Podstawy robotyki wykład III. Kinematyka manipulatora
|
|
- Wiktoria Kujawa
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
2 Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1
3 PUMA układy współrzędnych w przegubach ogniwo 2 ogniwo 3 ogniwo 1
4 PUMA układy współrzędnych w przegubach
5 Zadanie kinematyki prostej Definition Manipulator mechanizm przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka (manus (łac.) ręka). Zadanie kinematyki prostej: Mając dane wartości zmiennych ruchu w przegubach manipulatora znaleźć pozycję i orientację jego końcówki zwanej efektorem.
6 Niech macierz transformacji z układu i 1 do układu i jest dana jako A i i 1 = A i i 1(q i ) SE(3) wówczas kinematyka manipulatora wyraża się przez K(q) = A n 0(q) = A 1 0(q 1 )A 2 1(q 2 ) A n n 1(q n ), gdzie q = [q 1,..., q n ] T konfiguracja manipulatora. A i i 1 = [ ] R i i 1 di 1 i 0 1 A n 0 = [ R n 0 d n ] R0 n = R0 1 R1 2 Rn 1 n d0 n = d0 n 1 + R0 n 1 dn 1 n
7 Reprezentacja Denavita Hartenberga Zasady przypisywania układów współrzędnych: 1 oś X układu następującego ma być prostopadła do osi Z układu poprzedzającego, 2 wyżej wymienione osie mają przecinać się. z i-1 a i z i y i-1 α i y i d i x i θ i x i-1
8 Parametry Denavita Hartenberga θ i kąt obrotu w i-tym przegubie a, d i z i-1 a i z i y i-1 α i y i x i d i przesunięcie wzdłuż osi z układu współrzędnych związanego z i-tym przegubem b, a i przesunięcie wzdłuż osi x bieżącego układu współrzędnych, θ i α i kąt wzajemnego skręcenia osi kolejnych przegubów. x i-1 a zmienna dla przegubu rotacyjnego b zmienna dla przegubu translacyjnego
9 Procedura przypisywania układów
10 Procedura przypisywania układów 1. wybrać i oznaczyć osie Z 0,..., Z n 1,
11 Procedura przypisywania układów z i z i-1 z i-2 1. wybrać i oznaczyć osie Z 0,..., Z n 1, 2. ustalić układ bazowy 0X 0 Y 0 Z 0 tak by był prawoskrętny,
12 Procedura przypisywania układów z i z i-1 z i-2 2. ustalić układ bazowy 0X 0 Y 0 Z 0 tak by był prawoskrętny,
13 Procedura przypisywania układów z i z i-1 z i-2 3. dla kolejnych przegubów (i = 1,..., n 1):
14 Procedura przypisywania układów z i z i-1 x i z i-2 x i-1 3. dla kolejnych przegubów (i = 1,..., n 1): 3.1 umieścić początek i-tego układu współrzędnych w miejscu przecięcia osi Z i przez normalną do Z i i Z i 1, miejscu przecięcia osi Z i z osią Z i 1, w i-tym przegubie,
15 Procedura przypisywania układów z i z i-1 x i z i-2 x i-1 3. dla kolejnych przegubów (i = 1,..., n 1): 3.2 umieścić oś X i wzdłuż normalnej do Z i i Z i 1 lub w kierunku prostopadłym do płaszczyzny Z i Z i 1,
16 Procedura przypisywania układów z i z i-1 x i z i-2 x i-1 3. dla kolejnych przegubów (i = 1,..., n 1): 3.3 dobrać oś Y i tak by otrzymać układ prawoskrętny,
17 Procedura przypisywania układów z i α i z i-1 a i x i z i-2 y i x i-1 θ i d i y i-1 a i-1 4. przypisać n-ty układ wsp. do efektora manipulatora tak, że:
18 Procedura przypisywania układów z i α i z i-1 a i x i z i-2 y i x i-1 θ i d i y i-1 a i-1 4. przypisać n-ty układ wsp. do efektora manipulatora tak, że: 4.1 jego środek znajduje się pomiędzy palcami chwytaka, 4.2 oś Z n jest równoległa do osi Z n 1, 4.3 oś Y n leży w kierunku zamykania chwytaka, 4.4 oś X n dopełnia układ do prawoskrętnego.
