ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
|
|
- Urszula Liliana Kozłowska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem zmniejszania zasobu energii otoczenia o dokładnie taką samą jej ilość. Prawo zachowania energii w termodynamice nazywane jest I zasadą termodynamiki: W układzie izolowanym energia wewnętrzna U jest stała i niezależna od przemian dokonujących się w tym układzie. Wymiana energii między elementami układu lub między układem i otoczeniem może być dokonana na dwa sposoby: 1) na sposób pracy, ) na sposób ciepła. Zmiana energii układu ( U) jest sumą algebraiczną ilości energii wymienianej na sposób pracy (w) i ilości energii, wymienianej na sposób ciepła (q), czyli: Jaka jest istota obu sposobów wymiany energii? U = q + w (1) Wymiana energii na sposób pracy W procesach chemicznych najczęściej rozpatrywanymi formami pracy są: - praca zmiany objętości układu, - praca elektryczna wykonana przez układy zwane ogniwami lub wykonana na układach zwanych elektrolizerami, - praca zmiany powierzchni granicy faz. Podstawy termodynamiki najlepiej można zrozumieć rozpatrując układy znajdujące się w fazie gazowej. Dla takich układów głównym sposobem wymiany energii na sposób pracy jest praca zmiany objętości. Rozpatrzmy układ, którym niech będzie cylinder z tłokiem zawierający gaz doskonały (rys. 1). Przesuwając tłok w cylindrze wykonujemy pracę na układzie równą: dw = F dl () Gdzie: dw - ilość energii wymienianej na sposób pracy między układem a otoczeniem (dw > 0 oznacza, zgodnie z przyjętą międzynarodową konwencją, wykonanie pracy przez układ), dl - droga przesunięcia tłoka powodującego zmianę objętości układu. Rysunek 1. Schemat przedstawiający wymianę energii na sposób pracy. Przesuwając tłok w cylindrze, zawierającym gaz doskonały, powodujemy, że układ zwiększa swoją energię wewnętrzną Ponieważ F = p s (p- ciśnienie, s- powierzchnia tłoka), a s dl= dv (dv- zmiana objętości układu), to:
2 Całkując równanie (3), otrzymujemy: dw = p dv (3) w = p(v 1 v ) (4) Gdy v 1 > v,to w < 0 co oznacza, że praca została wykonana na układzie, tzn. układ zwiększył swoją energię wewnętrzną: U = q p v (5) W przypadku rozprężania gazu (układ wypycha tłok z cylindra, tzn. układ wykonuje pracę) energia wewnętrzna układu zmniejsza się, w > 0. W równaniu (5) q oznacza energię przekazaną układowi przez otoczenie na sposób ciepła, czyli gdy układ pobiera energię na sposób ciepła, to q > O, a gdy oddaje, to q < 0. Wymiana energii na sposób ciepła Znamy dwie formy wymiany energii zaliczane do wymiany energii na sposób ciepła: 1) wymiana energii przez przewodzenie, ) wymiana energii przez promieniowanie. Wymiana energii przez przewodzenie polega na przekazywaniu energii kinetycznej pomiędzy molekułami układów o różnej temperaturze. Przepływ energii następuje tylko do momentu wyrównania średnich energii kinetycznych molekuł w obu układach. Stanowi takiemu odpowiada równość temperatur obu układów. Stan taki nazywamy stanem równowagi termicznej. Wymiana energii przez promieniowanie polega na przekazywaniu energii między dwoma układami za pośrednictwem fal elektromagnetycznych. Każda substancja w temperaturze wyższej od temperatury zera bezwzględnego, tj. -73,15 C, emituje promieniowanie elektromagnetyczne, tzn. wysyła w przestrzeń energię w formie fotonów. Fotony padając na inny układ zwiększają energię oscylacji jego molekuł, co oznacza zwiększenie energii wewnętrznej tego układu. Ciepło przemiany chemicznej w stałej objętości Ilość energii, jaka wymieniana jest z otoczeniem lub innym układem na sposób ciepła w wyniku przebiegu reakcji