WYZNACZANIE ZARYSU GWINTU ROLKI DLA TRAPEZOWEGO ZARYSU GWINTU ŚRUBY W ROLKOWEJ PRZEKŁADNI ŚRUBOWEJ
|
|
- Kamila Witek
- 7 lat temu
- Przeglądów:
Transkrypt
1 STANISŁAW WACHOŁ * WYZNACZANIE ZAYSU GWINTU OLKI DLA TAPEZOWEGO ZAYSU GWINTU ŚUBY W OLKOWEJ PZEKŁADNI ŚUBOWEJ DETEMINATION OF THE OUTLINE OF THE THEAD OLLE FO TAPEZOIDAL SCEW THEAD POFILE IN THE OLLE SCEW S t r e s z c z e i e A b s t r a c t W iiejszym artykule opisao zasadę działaia rolkowej przekładi śrubowej. Pokazao wpływ średic elemetów a uzyskiway przesuw osiowy. Przedstawioo tok postępowaia, jaki ależy przeprowadzić w celu wyzaczeia zarysu gwitu rolki ze względu a zabezpieczeie przed wystąpieiem iterferecji zarysów gwitu współpracujących elemetów. Przedstawioo otrzymae wyiki. Słowa kluczowe: rolkowa przekładia śrubowa The paper describes the priciple of roller screw trasmissio. The ifluece the diameters of the elemets have bee show o axial displacemet. The procedure determiig the outlie of the thread rollers which is protected agaist iterferece of screw elemet has bee described. The example results are preseted. Keywords: roller screw * Mgr iż. Staisław Warchoł, Katedra Kostrukcji Maszy, Wydział Budowy Maszy i Lotictwa, Politechika zeszowska.
2 186 Ozaczeia d średica tocza śruby d 2 średica tocza rolki D 2N średica tocza akrętki d S średica śruby d średica rolki γ S kąt wziosu gwitu śruby γ kąt wziosu gwitu rolki γ N kąt wziosu gwitu akrętki S krotość gwitu śruby krotość gwitu rolki N krotość gwitu akrętki P podziałka gwitu liczba sprawdzaych przekrojów S S grubość zwoju gwitu śruby S grubość zwoju gwitu rolki α S półkąt zarysu gwitu śruby δ S kąt współpracy śruby i rolki ozaczoy a śrubie δ S kąt współpracy śruby i rolki ozaczoy a rolce L S przesuięcie osiowe śruby L S przesuięcie osiowe rolki l przesuięcie osiowe rolki względem śruby 1. Wstęp Przekładie śrubowe tocze służą do zamiay ruchu obrotowego a ruch postępowy. Występują róże rozwiązaia kostrukcyje budowy takich przekładi, kilka z ich zostało omówioych, m.i. w pozycji literaturowej [1]. Ogóly schemat przekładi został pokazay a rys. 1 [2]. ys. 1. olkowa gwitowa przekładia Fig. 1. oller-screw
3 187 W zależości od rozwiązaia kostrukcyjego rolki mogą współpracować tylko ze śrubą lub tylko z akrętką lub w przypadku ogólym rówocześie z oboma elemetami. Zasada działaia dokładie opisao i zobrazowao w pozycji literaturowej [3]. Warukiem koieczym pracy przekładi jest to, że wszystkie jej podstawowe elemety (śruba, rolki, akrętka) muszą mieć jedakową podziałkę gwitu. Elemetem apędzającym może być śruba, jak i akrętka. uch obrotowy elemetu czyego wywołuje obracaie się rolek i ich przesuw względem śruby. Osiowe przesuiecie rolki względem śruby a jede jej obrót przedstawia astępująca zależość: Po przekształceiach otrzymuje się: ( ( S ) ( )) l = π d tg γ tg γ (1) d l = P S (2) d2 Zak jest dla przeciwych kieruków pochyleia liii śrubowej gwitu współpracujących elemetów, atomiast zak + dla