19 Procedura przypisywania układów układy współrzędnych z i α i z i-1 a i x i z i-2 y i x i-1 θ i d i y i-1 a i-1
20 Procedura przypisywania układów pełny algorytm 1. wybrać i oznaczyć osie Z 0,..., Z n 1, 2. ustalić układ bazowy 0X 0 Y 0 Z 0 tak by był prawoskrętny, 3. dla kolejnych przegubów (i = 1,..., n 1): 3.1 umieścić początek i-tego układu współrzędnych w miejscu przecięcia osi Z i przez normalną do Z i i Z i 1, miejscu przecięcia osi Z i z osią Z i 1, w i-tym przegubie, 3.2 umieścić oś X i wzdłuż normalnej do Z i i Z i 1 lub w kierunku prostopadłym do płaszczyzny Z i Z i 1, 3.3 dobrać oś Y i tak by otrzymać układ prawoskrętny, 4. przypisać n-ty układ wsp. do efektora manipulatora tak, że: 4.1 jego środek znajduje się pomiędzy palcami chwytaka, 4.2 oś Z n jest równoległa do osi Z n 1, 4.3 oś Y n leży w kierunku zamykania chwytaka, 4.4 oś X n dopełnia układ do prawoskrętnego.
21 Kinematyka w oparciu o parametry DH Przy transformacjach jednorodnych A i i 1(q i ) = Rot(Z i 1, θ i )Trans(Z i 1, d i ) Trans(X i 1, a i )Rot(X i 1, α i ) kinematyka manipulatora opisanego parametrami DH dana jest jako K(q) = A n 0(q) = n A i i 1(q i ) = i=1 [ R n 0 (q) d0 n(q) ] 0 1
22 Kinematyka we współrzędnych x y z φ θ ψ = k 1 (q) k 2 (q) k 3 (q) k 4 (q) k 5 (q) k 6 (q)
23 Manipulator przemysłowy typu SCARA
24 Manipulator typu SCARA schemat
25 Manipulator typu SCARA parametry DH ogniwo θ i d i a i α i 1 q 1 d 1 a q 2 0 a q q d 1 = 0.8[m] a 1 = 0.445[m] a 2 = 0.355[m] A 1 0(q 1 ) = Rot(Z, q 1 )Tran(Z, d 1 )Tran(X, a 1 ) A 2 1(q 2 ) = Rot(Z, q 2 )Tran(X, a 2 ) A 3 2(q 3 ) = Tran(Z, q 3 ) A 4 3(q 4 ) = Rot(Z, q 4 )
26 Manipulator typu SCARA kinematyka ogniwo θ i d i a i α i 1 q 1 d 1 a q 2 0 a q q d 1 = 0.8[m] a 1 = 0.445[m] a 2 = 0.355[m] c 124 s a 1 c 1 + a 2 c 12 s K(q) = 124 c a 1 s 1 + a 2 s d 1 + q
Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości
Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy
Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Kinematyka manipulatorów robotów
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Podstawowe pojęcia: Kinematyka manipulatorów robotów Ogniwo(człon, ramię) bryła sztywna(zbiór punktów materialnych, których wzajemne położenie jest stałe). Przegub(złącze)
Laboratorium Podstaw Robotyki ĆWICZENIE 5
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 5 Rotacje 3D, transformacje jednorodne i kinematyka manipulatorów. Celem ćwiczenia jest analiza wybranych
Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.
Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
Podstawy robotyki wykład VI. Dynamika manipulatora
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu
Definiowanie układów kinematycznych manipulatorów
Definiowanie układów kinematycznych manipulatorów Definicja Robota Według Encyklopedii Powszechnej PWN: robotem nazywa się urządzenie służące do wykonywania niektórych funkcji manipulacyjnych, lokomocyjnych,
Manipulator OOO z systemem wizyjnym
Studenckie Koło Naukowe Robotyki Encoder Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska Manipulator OOO z systemem wizyjnym Raport z realizacji projektu Daniel Dreszer Kamil Gnacik Paweł
Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium
Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
PODSTAWY ROBOTYKI. Opracował: dr hab. inż. Adam Rogowski
PODSTAWY ROBOTYKI Opracował: dr hab. inż. Adam Rogowski Autor wykładu: dr hab. inż. Adam Rogowski pok. ST 405 adam.rogowski@pw.edu.pl Literatura: - Treść niniejszego wykładu dostępna na www.cim.pw.edu.pl/lzp
KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM
4-2007 PROBLEMY EKSPLOATACJI 275 Andrzej ZBROWSKI Instytut Technologii Eksploatacji PIB, Radom Krzysztof ZAGROBA Politechnika Warszawska, Warszawa KINEMATYKA ODWROTNA TRIPODA Z NAPĘDEM MIMOŚRODOWYM Słowa
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Podstawy robotyki wykład I. Wprowadzenie Robot i jego historia
Podstawy robotyki Wykład I Wprowadzenie Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kamienie milowe robotyki 1947 pierwszy teleoperator sterowany
Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: PODSTAWY ROBOTYKI 2. Kod przedmiotu: Sr 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Podstawy robotyki - opis przedmiotu
Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 1. Wiadomości wstępne 1.1. Robotyka Po raz pierwszy terminu robot użył Karel Čapek w sztuce Rossum s Universal Robots w 1921r. Od
Kinematyka robotów mobilnych
Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:
Wprowadzenie do robotyki
Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które
2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I
Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH
Wprowadzenie do robotyki
Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które
Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz
Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz x argumenty funkcji y wartości funkcji a współczynnik kierunkowy prostej ( a = tg, gdzie osi OX) - kąt nachylenia wykresu funkcji
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
MECHANIKA PRĘTÓW CIENKOŚCIENNYCH
dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
4.1. Modelowanie matematyczne
4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować
PODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.
GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW
(12) OPIS PATENTOWY (19) PL (11) 174940 (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174940 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 305007 (22) Data zgłoszenia: 12.09.1994 (51) IntCl6: B25J 9/06 B25J
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka
Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac
Przekształcenia geometryczne w grafice komputerowej. Marek Badura
Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
płaskie rzuty geometryczne
płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.
Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,
Wykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207396 (13) B1 (21) Numer zgłoszenia: 363254 (51) Int.Cl. F16C 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 03.11.2003
Zadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Opis ruchu obrotowego
Opis ruchu obrotowego Oprócz ruchu translacyjnego ciała obserwujemy w przyrodzie inną jego odmianę: ruch obrotowy Ruch obrotowy jest zawsze względem osi obrotu W ruchu obrotowym wszystkie punkty zakreślają
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Elementy geometrii analitycznej w R 3
Rozdział 12 Elementy geometrii analitycznej w R 3 Elementy trójwymiarowej przestrzeni rzeczywistej R 3 = {(x,y,z) : x,y,z R} możemy interpretować co najmniej na trzy sposoby, tzn. jako: zbiór punktów (x,
ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY
MECHNIK 7/ Dr inż. Borys BOROWIK Politechnika Częstochowska Instytut Technologii Mechanicznych DOI:.78/mechanik..7. NLIZ KINEMTYKI MNIPULTORÓW N PRZYKŁDZIE ROBOT LINIOWEGO O CZTERECH STOPNICH SWOBODY Streszczenie:
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
Spis treści. Przedmowa... 7
Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...
Roboty przemysłowe. Wprowadzenie
Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji
Planowanie wirtualnych ścieżek ruchu systemu motion control
Planowanie wirtualnych ścieżek ruchu systemu motion control Robert Muszyński, Szymon Gospodarek Laboratorium Robotyki Wydział Elektroniki Politechnika Wrocławska 0 maja 014 1 Cel ćwiczenia Celem ćwiczenia
gdzie (4.20) (4.21) 4.3. Rzut równoległy
4.3. Rzut równoległy 75 gdzie (4.20) Punkt zbiegu, określony wzorami (4.19) (4.20), leży na prostej przechodzącej przez środek rzutowania i równoległej do wektora u. Zauważmy, że gdy wektor u jest równoległy
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
Identyfikacja parametrów geometrycznych robota dydaktycznego ROMIK
Ientyfikacja parametrów geometrycznych robota yaktycznego ROMIK I. Dul eba, A. Mazur, M. Wnuk Cel ćwiczenia. Celem ćwiczenia jest zapoznanie sie ze struktura kinematyczna robota yaktycznego ROMIK oraz
Modelowanie i Wizualizowanie 3W grafiki. Łańcuchy kinematyczne
Modelowanie i Wizualizowanie 3W grafiki. Łańcuchy kinematyczne Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 31 Łańcuchy kinematyczne Najnowsza
ZASTOSOWANIE METOD PRZETWARZANIA I ANALIZY OBRAZU W OPTYMALIZACJI RÓWNAŃ RUCHU CZTERONOŻNEGO ROBOTA KROCZĄCEGO
ZASTOSOWANIE METOD PRZETWARZANIA I ANALIZY OBRAZU W OPTYMALIZACJI RÓWNAŃ RUCHU CZTERONOŻNEGO ROBOTA KROCZĄCEGO Katarzyna Gospodarek Instytut Informatyki Teoretycznej i stosowanej, Politechnika Częstochowska
Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016
4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji
Elementy grafiki komputerowej. Elementy geometrii afinicznej
Elementy grafiki komputerowej. Elementy geometrii j Aleksander Denisiuk Uniwersytet Warmińsko-Mazurski Olsztyn, ul. Słoneczna 54 denisjuk@matman.uwm.edu.pl 1 / 28 Elementy geometrii j Najnowsza wersja
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl
Robotyka. Krzysztof Tchoń Robert Muszyński KATEDRA CYBERNETYKI I ROBOTYKI WYDZIAŁ ELEKTRONIKI POLITECHNIKA WROCŁAWSKA
KATEDRA CYBERNETYKI I ROBOTYKI WYDZIAŁ ELEKTRONIKI POLITECHNIKA WROCŁAWSKA Notatki do wykładów z dziedziny automatyki i robotyki Krzysztof Tchoń Robert Muszyński Robotyka Wrocław 2018 Krzysztof Tchoń Robert
Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk
Algebra Wektory Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Wektory Najnowsza wersja
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE
PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE Podstawy statyki budowli: Pojęcia podstawowe Model matematyczny, w odniesieniu do konstrukcji budowlanej, opisuje ją za pomocą zmiennych. Wartości zmiennych
VII.1 Pojęcia podstawowe.
II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku
Geometria Analityczna w Przestrzeni
Algebra p. 1/25 Algebra Geometria Analityczna w Przestrzeni Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045
Grafika komputerowa Wykład 4 Geometria przestrzenna
Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe
3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ
3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie
Modelowanie układów dynamicznych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:
UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH
POLITECHNIKA GDAŃSKA KRZYSZTOF LIPIŃSKI UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA
MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY
Adam Labuda Janusz Pomirski Andrzej Rak Akademia Morska w Gdyni MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY W artykule opisano konstrukcję modelu manipulatora o dwóch przegubach obrotowych. Obie osie
Struktura manipulatorów
Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od
Geometria. Rozwiązania niektórych zadań z listy 2
Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na
ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl
ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....
Mechanika Teoretyczna Kinematyka
POLITECHNIKA RZESZOWSKA Wydział Budownictwa i Inżynierii Środowiska Katedra Mechaniki Konstrukcji Materiały pomocnicze do zajęć z przedmiotu: Mechanika Teoretyczna Kinematyka dr inż. Teresa Filip tfilip@prz.edu.pl
3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych
Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska
MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009
MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości
Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
5.1. Kratownice płaskie
.. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.
Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.
Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1
Kinematyka: opis ruchu
Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy
Roboty przemysłowe. Cz. II
Roboty przemysłowe Cz. II Klasyfikacja robotów Ze względu na rodzaj napędu: - hydrauliczny (duże obciążenia) - pneumatyczny - elektryczny - mieszany Obecnie roboty przemysłowe bardzo często posiadają napędy
Grupy przestrzenne i ich symbolika
Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)
Krzywe stożkowe. Algebra. Aleksander Denisiuk
Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe
METODA RZUTÓW MONGE A (II CZ.)
RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Zadania kinematyki mechanizmów
Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Funkcje wielu zmiennych
Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.