Definiowanie układów kinematycznych manipulatorów
|
|
- Mirosław Kasprzak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Definiowanie układów kinematycznych manipulatorów Definicja Robota Według Encyklopedii Powszechnej PWN: robotem nazywa się urządzenie służące do wykonywania niektórych funkcji manipulacyjnych, lokomocyjnych, informacyjnych i intelektualnych człowieka. Według Amerykańskiego Instytutu Robotyki (Robot Institute of America): robot jest programowanym wielofunkcyjnym manipulatorem, przeznaczonym do operowania materiałami, częściami lub wyspecjalizowanymi urządzeniami, poprzez różne programowane ruchy, w celu wykonania różnych zadań. Podstawowym aspektem wymienionej definicji jest programowalność robota, możliwość zmiany programu. Dzięki ternu robot ma zdolność przystosowania się do zmiennych wymagań zadania. [1] Roboty pierwszej generacji (pierwszy etap rozwoju) Przeznaczone do cyklicznego powtarzania tych samych operacji. Wyposażone w pamięć zaprogramowaną przez operatora (w procesie programowania pamięci umieszcza się w niej rozkazy). Wykonują samodzielnie zaprogramowane czynności. Sterowanie ruchem odbywa się w układzie otwartym, bez sprzężenia zwrotnego od rzeczywistego położenia. Druga generacja Nazywane są adaptacyjnymi ponieważ potrafią dostosowywać się do otoczenia; wyposażone w odpowiednie czujniki są zdolne korygować swoje ruchy w zależności od położenia i kształtu obiektu. 1
2 Trzecia generacja Ta generacja robotów ma możliwość uczenia się na podstawie własnych doświadczeń w tym możliwość modyfikacji programu działania, dostosowując się do zmiennych warunków otoczenia. Elementy i swoboda Manipulatory przemysłowe są złożone z członów połączonych przegubami w otwarty łańcuch kinematyczny. Przeguby są zwykle obrotowe (rotacyjne) lub pryzmatyczne (liniowe). Przeguby obrotowe umożliwiają obrót jednego członu względem drugiego. Przeguby pryzmatyczne umożliwiają ruch liniowy jednego członu względem drugiego. Przeguby manipulatora mogą być napędzane elektrycznie, hydraulicznie lub pneumatycznie. Liczba przegubów określa liczbę stopni swobody manipulatora. Manipulator powinien mieć, na ogół, co najmniej sześć stopni swobody trzy do tzw. pozycjonowania oraz trzy do tzw. orientowania. Jeżeli ma mniej stopni swobody, to manipulator nie może osiągnąć każdego punktu przestrzeni z zadaną orientacją. Niektóre zadania wymagają większej niż sześć liczby stopni swobody (sięganie za przeszkodę, wokół niej). Ze wzrostem liczby stopni swobody zwiększają się trudności sterowania manipulatora. Jakość (sterowania) manipulatora Dokładność manipulatora jest miara określająca, jak blisko manipulator może dotrzeć do zadanego punktu przestrzeni. Powtarzalność jest miarą określającą jak blisko manipulator może ponownie dotrzeć do wcześniej osiągniętego punktu przestrzeni. Na ogół manipulatory maja. dobrą powtarzalność, lecz niezbyt dobrą dokładność. Najczęściej pozycję narzędzia oblicza się na podstawie pomiaru kątów lub przesunięć w przegubach zakładając geometrię manipulatora i jego sztywność. Nie stosuje się ani bezpośredniego pomiaru pozycji narzędzia, ani jego orientacji. Na dokładność wpływają więc błędy obliczeniowe, dokładność wykonania (obróbki) elementów, efekt elastyczności elementów, luzy w przekładniach itp. Dlatego wymagana jest duża sztywność robotów. Na powtarzalność wpływa w tych warunkach tzw. rozdzielczość układu sterowania, rozumiana jako najmniejsza zmiana ruchu, którą układ sterowania może rozpoznać. Jest ona obliczana jako iloraz całkowitej drogi przebywanej przez dany człon oraz liczby 2n. gdzie n jest liczbą bitów tzw. enkodera sterującego ruchem danego członu. 2