zgodych kieruków. W przypadku przeciwych kieruków pochyleia liii śrubowej i przy jedakowych wartościach kątów γ S oraz γ wartość przesuięcia osiowego l wyiesie zero. W takim przypadku przekładia przestaie wykoywać swoje zadaie, a zaczie się zachowywać podobie jak przekładia plaetara. Po przekształceiach wykres zależości przesuięcia l a jede obrót śruby od stosuku d 2 /d pokazay w [4] ostateczie przybierze kształt pokazay a rys. 2. Jak widać a podstawie rys. 2, wraz ze wzrostem średicy toczej gwitu rolki (przy stałej średicy śruby) osiowe przemieszczeie rolek dąży do wartości rówej skokowi gwitu śruby. W przypadku przeciwych kieruków pochyleia liii śrubowych, gdy stosuek średic toczych rolki d 2 do śruby d jest rówy stosukowi ich krotości gwitów / S przesuięcie ie występuje. ys. 2. Zależość przesuięcia osiowego od stosuku średic Fig. 2. Depedece o the ratio of axial diameters W przypadku, gdy rolki współpracują rówież z akrętką, zależość jest podoba, przy czym zak jest dla kieruków zgodych; wyika to ze współpracy gwitu
4 188 zewętrzego w wewętrzym, dla pary śruba rolka jest współpraca gwitu zewętrzego z zewętrzym. Ze względów kostrukcyjych wymaga się, żeby rolki ie wykręcały się z akrętki, co ozacza, że przesuięcie osiowe dla tej pary musi wyosić zero, a co za tym idzie: γ = γ (3) N 2. Wyzaczaie zarysu gwitu rolki tok postępowaia W przypadku, gdy rolka współpracuje jedyie ze śrubą, to średicę rolki moża dobrać dowolie. D = d + 2 d (4) 2N 2 d 2i P i = (5) π tg γ Jeśli atomiast rolka współpracuje ze śrubą i z akrętką, to średica rolki jest ściśle określoa i wyzacza się ją wykorzystując zależości (3), (4), (5), skąd otrzymuje się zależość: ( ) i d = d 2 N 2 (6) Na podstawie zależości (6) widać, że krotość gwitu akrętki musi być rówa coajmiej 3. Poiżej opisao tok postępowaia dla wyzaczaia zarysu gwitu rolki w przypadku jej współpracy jedyie ze śrubą. Dla zadaych parametrów (średic i krotości) gwitu współpracujących elemetów, przyjmuje się liczbę puktów, w których będzie wyzaczaa grubość zwoju gwitu rolki. Następie wg zależości (7) wyzacza się wartości średic współpracujących elemetów w kolejych przekrojach oraz grubość zwoju gwitu śruby mierzoą w przekroju osiowym. d d S d [ i] = 2 d d + 2 i S S d d 2 d [ i] = d 2 i 1 S [ i] = P + ( d d 2 [ i] ) tg( α ) S S S S 2 Kolejymi etapami, które ależy powtarzać dla każdej z wyzaczoych średic rolki są: Wybór daej średicy rolki d [i] = dj. Następie dla średic śruby ależących do przedziału: [ ] ( ) d i d + d dj d (8), S 2 S (7)
5 189 wyzacza się kąty styku δ S, δ S przyjętej średicy rolki dj z poszczególymi średicami śruby. Na rys. 3 przedstawioo możliwy obszar kotaktu rolki ze śrubą z zazaczoymi kątami współpracy tych elemetów. ys. 3. Obszar współpracy pary śruba rolka Fig. 3. The area of cooperatio couples screw roll Korzystając ze wzorów wyprowadzoych w [5], po przekształceiach otrzymuje się zależość: S [ ] ( 2 ) 2 d [ i] ( d + d S 2 ) ( + 2 ) S [ ] 2 dj ( d + d ) d i + d + d dj δ [ i] = 2 arccos S dj d d d i δ [ i] 2 arccos S = 2 Następie wyzacza się osiowe przesuięcia puktów leżących a tych średicach dla obliczoych kątów. Określa je zależość (10): [ i] δs L [ i S ] = P S 2 π δs LS [ i] = P 2 π [ i] a) b) (9) (10) ys. 4. Położeie elemetów względem siebie a końcach obszarów styku: a) dla zgodego kieruku pochyleia gwitu elemetów; b) dla przeciwych kieruków Fig. 4. Locatio of elemets to each other at the eds of cotact areas: a) cosistet directio of icliatio of thread elemets; b) for opposite directios
6 190 Na rysuku 4 przestawioo położeie względem siebie śruby i rolki a końcach obszarów możliwych kotaktów, tak żeby wyelimiować możliwość wystąpieia zjawiska iterferecji. Na podstawie rys. 4 wyzacza się zależości opisujące maksymalą grubość rolki, jaka jest możliwa bez wystąpieia iterferecji. Grubość zwoju rolki dla kotaktu ze średicami d S [i] oblicza się zależości: a) dla zgodych kieruków pochyleia gwitu: [ ] [ ] S i = P S i L L, (11) S S S b) dla przeciwych kieruków pochyleia gwitu: [ ] [ ] S i = P S i L L (12) S S S Grubość zwoju gwitu rolki zapewiająca iewystąpieie iterferecji ma postać: S = mi ( S [ i]) (13) Cały te etap obliczeń ależy powtarzać w pętli dla kolejych średic dj. Im więcej przyjmie się puktów podziału, tym dokładiejszy zarys się otrzymuje. W aalogiczy sposób postępuje się, wyzaczając zarys gwitu akrętki dla współpracy z wyzaczoym zarysem gwitu rolki. 3. Przykładowe wyiki obliczeń Na podstawie zależości opisaych w pukcie 2 opracowao program komputerowy dokoujący odpowiedich obliczeń dla wprowadzoych daych. W tabeli 1 przedstawioo wybrae grubości zarysu gwitu rolki dla zadaej średicy śruby i zmieiaych średicach rolki. T a b e l a 1 Grubości zarysu gwitu rolki a średicy zewętrzej S i toczej S 2 oraz wartość przesuięć osiowych l a jede obrót dla gwitu śruby Tr 40 x 10 Kieruki gwitu Zgode Przeciwe d 2 = 15 d 2 = 20 d 2 = 25 d 2 = 30 d 2 = 35 d 2 = 40 d 2 = 45 d 2 = 55 S 2 3,2414 3,553 3,7474 3,8738 3,9628 4,0289 4,0799 4,1539 S 2,1512 2,34 2,4646 2,5523 2,6175 2,6679 2,708 2,768 l 33,33 27, , ,75 17,78 16,36 S 2 4,6786 4,8836 4,9631 4, ,9956 4,9852 4,9572 S 3,5944 3,6486 3,6603 3,6535 3,6382 3,6193 3,599 3,5588 l 13,33 7,5 4,0 1,66 0 1,25 2,22 3,64 Na rysuku 5 pokazao zarys gwitu rolki przy zadaym gwicie śruby (Tr 40 x 10) uzyskay dzięki wyikom z opracowaego programu. Jak widać a podstawie daych w tabeli 1 dla zgodych kieruków pochyleia liii śrubowej śruby i rolki wraz ze wzrostem średicy rolki grubości jej zarysu gwitu rosą, atomiast dla przeciwych