chemicznej w stałej objętości nazywa się ciepłem przemiany chemicznej w stałej objętości (q v ). W przypadku reakcji przebiegającej w warunkach v = cons.t i T = const., wykluczona jest wymiana energii na sposób pracy zmiany objętości układu (p v=0): U= q v (6) Ciepło przemiany chemicznej w stałej objętości równe jest zmianie energii wewnętrznej układu. Ciepło przemiany chemicznej pod stałym ciśnieniem. Entalpia układu Kombinacja liniowa funkcji stanu z parametrami stanu lub wyrażeniami utworzonymi z parametrów stanu jest też funkcją stanu - funkcją termodynamiczną, tzn. funkcją, której dziedziną są parametry stanu (p, T, k, n). Wykorzystując to zdefiniowano nową funkcję termodynamiczną entalpię układu (H): H = U + pv (7) W przypadku reakcji przebiegającej w warunkach p = const. i T = const. układ wymienia energię na sposób ciepła (q) i na sposób pracy objętościowej (w = p v). Zmiana entalpii układu w takiej przemianie jest równa: H = q p p v (8) Gdy układ wymienia energię z otoczeniem na sposób pracy objętościowej: U =q p p v (9)
3 otrzymujemy: H= q p (10) Ciepło przemiany chemicznej przebiegającej pod stałym ciśnieniem równe jest zmianie entalpii układu. Ilość energii, jaka wymieniana jest między układem a otoczeniem na sposób ciepła w wyniku przebiegu reakcji chemicznej zachodzącej w warunkach p = const. i T = const. nazywa się ciepłem przemiany chemicznej pod stałym ciśnieniem (q p ). Konwencja standardowych wartości funkcji termodynamicznych. Standardowe ciepło tworzenia związku chemicznego Ponieważ dla energii wewnętrznej układu (U) podobnie jak i dla entalpii układu (H) nie można wyznaczyć ich wartości bezwzględnych, przyjęto konwencję względnego układu odniesienia, tzw. stanów standardowych. Założono mianowicie, że wartości funkcji termodynamicznych (z wyjątkiem entropii, której wartości bezwzględne mogą być określone) l mola substancji prostej, trwałej w temperaturze 5 o C i pod ciśnieniem Pa (warunki standardowe) są równe zero. Standardowe ciepło tworzenia związku chemicznego ( U o tw) jest równe ilości energii wymienionej na sposób ciepła przez układ, w którym zachodzi reakcja syntezy l mola związku chemicznego z substancji prostych w warunkach standardowych, gdy v = const. Standardowe ciepło tworzenia związku chemicznego ( H o tw) dotyczy analogicznej przemiany, gdy p = const. Wartości U o tw i H o tw mogą być wyznaczone eksperymentalnie, np. metodami kalorymetrycznymi. Prawo Hessa Ilość energii wymieniona na sposób ciepła w czasie przebiegu reakcji chemicznej jest równa różnicy ciepłej tworzenia produktów i substratów reakcji. Dla reakcji przebiegających w stałej objętości: Gdzie: U tw,pr, i -ciepło tworzenia produktu i v = const, U tw,s,m i -ciepło tworzenia substratu i, v = const Dla reakcji przebiegających pod stałym ciśnieniem: U= n pr,i U tw,pr,i n s,i U tw,s,i (11) H = n pr, i H tw,pr,i n s, i H tw, s, i (1) Gdzie: H tw,r, i - ciepło tworzenia produktu i, p= const, H tw,s, i - ciepło tworzenia substratu i, p= const Należy zwrócić uwagę, że prawo Hessa dotyczy ciepła reakcji chemicznej przebiegającej niekoniecznie w warunkach standardowych. Ponieważ większość reakcji przebiega w warunkach ciśnienia atmosferycznego, a więc mniej więcej takich jak w warunkach standardowych, pominiemy problem zależności ciepła reakcji od ciśnienia. Zajmiemy się jedynie zależnością od temperatury. Aby można było wykorzystać prawo Hessa do obliczania efektów energetycznych reakcji chemicznych przebiegających w różnych temperaturach, należy znać zależność ciepła tworzenia związku chemicznego od temperatury (Prawo Kirchhoffa).
4 ZADANIA RACHUNKOWE 1. Standardowe ciepło tworzenia związku chemicznego ( U o tw, H o tw). Prawo Hessa: U = ni U H = ni H i,tw,p i,tw,p - ni U - ni H i,tw, s i,tw, s Zadanie kg He w temperaturze 73K i pod ciśnieniem 10 5 Pa, izotermicznie rozprężono do objętości = 10-3 m 3. Oblicz wykonaną pracę (dw) i ilość wymienionego ciepła (dq). m He = 10-3 kg T = 73K p = 10 5 Pa = 10-3 m 3 w =? q =?. Rozwiązanie: W czasie rozprężania (układ wykonuje pracę) dw < 0 W procesie izotermicznym (T = const.) du = 0 Z równania stanu gazu: p = n R T => dw = n R T 1 d = n R T ln dw 1 du = dq + dw dw = p d dq = p d n R T p = m R T 8, = = = 5, M p ,31 73 ln 4 5,67 10 = 3 = 118J 3 m 3 Zadanie. Oblicz entalpię reakcji CH 4 = C H 6 + H, znając standardowe entalpie spalania: metanu ( 890,3 kj/mol), etanu ( 1 559,9 kj/mol) i wodoru ( 85,8 kj/mol). CH 4 + O = CO + H O, H o 1= kj/mol Rozwiązanie: 4 O CO + 4 H O C H 6 + 3,5 O = CO + 3 H O, H o = 1559,9 kj/mol H + 0,5 O = H O (c), H o 3 = 85.8 kj/mol CH 4 H o 1 4 O H o H o r H o 3 C H 6 + H H o r + H o + H o 3 = H o 1 => H o r = H o 1 H o H o 3 = ( 890,3) ,9 + 85,8 = 65,1 kj
5 Zadanie. Oblicz energię wiązania C H w metanie, znając: standardową entalpię tworzenia metanu ( H o tw,1= 74,93 kj/mol), standardową entalpię kondensacji C ( C (g) -> C (s), H o = 718,74 kj/mol) i standardową entalpię dysocjacji wodoru ( H o 3 = 87,36 kj/mol). Rozwiązanie: Energia wiązania C-H to ¼ entalpii reakcji: CH 4,(g) = C (g) + 4 H (g), H o r C (s) + H,(g) = CH 4,(g), H o tw,1= 74,93 kj/mol C (s) + H (g) H o tw C (g) = C (s), H o = 718,74 kj/mol CH 4(g) H,(g) = H (g), H o 3 = 436,18 kj/mol H o H o 3 H o r H o tw,1 + H o r + H o = H o 3 C (g) + 4 H (g) H o r = H o 3 H o tw,1 H o = 436, , ,74 H o r = 1 666,03 kj/mol E C H = 416,5 kj/mol Wiązanie Energia Energia Wiązanie [kj/mol] [kj/mol] C H 416,5 C=O 74, C C 334,9 O=O 493,9 C=C 606,9 O H 460,5 C C 88,3 N H 385,1 H H 431, H Cl 46,9 C N 46,9 H Br 364, C O 334,9 H I 97, Zadanie 3. Przy spalaniu 1 mola: a) glukozy, b) etanolu w temp. 98 K i pod stałym ciśnieniem H wynosi: a) 81,4 kj, b) 1 367,1 kj. Jaki jest efekt energetyczny powstawania 1 mola etanolu w procesie fermentacji glukozy w podanych warunkach temperatury i ciśnienia? Ciepło rozcieńczenia pomija się. Odp.: 43,6 kj. Rozwiązanie: C 6 H 1 O O = 6 CO + 6 H O, H o 1= 81,4 kj CHC 4 + O = CO + H O, H o H 5 OH+ 3 O = CO + 3 H 1= O, H o = kj/mol 1 367,1 kj H 3 C 6 H 1 O6 C H OH + CO H1 H 6 CO + 6 H O H 1 = H 3 + H 5 H 3 = H 1 H = 81, ,1 = 87, kj W procesie fermentacji pobierana jest energia równa: 43,6 kj/mol etanolu.
6 Zadania do samodzielnego rozwiązania: 1. Oblicz standardową entalpię tworzenia cyjanamidu (H N=C=N H) znając: entalpię spalania tego związku H 0 1= -741,9 kj oraz entalpię tworzenia wody H 0 = -86,0 kj mol 1 i entalpię tworzenia CO, H 0 3 = -393,4 kj mol 1. Odp.: H 0 = 6,5 kj mol 1.. Po spaleniu,65 g indu temperatura w kalorymetrze wzrosła o 1,055 K. Stała kalorymetru K=10101,95 [J K 1 ]. Oblicz molowe ciepło spalania indu. M = 114,81 [g mol 1 ]. Odp.: Q v = 461,7 kj mol Ciepło spalania 1 mola węgliku cyrkonu (ZrC) do ZrO i dwutlenku węgla, zmierzone w bombie kalorymetrycznej wynosi: 1301,7 kj. Oblicz standardową entalpię tego procesu. Odp.: H 0 = 1304, kj. 4. Ciepło dysocjacji H O na tlen i wodór w temperaturze 91 K wynosi 41,9 kj. Jakie jest ciepło tej reakcji w temperaturze 98 K, jeżeli wiadomo, że: C p (H O,g) wynosi 33,58 [J mol 1 K 1 ], a C p (H,g) = 8,85 [J mol 1 K 1 ], C p (O,g) = 9,14 [J mol 1 K 1 ]? Odp.: 4,04 kj. 5.Oblicz standardową entalpię tworzenia etanolu z węgla, wodoru i tlenu wiedząc, że ciepła spalania węgla, wodoru i etanolu w warunkach T=98 K i p=1013,15 Pa wynoszą odpowiednio: 393,6 [kj]; 86,4 [kj] i 1369 [kj].odp.: H 0 = 77,4 kj mol Jaka energia potrzebna jest do podwyższenia temperatury 48 g tlenu od 83 do 373 K: a) Pod stałym ciśnieniem, C p (O,g) = 9,48 [J mol 1 K 1 ], b) W stałej objętości. Odp.: a) 3979,8 J, b) 857,5 J. 7. W czasie spalania 1g kwasu benzoesowego w bombie kalorymetrycznej w temperaturze303 K wydziela się J. Oblicz H procesu spalania 1 mola kwasu benzoesowego w temperaturze 303 K. Odp.: H = 31,9 kj. 8. W temperaturze 91 K U reakcji spalania 1 mola: a) acetylenu wynosi: 1303,9 kj, b) benzenu: 375,5 kj. Jaka jest wartość U i H reakcji powstawania 1 mola ciekłego benzenu z acetylenu? Odp.: U = 636, kj, H = 643,4 kj. 9.Ciepło tworzenia dwutlenku siarki wynosi 97, kj mol 1, a ciepło tworzenia dwutlenku węgla wynosi 394,3 kj mol 1. Ciepło spalania dwusiarczku węgla wynosi 1109,3 kj. Oblicz ciepło tworzenia dwusiarczku węgla. Odp.: H = 10,6 kj mol Ciepło spalania 1 mola C (grafitu) pod stałym ciśnieniem i w temperaturze 98 K wynosi 394,3 kj, 1 mola metanu 890,8 kj, jeżeli substratami są: dwutlenek węgla i woda. Oblicz ciepło tworzenia metanu w temperaturze 98 K: a) pod stałym ciśnieniem oraz b) w stałej objętości. Odp.: H = 75,5 kj/mol, U = 73,00 kj/mol. 11. W temperaturze 98 K i pod stałym ciśnieniem ciepło spalania propanu wynosi 1,1 kj mol 1, ciepło tworzenia wody 87,9 kj mol 1. Oblicz ciepło tworzenia propanu w temp. 98 K: a) pod stałym ciśnieniem oraz b) w stałej objętości. Odp.: H = 105,9 kj/mol, U = 98,37 kj/mol.