3 Układ sterowania robota Pod względem sterowania roboty dzieli się na działające w układzie otwartym (bez sprzężenia zwrotnego) i działające w układzie zamkniętym. Roboty działające w układzie otwartym były używane, przede wszystkim, do przenoszenia materiałów. Roboty działające w układzie ze sprzężeniem zwrotnym dzieli się na dwa rodzaje: 1) PTP (point to point) przechodzi od punktu do punktu przestrzeni roboczej według programu, bez narzucania trajektorii, 2) CP (continuous path ciągła ścieżka), kontrolowana jest cała droga końcówki roboczej. Parametry członu podsumowanie Kinematykę każdego robota można opisać przez podanie dla każdego członu wartości czterech parametrów. Pierwsze dwa opisują sam człon, a dwa następne połączenie członu z sąsiednim członem. W zazwyczaj spotykanym przypadku pary obrotowej, i jest zmienną konfiguracyjną, a pozostałe trzy wielkości są ustalonymi parametrami członu. Dla par przesuwnych d 1 jest zmienna, konfiguracyjną, a pozostałe trzy wielkości są ustalonymi parametrami członu. Określanie mechanizmów za pomocą tych wielkości odpowiada konwencji, znanej pod nazwą notacji Denavita-Hartenberga (Można stosować również inne metody opisu mechanizmów). Określanie parametrów Denavita-Hartenberga: Pełny opis stałych parametrów kinematyki sześcioczłonowego manipulatora wymaga podania 18 liczb. W przypadku manipulatora sześcioczłonowego z wszystkimi parami obrotowymi te 18 liczb podaje się w postaci sześciu zbiorów (a i, i, d i). Długość członu Na rys. przedstawiono człon i-1 oraz prostą obustronnie prostopadłą do osi, wzdłuż której mierzy się długość członu a i-1. 3
4 Inny sposób ułatwiający znalezienie parametru a i-1 polega na wyobrażeniu sobie cylindra o zwiększającej się średnicy, o osi pokrywającej się z osią pary obrotowej i-1. W momencie zetknięcia powierzchni cylindra z osią przegubu i promień cylindra odpowiada odległości a i-1. Kąt skręcenia członu Drugi parametr, niezbędny do zdefiniowania względnego usytuowania dwóch osi, nazywany jest kątem skręcenia członu. Jeśli wyobrazimy sobie płaszczyznę, której normalna odpowiada dopiero co znalezionej obustronnie prostopadłej do osi połączeń ruchowych, a następnie zrzutujemy obie osie i-1 oraz i na tę płaszczyznę, to możemy zmierzyć kąt zawarty między nimi. Kąt ten jest mierzony w kierunku od osi i-1 do osi i, zgodnie z regułą prawej ręki wokół prostej a i-1. Długość a i kąt Na rys. kąt i-1 odpowiada kątowi między osiami i-1 oraz i (gdzie linie równoległe oznaczono trzema kreskami). W przypadku przecinania się osi kąt skręcenia jest mierzony w płaszczyźnie zawierającej obie osie. Jednak nie można określić znaku W tym specjalnym przypadku znak kąta można przyjąć dowolnie. Odsunięcie Połączenie członu i-1 z członem i (a i-1 jest prostą obustronnie prostopadłą do obu osi członu i-1; a i jest prostą obustronnie prostopadła, do osi członu i-1). Pierwszy parametr połączenia, tzn. odsunięcie członu d i, określa odległość ze znakiem, mierzoną wzdłuż osi połączenia i od punktu, w którym a i-1 przecina tę oś, do punktu przecięcia prostej a i ze wspólną osią. Odsunięcie d i pokazano na rys. Odsunięcie członu d i jest zmienne, jeśli połączenie i jest parą przesuwną. 4
5 Kąt Drugim parametrem połączenia jest kąt zawarty między przedłużeniem a i-1 oraz a i, mierzony wokół osi połączenia i. Pokazano to na poprzednim rys., przy czym dwoma kreskami oznaczono linie równoległe. Parametr ten oznaczono i. Jest on zmlenną konfiguracyjną dla pary obrotowej. Odsunięcie oraz kąt Odsunięcie członu d oraz kąt konfiguracji pary obrotowej są wystarczającymi parametrami, za pomocą których można opisać istotę połączenia dwóch sąsiednich członów 5
6 A. Przygotowanie stanowiska Ze strony ściągnąć plik RTSX_beta1.zip Utworzyć katalog i rozpakować RTSX_beta1.zip Następnie w programie Scilab wskazać go jako bieżący katalog Rys. 1 Wskazywanie katalogu roboczego w programie Scilab W konsoli Scilab wpisać polecenie: exec("startup_rtsx.sce",-1); aby uruchomić program. Następnie -->rprdemo; aby uruchomić demonstrację 6