7 kieruków maksymalą grubość zarysu gwitu a średicy toczej uzyskuje się dla średicy toczej rolki w pobliżu: d d 191 = (14) 2 Na podstawie przeprowadzoych aaliz dla śruby Tr 40 x 10 otrzymao, że dla średic rolki w zakresie d 32, 68 ; 37, 62 grubość zwoju rolki a średicy toczej wyosi 2 5 [mm], co ozacza, że pukt styku zajduje się dokładie a średicach toczych. Odpowiada to przesuięciu osiowemu w zakresie l 0, 71; 0, 69 [mm]. S ys. 5. Kształt zarysu gwitu rolki dla różych średic (liia gruba kieruki gwitów przeciwe, liia cieka kieruki gwitów zgode) Fig. 5. The shape of the outlie of thread rolls for differet diameters (thick lies captio threadig lie for opposite directios, thi lies captio threadig lie accordace with threads directios) Jak widać a podstawie rys. 5, dla przeciwych kieruków gwitów śruby i rolki, grubość gwitu rolki jest zawsze większa iż przy zgodych kierukach. 4. Wioski Na podstawie powyższej aalizy moża wyciągąć astępujące wioski: krotość gwitu akrętki musi wyosić co ajmiej 3, większe grubości zarysu gwitu rolki otrzymuje się dla przeciwych kieruków pochyleia liii śrubowych śruby i rolki, w celu uzyskaia małych wartości przesuwu osiowego l ależy stosować przeciwe kieruki gwitu śruby i rolki, opisay tok postępowaia może być stosoway dla dowolych liiowych symetryczych zarysów gwitów (róże α S ). L i t e r a t u r a [1] e j m a E., olkowe przekładie gwitowe, Zeszyty aukowe Pz, Mechaika z. 46, zeszów [2] M a r g o l i L., Plaetara peredaca vit gajka kaceia s rebovymi rolikami, Staki i istrumet, r 1, 1970.
8 192 [3] L a t o s z e k J., F u r m a i k L., Przekładia śrubowa tocza obiegowa, Mechaik, r 8, [4] H o j j a t Y., M a h d i A g h e l i M., A comprehesive study o capabilities ad limitatios of roller screw with emphasis o slip tedecy, Mechaism ad Machie Theory, [5] W a r c h o ł S., Określeie obszarów współpracy elemetów rolkowej przekładi gwitowej dla prostokątego zarysu gwitu, Projektowaija, wyrobictwo ta ekspluatacjia awtotrasportych zasobow i pojezdow, Natioal Trasport Uiversity, r 17, 2009.
POMIARY WARSZTATOWE. D o u ż y t k u w e w n ę t r z n e g o. Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Ćwiczenia laboratoryjne
D o u ż y t k u w e w ę t r z e g o Katedra Iżyierii i Aparatury Przemysłu Spożywczego POMIARY WARSZTATOWE Ćwiczeia laboratoryje Opracowaie: Urszula Goik, Maciej Kabziński Kraków, 2015 1 SUWMIARKI Suwmiarka
THE COMPARATIVE ANALYSIS BETWEEN THREAD SHAPE AND COOPERATION TRACE FOR SELECTED DESIGN APPROACH FOR THE THREAD ROLLER SCREW
Mgr inŝ. Stanisław Warchoł, email: warchols@prz.edu.pl Katedra Konstrukcji Maszyn, Politechnika Rzeszowska ANALIZA PORÓWNAWCZA ZARYSÓW GWINTÓW I ŚLADÓW WSPÓŁPRACY DLA WYBRANYCH ROZWIĄZAŃ KONSTRUKCYJNYCH
VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.
KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczeia: Obróbka skrawaiem i arzędzia Frezowaie Numer ćwiczeia: 5 1. Cel ćwiczeia Celem ćwiczeia jest pozaie odmia frezowaia, parametrów skrawaia,
ZASTOSOWANIE SYSTEMÓW CAD W ANALIZIE ROLKOWYCH PRZEKŁADNI TOCZNYCH APPLICATION THE CAD SOFTWARE FOR THREAD ROLLER SCREW ANALYZE
Dr inŝ. Jadwiga Pisula, email: jpisula@prz.edu.pl Mgr inŝ. Stanisław Warchoł, email: warchols@prz.edu.pl Katedra Konstrukcji Maszyn, Politechnika Rzeszowska ZASTOSOWANIE SYSTEMÓW CAD W ANALIZIE ROLKOWYCH
Jak obliczać podstawowe wskaźniki statystyczne?
Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Wprowadzenie. metody elementów skończonych
Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Ćw 1. Klinowe przekładnie pasowe podczas ich eksploatacji naraŝone są na oddziaływanie róŝnorodnych czynników, o trudnej do
Ćw BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW EKPLOATACYJNYCH NA WARTOŚCI PODTAWOWYCH PARAMETRÓW PRZEKŁADNI CIĘGNOWEJ Z PAKIEM KLINOWYM. WYBRANA METODA BADAŃ. Kliowe przekładie pasowe podczas
OBWODY LINIOWE PRĄDU STAŁEGO
Politechika Gdańska Wydział Elektrotechiki i Automatyki 1. Wstęp st. stacjoare I st. iżyierskie, Eergetyka Laboratorium Podstaw Elektrotechiki i Elektroiki Ćwiczeie r 1 OBWODY LINIOWE PRĄDU STAŁEGO Obwód
SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN
ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
BADANIE PRĄDNIC TACHOMETRYCZNYCH
Politechika Warszawska Istytut Maszy Elektryczych Laboratorium Maszy Elektryczych Malej Mocy BADANIE PRĄDNIC TACHOMETRYCZNYCH Warszawa 2003 1. STANOWISKO POMIAROWE. Badaia przeprowadza się a specjalym
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
WYBRANE METODY DOSTĘPU DO DANYCH
WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo
Zadanie 3. Na jednym z poniższych rysunków przedstawiono fragment wykresu funkcji. Wskaż ten rysunek.
FUNKCJA KWADRATOWA. Zadaia zamkięte. Zadaie. Wierzchołek paraboli, która jest wykresem fukcji f ( x) ( x ) ma współrzęde: A. ( ; ) B. ( ; ) C. ( ; ) D. ( ; ) Zadaie. Zbiorem rozwiązań ierówości: (x )(x
WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ
Ć w i c z e i e 6 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIE- TRZU METODĄ FALI STOJĄCEJ 6.1 Opis teoretyczy W ośrodkach sprężystych wytrąceie pewego obszaru z położeia rówowagi powoduje drgaia wokół tego położeia.
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N
OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie
3. Regresja liniowa Założenia dotyczące modelu regresji liniowej
3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi
CIĄGI LICZBOWE. Poziom podstawowy
CIĄGI LICZBOWE Poziom podstawowy Zadaie ( pkt) + 0 Day jest ciąg o wyrazie ogólym a =, N+ + jest rówy? Wyzacz a a + Czy istieje wyraz tego ciągu, który Zadaie (6 pkt) Marek chce przekopać swój przydomowy
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.
Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Wykład 11. a, b G a b = b a,
Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada
ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Analiza dokładności wskazań obiektów nawodnych. Accuracy Analysis of Sea Objects
ISSN 1733-8670 ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNARODOWA KONFERENCJA NAUKOWO-TECHNICZNA E X P L O - S H I P 2 0 0 6 Adrzej Burzyński Aaliza dokładości wskazań obiektów
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE
4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
EA3 Silnik komutatorowy uniwersalny
Akademia Góriczo-Huticza im.s.staszica w Krakowie KAEDRA MASZYN ELEKRYCZNYCH EA3 Silik komutatorowy uiwersaly Program ćwiczeia 1. Oględziy zewętrze 2. Pomiar charakterystyk mechaiczych przy zasilaiu: a
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
ELEKTROTECHNIKA I ELEKTRONIKA
NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego
doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut
D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)
D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie
Politechnika Poznańska
Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
EGZAMIN MATURALNY Z MATEMATYKI
Miejsce a aklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-RAP-06 POZIOM ROZSZERZONY Czas pracy 0 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy zawiera 4 stro (zadaia
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa
Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut
Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.
Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.
Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak
Egzaminy. na wyższe uczelnie 2003. zadania
zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia
Harmonogramowanie linii montażowej jako element projektowania cyfrowej fabryki
52 Sławomir Herma Sławomir HERMA atedra Iżyierii Produkcji, ATH w Bielsku-Białej E mail: slawomir.herma@gmail.com Harmoogramowaie liii motażowej jako elemet projektowaia cyfrowej fabryki Streszczeie: W
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
Numeryczny opis zjawiska zaniku
FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN BADANIE NAPIĘCIA WSTĘPNEGO W ŁĄCZNIKACH ŚRUBOWYCH. OSZACOWANIE WSPÓŁCZYNNIKA TARCIA W POŁĄCZENIACH GWINTOWYCH ĆWICZENIE
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Szkic do wykładów z mechaniki analitycznej
Szkic do wykładów z mechaiki aalityczej prof. dr hab. Bogda Maruszewski pokój 408 BM e-mail: bogda.maruszewski@put.poza.pl www: http://tm.am.put.poza.pl kosultacje: poiedziałek 11 00 12 00 Politechika
Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu
dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu
Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.
W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,
Tematy zadań 2 razy 33 przykładowe zadania maturalne. Matura podstawowa
Tematy zadań razy przykładowe zadaia maturale Matura podstawowa Porówaj liczby: 54 + 5 oraz 4 W klasie jest 9 ucziów o średiej wieku 6 lat Średia wieku wzrośie o rok, jeżeli doliczy się wiek wychowawcy
Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1
1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
Przejście światła przez pryzmat i z
I. Z pracowi fizyczej. Przejście światła przez pryzmat - cz. II 1. Przejście światła przez pryzmat. Kąt odchyleia. W paragrafie 8.10 trzeciego tomu e-podręczika opisao bieg światła moochromatyczego w pryzmacie.
Poziom rozszerzony. 5. Ciągi. Uczeń:
PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia
KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH
KSZTAŁTOWANIE KRZYWEJ PRZEJŚCIOWEJ U PODSTAWY ZĘBA W ASPEKCIE MINIMALIZACJI NAPRĘŻEŃ ZGINAJĄCYCH Marek MARTYNA 1, Ja ZWOLAK 2 Streszczeie W kolach zębatych tworzących złożoe układy apędowe występują zmiee
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD
OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie
STATYSTYKA OPISOWA WYKŁAD 1 i 2
STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest
Składka ubezpieczeniowa
Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Funkcje tworzące - przypomnienie
Zadaia z ćwiczeń # (po. marca) Matematyka Dyskreta Fukcje tworzące - przypomieie Fukcje tworzące są początkowo trude do przełkięcia, ale stosuje się je dość automatyczie i potrafimy je policzyć dla praktyczie
ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO
Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12
Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu
MATEMATYKA POZIOM PODSTAWOWY
EGZAMIN MATURALNY W ROKU SZKOLNYM 05/06 FORMUŁA OD 05 ( NOWA MATURA ) FORMUŁA DO 04 ( STARA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 06 Klucz puktowaia
Styk montażowy. Rozwiązania konstrukcyjnego połączenia
Styk motażowy Rozwiązaia kostrukcyjego połączeia Z uwagi a przyjęcie schematu statyczego połączeie ależy tak kształtować, aby te połączeie przeosiło momet zgiający oraz siłę poprzeczą. Jako styk motażowy,
Prawdopodobieństwo i statystyka r.
Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
2. Trójfazowe silniki prądu przemiennego
2. Trójfazowe siliki prądu przemieego Pierwszy silik elektryczy był jedostką prądu stałego, zbudowaą w 1833. Regulacja prędkości tego silika była prosta i spełiała wymagaia wielu różych aplikacji i układów
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Zestaw II Odpowiedź: Przeciętna masa ciała w grupie przebadanych szczurów wynosi 186,2 g.
Zadaia przykładowe z rozwiązaiami Zadaie Dokoao pomiaru masy ciała 8 szczurów laboratoryjych. Uzyskao astępujące wyiki w gramach: 70, 80, 60, 90, 0, 00, 85, 95. Wyzaczyć przeciętą masę ciała wśród zbadaych
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny
Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład
MACIERZE STOCHASTYCZNE
MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:
Geometrycznie o liczbach
Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu