie to wydatek na jednostkę powierzchni. Sam płyn, poruszający się (krętymi ścieżkami) pomiędzy ziarnami podróżuje z większą prędkością, tzw. średnią prędkością liniową (prawo Darcy ego!) (4) v = u ε,
8
9 przy czym v będzie zwykle wektorem o trzech współrzędnych: (5) v = v 1 i + v 2 j + v 3 k.
10 Współczynniki dyspersji: mechanicznej, molekularnej i hydrodynamicznej Z powodu analogii pomiędzy transportem w ośrodku porowatym i przepływami turbulentnymi definiujemy (uśrednianie Reynoldowskie) gęstość P A i prędkość V {V i }; i = 1, 2, 3 pewnego składnika A jako sumę odpowiednich wartości średnich (po objętości REV) i ich fluktuacji (wielkości primowane) (6) P A = ρ A + ρ A; V i = v i + v i. Średni strumień masy A to średnia z iloczynu całkowitej koncentracji (gęstości) i prędkości n A,i = P A V i = (ρ A + ρ A )(v i + v i ) = (ρ Av i ) + (ρ A v i ) + (ρ A v i) + (ρ A v i ) (7)= ρ A v i + ρ A (v i ) + v i(ρ A ) + (ρ A v i ).
11 Średnie z fluktuacji to zgodnie z ich pojęciem zero, tak więc (8) n A,i = ρ A v i + (ρ Av i). Powstaje problem (analogiczny jak w rozdz. 5. i 7.): jak uwzględniać (wyrazić) drugi wyraz po prawej stronie (8)? Eksploatujemy znowu ten sam pomysł: zakładamy, że jest on proporcjonalny do gradientu średniej koncentracji w REV: (9) (ρ Av i) = D ij x j co daje (10) n A,i = ρ A v i D ij x j, albo w jednostkach koncentracji molowej (c A średnia koncentracja molowa) (11) N A,i = c A v i D ij c A x j.
12 Występujący w tych równaniach tensor dyspersji mechanicznej D ij to tensor drugiego rzędu D 11 D 12 D 13 (12) D ij D 21 D 22 D 23. D 31 D 32 D 33
13 Ale transport A może też odbywać się za sprawą dyfuzji molekularnej; definiujemy dyspersję hydrodynamiczną jako sumę efektów dyspersji mechanicznej i dyfuzji. Dla jednorodnego i izotropowego ośrodka porowatego (13) D (h) ij = D ij + D ef, gdzie D ef jest efektywnym współczynnikiem dyfuzji, zdefiniowanym (por. rozdz.6) jako (14) D ef = D AB τ. Równ.(10) możemy więc zapisać (15) n A,i = ρ A v i D (h) ij x j.
14 Tensor dyspersji hydrodynamicznej c.d. (16) n A,i = ρ A v i D (h) ij x j. Z definicji i z faktu, że ośrodek jest izotropowy wynika, że tensor D (h) ij jest tensorem symetrycznym; możemy go więc reprezentować w (h) układzie osi własnych będzie to tensor D ij : (17) D(h) ij = = D (h) D(h) D(h) 33 D 11 + D ef D22 + D ef D33 + D ef.
15 Można wykazać, że w jednorodnym i izotropowym ośrodku układem własnym jest taki układ kartezjański, którego jedna z osi (np. 0x) pokrywa się z kierunkiem lokalnej prędkości średniej v. Wówczas składowe diagonalne tensora dyspersji mechanicznej to (18) Dij = a L v a T v a T v, gdzie a L i a T to podłużny (równoległy do v) i poprzeczny (prostopadły do v) współczynnik dyspersji mechanicznej; zwykle a L jest kilkakrotnie (3 10) większy od a T.
16 Składowe tensora dyspersji hydrodynamicznej (w układzie osi własnych) to (19) D(h) ij = = D 11 + D ef D22 + D ef D33 + D ef a L v + D ef a T v + D ef a T v + D ef.
17 Równanie dyspersji w jednorodnym, izotropowym ośrodku porowatym Przepiszmy raz jeszcze równanie bilansu masy t (ρ aε x y z + S A ρ b x y z) = (n A,x n A,x+ x )ε y z + (n A,y n A,y+ y )ε z x + (n A,z n A,z+ z )ε gdzie n A to wektor strumienia masy. Podobnie równanie wynikowe [ ] (20) t + 1 n A k d ρ b /ε t R n A = 0. Za n A podstawiamy teraz z (15) co prowadzi do dość skomplikowanego równania:
18 t + 1 R 1 R x 1 1 R x 2 1 R x 3 [ ρ A ( v1 + v 2 + v 3 x 1 x 2 x 3 (h) + D 12 x 1 ( D (h) 11 ( D (h) 21 ( D (h) 31 x 1 + x 1 + D (h) 22 D (h) 32 ) ( + v 1 x x 2 + x 2 D (h) 13 D (h) 23 D (h) 33 )] + v 2 + v 3 x 1 x 2 x 3 ) x 3 ) x 3 ) = 0. x 3
19 Na szczęście można to równanie znacznie uprościć. Po pierwsze: drugi wyraz (pierwszy wiersz) jest równy zeru dla płynów nieściśliwych. Po drugie: przechodzimy do układu osi własnych, którego oś x-ów jest równoległa do v. Oczywiście v 2 = v 3 = 0; znikają też niediagonalne składowe tensora: (21) t + 1 R v 1 x 1 = 1 R + 1 R x 1 x 3 ( D (h) 11 ( D (h) 33 ) + 1 x 1 R ). x 3 x 2 ( D (h) 22 Wreszcie, dla przypadku jednowymiarowego i dla v v 1 = constans (h) (h) składowe D 22 = D 33 = 0; D(h) 11 = constans: ) x 2 (22) t + 1 R v 1 = 1 (h) D 11 x 1 R 2 ρ A x 1 2.
20 Jednowymiarowe równanie dyspersji w jednorodnym ośrodku nieskończonym Zaczynamy od równ.(22) przy założeniu, że nie ma dyspersji: (23) t + v 1 R x 1 = 0. W chwili t = 0, w punkcie x 1 = 0 następuje injekcja (punktowa w czasie i przestrzeni) masy M; wydatek właściwy to Q. Warunek brzegowy ma więc postać: (24) ρ A (x, t = 0) = M Q δ(t). (w przypadku jednowymiarowym jednostki ρ to [M/L]!) Proste zastosowanie transformaty Laplace a daje: (25) ρ A (t) = M Q δ(t t); t = x 1R v 1. Dirakowski impuls injekcji, przesuwa się wzdłuż osi x 1 z prędkością v 1 /R por. rysunek 1(a).
21 Rysunek: Dyspersja znacznika: (a) brak dyspersji; (b) R = 1 dla różnych wartości t; (c) ten sam czas, różne wartości R. Opóźnienie (w różnym stopniu) wynika z partycji do fazy stałej ośrodka.
22 Rozwiązanie (22) z uwzględnieniem dyspersji otrzymujemy stosując transformację (układ współrzędnych poruszający się z prędkością v 1 /R) (26) x = x 1 v 1 R t. Równ. (22) przechodzi w (27) t = 1 R D (h) 11 2 ρ A x 2. Jest to równanie, które występowało w poprzednich rozdziałach (6. i 7.). Jego rozwiązanie to krzywa gaussowska (28) ρ A (x 1, t) = 1 M/ε (x 1 v 1 exp R t)2 R (h) (h), 4π( D 11 /R)t 4( D 11 /R)t pokazana na rysunku 1(b) i (c).
23 Z rozwiązania wynika, że maksimum koncentracji wskaźnika wartościom (x c, t c ), dla których albo x c v 1 R t c = 0, (29) v 1 R = x c t c v c. Wielkość v c to prędkość z jaką podróżuje maksimum koncentracji, związana ze średnią prędkością v 1 prostym (30) v 1 v c = R. (por. rys.1(c).) Opóźnienie znacznika, wynikające z różnych od jedności wartości R to m.in. podstawa metod chromatografii.
Dyfuzyjny transport masy
listopad 2013 Koagulacja w ruchach Browna, jako stacjonarna, niejednorodna reakcja, kontrolowana przez dyfuzję Promień sfery zderzeń r i + r j możemy utożsamić z promieniem a. Każda cząstka typu j, która
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoA,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Bardziej szczegółowo- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Bardziej szczegółowoWYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11
WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim
Bardziej szczegółowoNumer Nota albumu Robert G
FIZYKA TRANSPORTU, 3 TERMIN, 16/03/07 1 Fizyka transportu, 3 termin, 16/03/07 Egzamin zaliczyła pozytywnie jedna osoba: 124 948 +dst) Fizyka transportu, 2 termin, 7/03/07 Egzamin zaliczyła pozytywnie jedna
Bardziej szczegółowo3. Równania konstytutywne
3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Bardziej szczegółowoMechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Bardziej szczegółowoFUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Bardziej szczegółowoM10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Bardziej szczegółowoWstęp. Ruch po okręgu w kartezjańskim układzie współrzędnych
Wstęp Ruch po okręgu jest najprostszym przypadkiem płaskich ruchów krzywoliniowych. W ogólnym przypadku ruch po okręgu opisujemy równaniami: gdzie: dowolna funkcja czasu. Ruch odbywa się po okręgu o środku
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowoJ. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne
J. Szantyr Wyklad nr 6 Przepływy laminarne i turbulentne Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym eksperymencie
Bardziej szczegółowoPrędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Bardziej szczegółowoTermodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
Bardziej szczegółowoR n jako przestrzeń afiniczna
R n jako przestrzeń afiniczna Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 11. wykład z algebry liniowej Warszawa, grudzień 2014 Mirosław Sobolewski (UW) Warszawa, grudzień 2014 1
Bardziej szczegółowo. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoTERMODYNAMIKA PROCESOWA
TERMODYNAMIKA PROCESOWA Wykład III Podstawy termodynamiki nierównowagowej Prof. Antoni Kozioł Wydział Chemiczny Politechniki Wrocławskiej Uwagi ogólne Większość zagadnień związanych z przemianami różnych
Bardziej szczegółowoZałóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb
Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoFizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoLista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Bardziej szczegółowoMETODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
Bardziej szczegółowo3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Bardziej szczegółowoKinematyka płynów - zadania
Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,
Bardziej szczegółowoWektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Bardziej szczegółowoAnaliza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Bardziej szczegółowoprzepływ Hagena-Poseuille a 22 października 2013 Hydrodynamika równanie Naviera-Stokesa przepły
Hydrodynamika równanie Naviera-Stokesa przepływ Hagena-Poseuille a 22 października 2013 Ośrodki ciągłe równanie ruchu Zjawiska zachodzące w poruszających się płynach (cieczach lub gazach) traktujemy makroskopowo
Bardziej szczegółowoRÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoDielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Bardziej szczegółowoJ. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Bardziej szczegółowoRozdział 2. Krzywe stożkowe. 2.1 Elipsa. Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie
Rozdział Krzywe stożkowe Krzywe stożkowe są zadane ogólnym równaniem kwadratowym na płaszczyźnie x + By + Cxy + Dx + Ey + F = 0. (.) W zależności od relacji pomiędzy współczynnikami otrzymujemy elipsę,
Bardziej szczegółowoJ. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i
J. Szantyr Wykład 4 Podstawy teorii przepływów turbulentnych Zjawisko występowania dwóch różnych rodzajów przepływów, czyli laminarnego i turbulentnego, odkrył Osborne Reynolds (1842 1912) w swoim znanym
Bardziej szczegółowoPodstawy elektromagnetyzmu. Wykład 2. Równania Maxwella
Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoWektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy
Wektor, prosta, płaszczyzna; liniowa niezależność, rząd macierzy Justyna Winnicka Na podstawie podręcznika Matematyka. e-book M. Dędys, S. Dorosiewicza, M. Ekes, J. Kłopotowskiego. rok akademicki 217/218
Bardziej szczegółowoQ t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Bardziej szczegółowoDefinicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Bardziej szczegółowoStrumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Bardziej szczegółowoRozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Bardziej szczegółowoEgzaminy, styczeń/luty 2004
Egzaminy, styczeń/luty 2004 Trzeci termin Trzeci termin egzaminu poniedziałek 8/03/04 godz. 11.30-13.30 (4-5 osób) i 15.00-16.30 (4-5 osób). Zainteresowane osoby proszę o wysłanie mail a z określeniem,
Bardziej szczegółowoLaminarna warstwa graniczna. 3 listopada Hydrodynamika Prawo Darcy ego równanie Eulera
Hydrodynamika Prawo Darcy ego równanie Eulera i Bernoulliego Laminarna warstwa graniczna 3 listopada 2013 Prawo Darcy ego przepływ przez ośrodki porowate Henri Darcy, francuski inżynier-hydrolog. W połowie
Bardziej szczegółowoWYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15
WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15 Fundamentalne Zasady Zachowania/Zmienności w Mechanice mówią nam co dzieję się z: masą pędem krętem (momentem pędu)
Bardziej szczegółowoPROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowo26 listopada Dyfuzja połączona z konwekcją; dyspersja; transport
Dyfuzja połączona z konwekcją; dyspersja; transport masy 26 listopada 2013 Dyfuzja stacjonarna versus dynamiczna Dyfuzja stacjonarna versus dynamiczna Dyfuzja stacjonarna versus dynamiczna (a) klasyczna,
Bardziej szczegółowoElektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Bardziej szczegółowoPrzedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15
Spis treści 3 Przedmowa. 9 1. Przewodność cieplna 13 1.1. Pole temperaturowe.... 13 1.2. Gradient temperatury..14 1.3. Prawo Fourier a...15 1.4. Ustalone przewodzenie ciepła przez jednowarstwową ścianę
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami
Bardziej szczegółowo5. Analiza dyskryminacyjna: FLD, LDA, QDA
Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną
Bardziej szczegółowoPole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Bardziej szczegółowoMECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Bardziej szczegółowoAlgebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Bardziej szczegółowoZadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoRozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:
Bardziej szczegółowoAerodynamika i mechanika lotu
Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest
Bardziej szczegółowoMECHANIKA PŁYNÓW Płyn
MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoDielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Bardziej szczegółowoZasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
Bardziej szczegółowoWażne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Bardziej szczegółowoDB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Bardziej szczegółowoZapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.
Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością
Bardziej szczegółowocz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
Bardziej szczegółowoPrzykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.
Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoMatematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Bardziej szczegółowoBąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Bardziej szczegółowo1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
Bardziej szczegółowoFunkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
Bardziej szczegółowoRUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bardziej szczegółowoRuch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe
Bardziej szczegółowoProsta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowoWYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Bardziej szczegółowo1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Bardziej szczegółowoWykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Bardziej szczegółowoPole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Bardziej szczegółowoRówna Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym
Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez
Bardziej szczegółowoWażne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowo27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE
27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoSTAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży
STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj
Bardziej szczegółowoPOLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Bardziej szczegółowoElektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Bardziej szczegółowo