7 Robot 1 W konsoli Scilab wpisać: Definicje członów i przegubów: L(1)=Link([ pi/2]); L(2)=Link([-pi/ pi/2]); Rob00=SerialLink(L); PlotRobot(Rob00, [0 0]); Robot 2 L(2)=Link([-pi/ ]); L(3)=Link([-pi/2 1 0 pi/2]); rob01=seriallink(l); PlotRobot(rob01, [0 0 0]); Robot Puma -->L(1)=Link([ pi/2]); -->L(2)=Link([-pi/ ]); -->L(3)=Link([-pi/ ]); -->L(4)=Link([-pi/ pi/2]); -->rob02=seriallink(l); -->PlotRobot(rob02, [ ]); Wykorzystano materiały z książki Domachowski Automatyka i robotyka Industrial Robot: An International Journal, 7
8 Zadanie 1: Korzystając z dokumentacji programu RTSX ( uzupełnić układ kinematyczny, aby uzyskać model robota Puma 562 Rys. 2 Robot Puma 562 [2] Zadanie 2: Zbudować model robota o konstrukcji jak na rys. i następujących długościach i przesunięciach kolejnych członów: 0: (80, 15); 1: (75,10); 3 (55) [cm] 8
9 Opisy wybranych poleceń Link() definiowanie przegubu robota Składnia L = Link(lparam, jtype,options) parametry: lparam wektor [1x4] lub [1x5] zawierający odstępy i kąty w następującej kolejności: [ theta d a alpha (offset)], gdzie offset jest opcjonalny. jtype typ przegubu (domyśłnie) R = obrotowy (revolute), P = (prismatic) sigma, (RP) typ połączenia: 0 ( R ) = revolute, 1 ( P ) = prismatic theta kąt przegubu d odsunięcie członu a długość członu alpha kąt skręcenia członu offset odsunięcie przegubu Przykłady: L = Link([0 1 1 pi/2]); // tworzy pojedynczy obrotowy człon, d=1, a=1, alpha=pi/2 // theta jest zmienną przegubu (połączenia) // tworzenie łańcucha członów L(1) = Link([ ]); L(2) = Link([pi/ ],'P'); // człon jest liniowy d=zmienna o początkowej wartości 1 L(3) = Link([0 0 2 pi],'r','m',0.43,'r',[0, 0.018, 0],'qlim',[-pi/2 pi/2]); SerialLink( ) SerialLink( ) funkcja składania członów robota w łańcuch na podstawie z członów zdefiniowanych za pomocą polecenia Link( ). Robotinfo () Robotinfo wyświetla informacja na temat struktury kinematycznej robota PlotRobot() PlotRobot() - otwiera okno graficzne zawierające scenę, na której umieszczany jest model kinematyczny robota Składnia: T=PlotRobot(robot, q, options) robot model robota q wektor [1 x nq] zmiennych określających pozycje członów w przegubach, gdzie nq = liczba zmiennych przegubów. Option - opcje, takie jak: grid wyświetlanie siatki i inne. 9
10 AnimateRobot() AnimateRobot() wyświetla poruszającego się robota według sekwencji wartości opisujących zmienne przegubów (kąty lub przesunięcia). Przykład: clear L; a1 = 1.2; a2 = 1; L(1)=Link([0 0 a1 0]); L(2)=Link([0 0 a2 0]); twolink=seriallink(l); // a 2-członowy manipulator // generowane są zbiory punktów trajektorii ruchów, które obejmują tutaj ruch po pełnych okręgach t = [0:0.01:1]'; punktów trajektorii qs = [2*pi*t 2*pi*t]; AnimateRobot(twolink,qs); // szereg czasowy do obliczenia zbiór 10
Podstawy robotyki wykład III. Kinematyka manipulatora
Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1 PUMA układy
Roboty przemysłowe. Wprowadzenie
Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji
1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE
1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
Laboratorium z Napęd Robotów
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium z Napęd Robotów Robot precyzyjny typu SCARA Prowadzący: mgr inŝ. Waldemar Kanior Sala 101, budynek
Laboratorium Podstaw Robotyki ĆWICZENIE 5
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 5 Rotacje 3D, transformacje jednorodne i kinematyka manipulatorów. Celem ćwiczenia jest analiza wybranych
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
Roboty przemysłowe. Cz. II
Roboty przemysłowe Cz. II Klasyfikacja robotów Ze względu na rodzaj napędu: - hydrauliczny (duże obciążenia) - pneumatyczny - elektryczny - mieszany Obecnie roboty przemysłowe bardzo często posiadają napędy
PL 214592 B1. POLITECHNIKA CZĘSTOCHOWSKA, Częstochowa, PL 14.03.2011 BUP 06/11
PL 214592 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 214592 (13) B1 (21) Numer zgłoszenia: 388915 (51) Int.Cl. G01B 5/28 (2006.01) G01C 7/04 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: PODSTAWY ROBOTYKI 2. Kod przedmiotu: Sr 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
Materiały pomocnicze do ćwiczeń laboratoryjnych
Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki
Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.
Instalacja
Wprowadzenie Scilab pojawił się w Internecie po raz pierwszy, jako program darmowy, w roku 1994 Od 1990 roku pracowało nad nim 5 naukowców z instytutu INRIA (Francuski Narodowy Instytut Badań w Dziedzinie
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają
Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.
Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając
4.1. Modelowanie matematyczne
4.1. Modelowanie matematyczne Model matematyczny Model matematyczny opisuje daną konstrukcję budowlaną za pomocą zmiennych. Wartości zmiennych będą należały to zbioru liczb rzeczywistych i będą one reprezentować
Bezpieczna obsługa oraz praca robota na stanowisku przemysłowym
Bezpieczna obsługa oraz praca robota na stanowisku przemysłowym Dr inż. Tomasz Buratowski Wydział inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki Bezpieczna Obsługa Robota Podstawowe
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207396 (13) B1 (21) Numer zgłoszenia: 363254 (51) Int.Cl. F16C 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 03.11.2003
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Wprowadzenie do robotyki
Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które
MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne
Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych
Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Wprowadzenie Utworzone elementy bryłowe należy traktować jako wstępnie wykonane elementy, które dopiero po dalszej obróbce będą gotowymi częściami
Analiza kinematyczna i dynamiczna układu roboczego. koparki DOSAN
Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium 7 Analiza kinematyczna i dynamiczna układu roboczego koparki DOSAN Maszyny górnicze i budowlne Laboratorium 6
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017
KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN. Instrukcja do ćwiczeń laboratoryjnych z elementów analizy obrazów
POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z elementów analizy obrazów Przetwarzanie obrazu: skalowanie miary i korekcja perspektywy. Opracował:
Struktura manipulatorów
Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest
Układy współrzędnych GUW, LUW Polecenie LUW
Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota
PL 213839 B1. Manipulator równoległy trójramienny o zamkniętym łańcuchu kinematycznym typu Delta, o trzech stopniach swobody
PL 213839 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213839 (13) B1 (21) Numer zgłoszenia: 394237 (51) Int.Cl. B25J 18/04 (2006.01) B25J 9/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Kinematyka robotów mobilnych
Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:
Techniki wizualizacji. Ćwiczenie 10. System POV-ray tworzenie animacji
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 10 System POV-ray tworzenie animacji Celem ćwiczenia
Roboty manipulacyjne (stacjonarne)
Roboty manipulacyjne (stacjonarne) Podstawowe układy i zespoły Roboty przemysłowe składa się z następujących trzech podstawowych układów: zasilania, sterowania i ruchu. Układ zasilania Układ zasilania
ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F
ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F Wstęp Roboty przemysłowe FANUC Robotics przeznaczone są dla szerokiej gamy zastosowań, takich jak spawanie ( Spawanie to jedno z najczęstszych zastosowań robotów.
Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113
Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka
Zad. 7: Sterowanie manipulatorem przypadek 3D
Zad. 7: Sterowanie manipulatorem przypadek 3D 1 Cel ćwiczenia Wykorzystanie w praktyce mechanizmu dziedziczenia. Wykształcenie umiejętności korzystania z szablonu list oraz dalsze rozwijanie umiejętności
Projektowanie systemów zrobotyzowanych
ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 2 Temat: Rozpoczęcie pracy z programem RobotStudio Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin
(12) OPIS PATENTOWY (19) PL (11) 174940 (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 174940 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 305007 (22) Data zgłoszenia: 12.09.1994 (51) IntCl6: B25J 9/06 B25J
Podstawy robotyki wykład I. Wprowadzenie Robot i jego historia
Podstawy robotyki Wykład I Wprowadzenie Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kamienie milowe robotyki 1947 pierwszy teleoperator sterowany
Sterowanie, uczenie i symulacja robotów przemysłowych Kawasaki
Ćwiczenie VIII LABORATORIUM MECHATRONIKI IEPiM Sterowanie, uczenie i symulacja robotów przemysłowych Kawasaki Zał.1 - Roboty przemysłowe i mobilne. Roboty Kawasaki - charakterystyka Zał.2 - Oprogramowanie
Projektowanie systemów zrobotyzowanych
ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 4 Temat: Programowanie trajektorii ruchu Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin Wiśniewski
ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY
MECHNIK 7/ Dr inż. Borys BOROWIK Politechnika Częstochowska Instytut Technologii Mechanicznych DOI:.78/mechanik..7. NLIZ KINEMTYKI MNIPULTORÓW N PRZYKŁDZIE ROBOT LINIOWEGO O CZTERECH STOPNICH SWOBODY Streszczenie:
Kalibracja robotów przemysłowych
Kalibracja robotów przemysłowych Rzeszów 27.07.2013 Kalibracja robotów przemysłowych 1. Układy współrzędnych w robotyce... 3 2 Deklaracja globalnego układu współrzędnych.. 5 3 Deklaracja układu współrzędnych
T13 Modelowanie zautomatyzowanych procesów wytwórczych, programowanie maszyn CNC
T13 Modelowanie zautomatyzowanych procesów wytwórczych, programowanie maszyn CNC 1. Wstęp Wg normy ISO ITR 8373, robot przemysłowy jest automatycznie sterowaną, programowalną, wielozadaniową maszyną manipulacyjną
PODSTAWY ROBOTYKI. Opracował: dr hab. inż. Adam Rogowski
PODSTAWY ROBOTYKI Opracował: dr hab. inż. Adam Rogowski Autor wykładu: dr hab. inż. Adam Rogowski pok. ST 405 adam.rogowski@pw.edu.pl Literatura: - Treść niniejszego wykładu dostępna na www.cim.pw.edu.pl/lzp
Wprowadzenie do robotyki
Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które
Definicja obrotu: Definicja elementów obrotu:
5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód
WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE
OBRÓBKA SKRAWANIEM Ćwiczenie nr 2 WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE opracował: dr inż. Tadeusz Rudaś dr inż. Jarosław Chrzanowski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK
PL 203749 B1. Akademia Górniczo-Hutnicza im. Stanisława Staszica,Kraków,PL 17.10.2005 BUP 21/05. Bogdan Sapiński,Kraków,PL Sławomir Bydoń,Kraków,PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203749 (13) B1 (21) Numer zgłoszenia: 367146 (51) Int.Cl. B25J 9/10 (2006.01) G05G 15/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
Zautomatyzowane systemy produkcyjne Kod przedmiotu
Zautomatyzowane systemy produkcyjne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Zautomatyzowane systemy produkcyjne Kod przedmiotu 06.6-WZ-LogP-ZSP-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania
Modelowanie powierzchniowe cz. 2
Modelowanie powierzchniowe cz. 2 Tworzenie modelu przez obrót wokół osi SIEMENS NX Revolve Opis okna dialogowego Section wybór profilu do obrotu Axis określenie osi obrotu Limits typ i parametry geometryczne
Z poprzedniego wykładu:
Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary
PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN
PRO/ENGINEER ĆW. Nr. MODELOWANIE SPRĘŻYN 1. Śruba walcowa o stałym skoku W programie Pro/Engineer modelowanie elementów typu sprężyny można realizować poleceniem Insert/Helical Sweep/Protrusin. Dla prawozwojnej
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące
IRONCAD IRONCAD 2016 TriBall o Narzędzie pozycjonujące Spis treści 1. Narzędzie TriBall... 2 2. Aktywacja narzędzia TriBall... 2 3. Specyfika narzędzia TriBall... 4 3.1 Kula centralna... 4 3.2 Kule wewnętrzne...
Rys. 1. Brama przesuwna do wykonania na zajęciach
Programowanie robotów off-line 2 Kuka.Sim Pro Import komponentów do środowiska Kuka.Sim Pro i modelowanie chwytaka. Cel ćwiczenia: Wypracowanie umiejętności dodawania własnych komponentów do programu oraz
Modelowanie części w kontekście złożenia
Modelowanie części w kontekście złożenia W rozdziale zostanie przedstawiona idea projektowania części na prostym przykładzie oraz zastosowanie projektowania w kontekście złożenia do wykonania komponentu
Kinematyka manipulatorów robotów
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Podstawowe pojęcia: Kinematyka manipulatorów robotów Ogniwo(człon, ramię) bryła sztywna(zbiór punktów materialnych, których wzajemne położenie jest stałe). Przegub(złącze)
Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)
Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,
Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).
Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH
Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki
Technologie informacyjne - wykład 12 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 12 - Prowadzący: Dmochowski
3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.
3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane
Rys. 18a). Okno kalibracji robotów, b)wybór osi robota, która wymaga kalibracji.
kalibracja robotów może się przyczynić do awarii maszyn, co jest bardzo kosztowne i wymaga długich napraw, a więc i zatrzymania produkcji. Opis technik kalibracji został opracowany w oparciu o podręcznik
PL B BUP 26/ WUP 04/07 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11) (13) B1
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)194002 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 340855 (22) Data zgłoszenia: 16.06.2000 (51) Int.Cl. G01B 7/14 (2006.01)
Szczegółowy opis techniczny i wymagania w zakresie przedmiotu zamówienia
Szczegółowy opis techniczny i wymagania w zakresie przedmiotu zamówienia Przedmiotem zamówienia jest dostawa współpracującego manipulatora przemysłowego o 6 stopniach swobody i udźwigu nominalnym 5kg wraz
ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl
ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y sterowanie Manipulator mechaniczny układ przeznaczony do realizacji niektórych funkcji ręki ludzkiej. Manus (łacina) - ręka układ mechaniczny Karel Capek R.U.R.
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y
MECHANIZMY ROBOTÓW M A N I P U L A T O R Y sterowanie Manipulator mechaniczny układ przeznaczony do realizacji niektórych funkcji ręki ludzkiej. Manus (łacina) - ręka układ mechaniczny Karel Capek R.U.R.
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO
SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018
Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA RiSM Układy sterowania robotów przemysłowych. Warstwa programowania trajektorii ruchu. Warstwa wyznaczania trajektorii ruchu. Dr inż. Mariusz Dąbkowski Zadaniem
Matematyka 2 wymagania edukacyjne
Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Rzutowanie z 4D na 3D
Politechnika Wrocławska Instytut Informatyki Automatyki i Robotyki Wizualizacja danych sensorycznych Rzutowanie z 4D na 3D Autor: Daniel Piłat Opiekun projektu: dr inż. Bogdan Kreczmer 15 czerwca 2010
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 26/17
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229343 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 419886 (22) Data zgłoszenia: 20.12.2016 (51) Int.Cl. A61F 2/38 (2006.01)
R 1. Robot o równoległej strukturze kinematycznej i czterech stopniach swobody. Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych
Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych Podstawowa instrukcja laboratoryjna R 1 Robot o równoległej strukturze kinematycznej i czterech stopniach swobody. Instrukcja dla studentów
Wymiarowanie jest to podawanie wymiarów przedmiotów na rysunkach technicznych za pomocą linii, liczb i znaków wymiarowych.
WYMIAROWANIE (w rys. technicznym maszynowym) 1. Co to jest wymiarowanie? Aby rysunek techniczny mógł stanowić podstawę do wykonania jakiegoś przedmiotu nie wystarczy bezbłędne narysowanie go w rzutach
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL INSTYTUT TECHNOLOGII EKSPLOATACJI. PAŃSTWOWY INSTYTUT BADAWCZY, Radom, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207917 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380341 (22) Data zgłoszenia: 31.07.2006 (51) Int.Cl. G01B 21/04 (2006.01)
Ćwiczenie nr 3 Edycja modeli bryłowych
Ćwiczenie nr 3 Edycja modeli bryłowych 1. Fazowanie oraz zaokrąglanie. Wykonaj element pokazany na rys. 1a. Wymiary elementu: średnice 100 i 40. Długość wałków 30 i 100 odpowiednio. Następnie wykonaj fazowanie
Automatyka i sterowania
Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Przygotowanie do pracy frezarki CNC
Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Maszyny i urządzenia technologiczne laboratorium Przygotowanie do pracy frezarki CNC Cykl I Ćwiczenie 2 Opracował: dr inż. Krzysztof
Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny
Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny 16 listopada 2006 1 Wstęp Robot Khepera to dwukołowy robot mobilny zaprojektowany do celów badawczych i edukacyjnych. Szczegółowe
Roboty przemysłowe - wybrane pojęcia, budowa, zastosowania, przykłady
Roboty przemysłowe - wybrane pojęcia, budowa, zastosowania, przykłady dr inż. Wojciech Muszyński Zakład Podstaw Cybernetyki i Robotyki wojciech.muszynski@pwr.wroc.pl Mechanizacja, Automatyzacja, Robotyzacja
Wyciągnięcie po linii prostej w ujęciu powierzchniowym w NX firmy Siemens Industry Software
Wyciągnięcie po linii prostej w ujęciu powierzchniowym w NX firmy Siemens Industry Software 1. Extrude opis okna dialogowego: Section wybór profilu do wyciągnięcia, Direction określenie kierunku i zwrotu
Tworzenie zespołu. Ustalenie aktualnego projektu. Laboratorium Technik Komputerowych I, Inventor, ćw. 4
Tworzenie zespołu Wstawianie komponentów i tworzenie wiązań między nimi. Ustalenie aktualnego projektu Projekt, w Inventorze, to plik tekstowy z rozszerzeniem.ipj, definiujący foldery zawierające pliki
Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN
Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN Program GEOPLAN umożliwia zmianę układu współrzędnych geodezyjnych mapy. Można tego dokonać przy udziale oprogramowania przeliczającego
R11. Programowanie robota opartego o kinematykę platformy Sterwarta-Gougha. Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych
Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych Instrukcja laboratoryjna R Programowanie robota opartego o kinematykę platformy Sterwarta-Gougha. Instrukcja dla studentów studiów dziennych.
Z a p r o s z e n i e n a W a r s z t a t y
Carl Zeiss Sp. z o.o. Metrologia Przemysłowa Z a p r o s z e n i e n a W a r s z t a t y 09-1 3. 0 5. 2 0 1 6 - M i k o ł ó w 16-2 0. 0 5. 2 0 1 6 - W a r s z a w a Temat: AUKOM Level 1 Zapraszamy wszystkich