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001
Zadania pochodzą ze zbioru zadań P.W. Atkins, C.A. Trapp, M.P. Cady, C. Giunta, CHEMIA FIZYCZNA Zbiór zadań z rozwiązaniami, PWN, Warszawa 2001 I zasada termodynamiki - pojęcia podstawowe C2.4 Próbka zawierająca
Fizyka Termodynamika Chemia reakcje chemiczne
Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
Termochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
WYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)
Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
Kontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
PODSTAWY TERMODYNAMIKI
ODAWY ERMODYNAMIKI ( punkty (OŚ_3--7 Zad.. W zbiorniku zamkniętym tłokiem znajduje się moli metanu, który można z powodzeniem potraktować jako az doskonały. emperatura początkowa metanu wynosi 5 C a ciśnienie
Termochemia efekty energetyczne reakcji
Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
TERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej
Ćwiczenie III. Oznaczanie wartości kalorycznej produktów spożywczych metodą spalania w bombie kalorymetrycznej Cel ćwiczenia Zapoznanie się z metodą wyznaczania ciepła spalania w warunkach stałej objętości.
Zasady termodynamiki
Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Inżynieria procesów przetwórstwa węgla, zima 15/16
Inżynieria procesów przetwórstwa węgla, zima 15/16 Ćwiczenia 1 7.10.2015 1. Załóżmy, że balon ma kształt sfery o promieniu 3m. a. Jaka ilość wodoru potrzebna jest do jego wypełnienia, aby na poziomie morza
Odwracalność przemiany chemicznej
Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Kryteria samorzutności procesów fizyko-chemicznych
Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA
SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Inżynieria Biomedyczna. Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji
Inżynieria Biomedyczna Wykład IV Elementy termochemii czyli o efektach cieplnych reakcji Plan Terminologia i jednostki energii Pojemność cieplna Reaktywność chemiczna I prawo termodynamiki Entalpia Prawo
GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i
I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i chemicznych) Termodynamika chemiczna - nauka zajmująca
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Wykład 4: Termochemia
Wykład 4: Termchemia Układ i tczenie Energia wewnętrzna, praca bjętściwa i entalpia Praw Hessa Cykl kłwy Standardwe entalpie twrzenia i spalania Energie wiązań chemicznych Wydział Chemii UJ Pdstawy chemii
AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I
Związki manganu i manganometria AKADEMIA GÓRNICZO-HUTNICZA 1. Spośród podanych grup wybierz tą, w której wszystkie związki lub jony można oznaczyć metodą manganometryczną: Odp. C 2 O 4 2-, H 2 O 2, Sn
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Prawo Hessa. Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego
Tomasz Lubera Prawo Hessa Efekt cieplny reakcji chemicznej lub procesu fizykochemicznego prowadzonego: Izobarycznie Q p = ΔH Izochorycznie Q V = ΔU nie zależy od drogi przemiany a jedynie od stanu początkowego
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
TERMOCHEMIA SPALANIA
TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie
relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa
1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej
1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością
3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość
5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Wykład z Chemii Ogólnej i Nieorganicznej
Wykład z Chemii Ogólnej i Nieorganicznej Część 5 ELEMENTY STATYKI CHEMICZNEJ Katedra i Zakład Chemii Fizycznej Collegium Medicum w Bydgoszczy Uniwersytet Mikołaja Kopernika w Toruniu Prof. dr hab. n.chem.
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych
Materiał powtórzeniowy do sprawdzianu - reakcje egzoenergetyczne i endoenergetyczne, szybkość reakcji chemicznych I. Reakcje egzoenergetyczne i endoenergetyczne 1. Układ i otoczenie Układ - ogół substancji
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem
Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego
Elementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
I piętro p. 131 A, 138
CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I piętro p. 131 A, 138 WYKŁAD - 4 RÓWNOWAGA Termochemia i termodynamika funkcje termodynamiczne, prawa termodynamiki,
CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego
CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2016/17) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.
Zadanie 1. Nitrogliceryna (C 3H 5N 3O 9) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: 4 C 3 H 5 N 3 O 9 (c) 6 N 2 (g) + 12 CO 2 (g) + 10 H 2 O (g) + 1 O 2 (g) H rozkładu =
Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.
PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym
a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.
Zadanie 1. Nitrogliceryna (C 3 H 5 N 3 O 9 ) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: C 3 H 5 N 3 O 9 (c) N 2 (g) + CO 2 (g) + H 2 O (g) + O 2 (g) H rozkładu = - 385 kj/mol
TERMODYNAMIKA Termodynamika chemiczna ilościowym opisem efektów energetycznych towarzyszących przemianom oraz przewidywaniem możliwości samorzutnego
ERMODYNAMIKA ermodynamika chemiczna ilościowym opisem efektów energetycznych towarzyszących przemianom oraz przewidywaniem możliwości samorzutnego przebiegu dowolnych, pomyślanych przemian a także opisem
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt
Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.
Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część IV - Elementy termodynamiki i kinetyki chemicznej Wydział Chemii UAM Poznań 2011 POJĘCIA CIA PODSTAWOWE UKŁAD AD pewna część
PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW
PODSTAWY OBLICZEŃ CHEMICZNYCH DLA MECHANIKÓW Opracowanie: dr inż. Krystyna Moskwa, dr Wojciech Solarski 1. Termochemia. Każda reakcja chemiczna związana jest z wydzieleniem lub pochłonięciem energii, najczęściej
Obraz statyczny układu
Termodynamika Obraz statyczny układu energia kinetyczna E k = mv 2 / 2 energia wewnetrzna energia powierzchniowa inne energie U inne parametry: T, m, P, V, S... Ep= mgh energia potencjalna STAN I PRZEMIANA
CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego
CIEPŁO, PALIWA, SPALANIE CIEPŁO (Q) jedna z form przekazu energii między układami termodynamicznymi. Proces przekazu energii za pośrednictwem oddziaływania termicznego WYMIANA CIEPŁA. Zmiana energii wewnętrznej
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E
Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego:
1. Określ, w którą stronę przesunie się równowaga reakcji syntezy pary wodnej z pierwiastków przy zwiększeniu objętości zbiornika reakcyjnego: 2. Określ w którą stronę przesunie się równowaga reakcji rozkładu
TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
II Podkarpacki Konkurs Chemiczny 2009/10. ETAP II r. Godz Zadanie 1 (10 pkt.)
II Podkarpacki Konkurs Chemiczny 2009/10 ETAP II 19.12.2009 r. Godz. 10.00-12.00 KPKCh Zadanie 1 (10 pkt.) 1. Gęstość 22% roztworu kwasu chlorowodorowego o stężeniu 6,69 mol/dm 3 wynosi: a) 1,19 g/cm 3
Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy
1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Ciepła tworzenia i spalania (3)
Ciepła tworzenia i spalania (3) Standardowa entalpia tworzenia jest standardową entalpią związku 0 0 H = H Dla pierwiastków: Dla związków: H H 98 tw,98 0 tw, = C p ( ) d 98 0 0 tw, = Htw,98 + C p ( ) 98
Kiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki
Elementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz
Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Termodynamika 25/10/2017. Definicje. Układ i otoczenie
Definicje Termodynamika Termodynamika dział fizyki zajmujący się badaniem energetycznych efektów wszelkich przemian fizycznych i chemicznych, które wpływają na zmiany energii wewnętrznej analizowanych
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Wydział Chemiczny PW, Termodynamika, kierunek Biotechnologia, , kolokwium I K (A) 1 do 75 atm. atm.
1. 15.11.95 wewnętrzną poniższej reakcji w temperaturze 450 K. 2NH 3(g) + 7/2O 2(g) 2NO 2(g) + 3H 2 O (g) 2. 1 mol Cl 2(g) zamknięto w naczyniu o objętości 25 dm 3 a następnie sprężono adiabatycznie i
1 I zasada termodynamiki
1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może
WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ
Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,
1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.
Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z
ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji
ZADANIE 1 W temperaturze 700 K gazowa mieszanina dwutlenku węgla i wodoru reaguje z wytworzeniem pary wodnej i tlenku węgla. Stała równowagi reakcji w tej temperaturze wynosi K p = 0,11. Reaktor został
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo