Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium
|
|
- Zbigniew Tomaszewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja , 7 Listopada, 2005
2
3 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania dotyczace wyboru, montażu, uruchomienia, obs lugi, programowania, serwisu oraz napraw manipulatorów i robotów. Zagadnieniem realizowanym najcześciej jest programowanie. Z lożoność tego procesu wymaga od programisty solidnych podstaw matematycznych. Mimo, że wspó lczesne systemy sterowania robotów sa wyposażone w narzedzia programistyczne znacznie u latwiajace opracowanie programu, czesto do realizacji niestandardowych funkcji programista musi opracowywać np. trajektorie maszyny pos lugujac sie aplikacjami zewnetrznymi. Jednym z trudniejszych zagadnień sa proste i odwrotne zadania kinematyki robotów. Notacja Denavita-Hartenberga umożliwia usprawnienie żmudnych rachunków.
4
5 Rozdzia l 1 Notacja Denavita-Hartenberga Wyznaczanie prostego i odwrotnego zadania kinematyki dla robotów przestrzennych o wielu stopniach swobody w oparciu o równania algebraiczne nie jest wygodne. Bywa czasoch lonne i czesto prowadzi do b l ednych obliczeń. W praktyce do opisu robota wykorzystuje sie notacje parametryzujac a poszczególne ogniwa - cz lony maszyny. Umożliwia ona wprowadzenie rachunku macierzowego przez co podstawowe obliczenia można bez trudu zalgorytmizować i w prosty sposób opracować dla nich funkcje, programy oraz aplikacje komputerowe. 1.1 Notacja Denavita-Hartengerga (D-H) Notacja ta jest metoda systematycznego opisu warunków kinematycznych. Zosta la na wprowadzona w celu rozważania kinematyki mechanizmów przestrzennych. Znalaz la ona znaczne rozszerzenie w mechanice mechanizmów, a przede wszystkim w robotyce. Metoda opiera sie na macierzowym (4 4 - wymiarowym) przedstawieniu pozycji i orientacji cia la sztywnego i wykorzystuje minimalna liczbe parametrów, tak zwanych parametrów DH, do pe lnego opisu kinematyki tegoż cia la. Idea metody polega na tym, aby podać możliwie jednoznaczny przepis (instrukcje) dla uk ladu wspó lrz ednych sztywno powiazanych z cia lem. Z rozważań kinematycznych wynika, że racjonalnie jest przy tym wybrać osie przegubów mechanizmu jako osie wspó lrzednych. Przewidziana do tego jest oś z. Rysunek 1.1 pokazuje dwa sasiadu- jace cia la uk ladu mechanicznego i odpowiadajace im uk lady wspó lrz ednych wed lug notacji DH. Uk lady te sa ustalone przez dwie regu ly. Poczatek uk ladu wspó lrz ednych KS leży w punkcie przeciecia wspólnej normalnej przegubu i oraz i+1 z osia przegubu i+1
6 2 Notacja Denavita-Hartenberga Rysunek 1.1: Zasada tworzenia parametrów DH orientacja KS jest tak dobrana, że: oś z wskazuje w kierunku osi przegugu i+1, oś x wskazuje w kierunku przed lużoenj wspólnej normalnej, oś y daje si e określić z warunku uk ladu prawoskr etnego Parametry D-H Po lożenie uk ladu KS i wzgl edem KS i 1 jest określane przez cztery parametry Denavita-Hartenberga, gdzie θ i - kat obrotu wokó l osi z i 1, to znaczy kat (x i 1, H i O i ), d i - przesuni ecie w kierunku z i 1, to znaczy odleg lość H i O i, a i - d lugość wspólnej normalnej H i O i, α i - kat obrotu wokó l osi x i, to znaczy kat (z i 1, z i ). Przez zdefiniowanie tych poj eć widać, że transformacja wspó lrz ednych KS i na KS i 1 może być dokonana przez zestaw kolejnych transformacji elementarnych: rotacji KS i 1 wokó l osi z i 1 (kat θ i ), translacji w kierunku osi z i 1 (odcinek d i ) i w kierunku osi x i (odcinek a i );
7 1.2 Notacja D-H w praktyce 3 gdzie: rotacji wokó l osi x i (kat α i ). Obowiazuje wiec formu la T i 1 i = ROT (z, θ i ) T RANS(a i, 0, d i ) ROT (x, α i ), (1.1) ROT (z, θ i ) = TRANS(a i, 0, d i ) = ROT (x, α i ) = cosθ i sinθ i 0 0 sinθ i cosθ i a i d i cosθ i sinα i 0 0 sinα i cosα i Notacja D-H w praktyce Dla wydajnego zastosowania tej koncepcji należy mieć jeszcze na uwadze pewne przypadki szczególne. W zastosowaniach technicznych chodzi czesto o przeguby z jednym stopniem swobody. Wtedy jeden z czterech parametrów DH jest wspó lrz edn a uogólniona. Tak wiec, w przypadku przegubu obrotowego θ i jest zmienna przegubu (q i = θ i ), w przypadku przegubu posuwistego d i jest zmienna przegubu (q i = d i ). Notacja DH nie zawsze jest jednoznaczna. Widać to naj latwiej przy równoleg lych osiach przegubów. W tym przypadku istnieje dowolnie wiele wspólnych normalnych. Skutek: d i, jest nieoznaczone. Wyjściem z tej sytuacji jest dowolne ustalenie d i, na przyk lad d i = 0. Przy przecinajacych sie osiach przegubów musi być a i = 0. Jeżeli osie przegubów sa wzajemnie prostopad le, to obowiazuje α i = ±π/2. Specjalnych regulacji wymaga także ustalenie uk ladu wspó lrz ednych bazowych KS 0 badź uk ladu wspó lrz ednych ostatniego cz lonu KS N, ponieważ uk lady te nie maja ani uk ladów poprzedzajacych, ani nastepuj acych. Dla uk ladu wspó lrz ednych bazowych s luszna jest tylko regu la, że oś z musi wskazywać w kierunku osi przegubu. Oś x 0 lub oś y 0 moga być wybrane dowolnie. W ostatnim cz lonie poczatek uk ladu wspó lrz ednych KS N może być wybrany dowolnie. Celowe jest jednak umieszczenie go w punkcie efektora. Oprócz tego, wed lug notacji DH, oś x N musi wskazywać na przed lużenie normalnej uk ladu poprzedzajacego. Wszystkie dalsze ustalenia sa dowolne.
8 4 Notacja Denavita-Hartenberga Rysunek 1.2: Manipulator typu SCARA 1.3 Ćwiczenia 1. Wyprowadź macierzowa postać równości Określ notacje DH dla manipulatora p laskiego sk ladajacego sie z trzech par obrotowych. 3. Określ notacj e DH dla manipulatora typu SCARA Określ notacj e DH dla manipulatora przestrzennego XYZ. 5. Wymień zalety notacji DH. 6. Wymień wady notacji DH. 7. Do jakich celów wykorzystana jest notacja DH? 8. W jakim przemyśle wykorzystywane s a manipulatory (roboty) typu SCARA.
9 Dodatek A MuPad Ciag dalszy pracy z MuPadem (wersja Light). A.1 Macierze Zapoznaj si e z materia lem ze strony nr 60 Tutoriala. Dotyczy on zapisu i elemnetarnych operacji na macierzach w systemie. A.2 Pochodne i różniczki Zapoznaj si e z materia lem ze strony nr 88 Tutoriala. Dotyczy on zapisu i elemnetarnych operacji z wykorzystaniem pochodnych i różniczek.
10
11 Bibliografia [1] M.W. Spong, M. Vidyasagar, Dynamika i Sterowanie Robotów, WNT, Warszawa. [2] J.J. Craig, Wprowadzenie do Robotyki, WNT, Warszawa. [3] MuPad Team, MuPAD Tutorial, MuPAD v
12 8 BIBLIOGRAFIA
Zastosowanie Robotów. Ćwiczenie 4. Mariusz Janusz-Bielecki. laboratorium
Zastosowanie Robotów laboratorium Ćwiczenie 4 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.001.00, 11 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3
WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń
Ćwiczenie nr 520: Metody interpolacyjne planowania ruchu manipulatorów
Zak lad Podstaw Cybernetyki i Robotyki PWr, Laboratorium Robotyki, C-3, 010 Ćwiczenie nr 520: Metody interpolacyjne planowania ruchu manipulatorów 1 Wst ep Celem ćwiczenia jest zapoznanie studentów z metodami
Zastosowanie Robotów. Ćwiczenie 1. Mariusz Janusz-Bielecki. laboratorium
Zastosowanie Robotów laboratorium Ćwiczenie 1 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.003.00, 3 Grudnia, 2006 Wst ep Robotyka jest stosunkowo m lod a dziedzina nowoczesnej nauki
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Podstawy robotyki wykład III. Kinematyka manipulatora
Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1 PUMA układy
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Laboratorium Podstaw Robotyki ĆWICZENIE 5
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 5 Rotacje 3D, transformacje jednorodne i kinematyka manipulatorów. Celem ćwiczenia jest analiza wybranych
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
Podstawy robotyki - opis przedmiotu
Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka
Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut
Podstawy Robotyki. Ćwiczenie 2. Mariusz Janusz-Bielecki. laboratorium
Podstawy Robotyki laboratorium Ćwiczenie 2 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.003.00, 3 Grudnia, 2006 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania dotyczace
Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz
Laboratorium Badań Technoklimatycznych i Maszyn Roboczych Ogłoszenie Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz. 9 00 12 00. II
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Modelowanie i symulacja II Modelling and Simulation II. Automatyka i Robotyka II stopień ogólno akademicki studia stacjonarne
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Modelowanie i symulacja II Modelling and Simulation II A. USYTUOWANIE
Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Roboty przemysłowe Rok akademicki: 2015/2016 Kod: RME-1-504-s Punkty ECTS: 12 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Poziom studiów: Studia I stopnia
Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
Instytut Politechniczny Zakład Elektrotechniki i Elektroniki
Kod przedmiotu: PLPILA02-IPELE-I-VIIsD4-2013SAiE-S Pozycja planu: D4 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Podstawy robotyki 2 Kierunek studiów Elektrotechnika 3 Poziom studiów
Manipulator OOO z systemem wizyjnym
Studenckie Koło Naukowe Robotyki Encoder Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska Manipulator OOO z systemem wizyjnym Raport z realizacji projektu Daniel Dreszer Kamil Gnacik Paweł
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
Rotacje i drgania czasteczek
Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: MECHANIKA I BUDOWA MASZYN Rodzaj przedmiotu: obowiązkowy na kierunku Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia Liczba godzin/tydzień:
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Roboty przemysłowe. Budowa i zastosowanie, wyd, 2 Honczarenko Jerzy WNT 2010
Roboty przemysłowe. Budowa i zastosowanie, wyd, 2 Honczarenko Jerzy WNT 2010 Wstęp 1. Rozwój robotyki 1.1. Rys historyczny rozwoju robotyki 1.2. Dane statystyczne ilustrujące rozwój robotyki przemysłowej
Kinematyka manipulatorów robotów
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Podstawowe pojęcia: Kinematyka manipulatorów robotów Ogniwo(człon, ramię) bryła sztywna(zbiór punktów materialnych, których wzajemne położenie jest stałe). Przegub(złącze)
MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Statystyka w analizie i planowaniu eksperymentu
29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016 Kierunek studiów: Zarządzanie i inżynieria
Statystyka w analizie i planowaniu eksperymentu
31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś
Grupy i cia la, liczby zespolone
Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 10/05
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207396 (13) B1 (21) Numer zgłoszenia: 363254 (51) Int.Cl. F16C 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 03.11.2003
i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij
Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ
Suma i przeciȩcie podprzestrzeń, suma prosta, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeń suma prosta przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1 W zależności od wartości parametru p podaj wymiar przestrzeni W = v 1 v v 3 gdzie p 0 v 1 = 1 + p 3 v = 5 3
Identyfikacja parametrów geometrycznych robota dydaktycznego ROMIK
Ientyfikacja parametrów geometrycznych robota yaktycznego ROMIK I. Dul eba, A. Mazur, M. Wnuk Cel ćwiczenia. Celem ćwiczenia jest zapoznanie sie ze struktura kinematyczna robota yaktycznego ROMIK oraz
Algorytm określania symetrii czasteczek
O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Zarządzanie i inżynieria
MiNI Akademia Matematyki na Politechnice Warszawskiej
MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2015 Kierunek studiów: Zarządzanie i inżynieria
FUNKCJE LICZBOWE. x 1
FUNKCJE LICZBOWE Zbiory postaci {x R: x a}, {x R: x a}, {x R: x < a}, {x R: x > a} oznaczane sa symbolami (,a], [a, ), (,a) i (a, ). Nazywamy pó lprostymi domknie tymi lub otwartymi o końcu a. Symbol odczytujemy
ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl
ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....
2.12. Zadania odwrotne kinematyki
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23
Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.
Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa
Dyskretne modele populacji
Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF
29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).
Symetria w obliczeniach molekularnych
Zak lad Metod Obliczeniowych Chemii UJ 15 marca 2005 1 2 Możliwości przyspieszenia obliczeń 3 GAMESS 2004 4 Zastosowania symetrii Zmniejszenie zapotrzebowania na zasoby (procesor, pami eć, dysk) Utrzymanie
Matematyka A, klasówka, 24 maja zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le. rozwia
Matematyka A, klasówka, 4 maja 5 Na prośbe jednej ze studentek podaje zania zadań z kolokwium z matematyki A w nadziei, że pope lni lem wielu b le dów Podać definicje wektora w lasnego i wartości w lasnej
Niezb. ednik matematyczny. Niezb. ednik matematyczny
Niezb ednik matematyczny Niezb ednik matematyczny Liczby zespolone I Rozważmy zbiór R R (zbiór par liczb rzeczywistych) i wprowadźmy w nim nastepuj ace dzia lania: z 1 + z 2 = (x 1, y 1 ) + (x 2, y 2 )
Ekonomia matematyczna i dynamiczna optymalizacja
Ekonomia matematyczna i dynamiczna optymalizacja Ramy wyk ladu i podstawowe narz edzia matematyczne SGH Semestr letni 2012-13 Uk lady dynamiczne Rozwiazanie modelu dynamicznego bardzo czesto można zapisać
Geometria odwzorowań inżynierskich Zadania 06
Scriptiones Geometrica Volumen I (2014), No. Z6, 1 9. Geometria odwzorowań inżynierskich Zadania 06 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Przenikanie siȩ figur (bry l) w rzutach Monge a
Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej
Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Manipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
Podstawy Robotyki. Ćwiczenie 5. Mariusz Janusz-Bielecki. laboratorium
Podstawy Robotyki laboratorium Ćwiczenie 5 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.001.00, 11 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania dotyczace
Równania Maxwella. prawo Faraday a. I i uogólnione prawo Ampera. prawo Gaussa. D ds = q. prawo Gaussa dla magnetyzmu. si la Lorentza E + F = q( Fizyka
Równania Maxwella L L S S Φ m E dl = t Φ e H dl = + t D ds = q B ds = 0 prawo Faraday a n I i uogólnione prawo Ampera i=1 prawo Gaussa prawo Gaussa dla magnetyzmu F = q( E + v B) si la Lorentza 1 Równania
Teoria maszyn mechanizmów
Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii
Liczby naturalne i ca lkowite
Chapter 1 Liczby naturalne i ca lkowite Koncepcja liczb naturalnych i proste operacje arytmetyczne by ly znane już od oko lo 50000 tysiȩcy lat temu. To wiemy na podstawie archeologicznych i historycznych
w = w i ξ i. (1) i=1 w 1 w 2 :
S. D. G lazek, www.fuw.edu.pl/ stglazek, 11.III.2005 1 I. MACIERZ LINIOWEGO ODWZOROWANIA PRZESTRZENI WEKTOROWYCH Wyobraźmy sobie, że przestrzeń wektorowa W jest zbudowana z kombinacji liniowych n liniowo
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA - ROBOTY PRZEMYSŁOWE 2. Kod przedmiotu: Err1 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Zastosowanie
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas
Suma i przeciȩcie podprzestrzeni, przestrzeń ilorazowa Javier de Lucas Ćwiczenie 1. Dowieść, że jeśli U i V s a podprzestrzeniami n-wymiarowej przestrzeni wektorowej oraz dim U = r i dim V = s, to max(0,
Wyk lad 7 Baza i wymiar przestrzeni liniowej
Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Niestacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Instytut Techniczny Karta przedmiotu obowiązuje studentów rozpoczynających studia w roku akademickim 01/013 Kierunek studiów: Informatyka Profil: Ogólnoakademicki
ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY
MECHNIK 7/ Dr inż. Borys BOROWIK Politechnika Częstochowska Instytut Technologii Mechanicznych DOI:.78/mechanik..7. NLIZ KINEMTYKI MNIPULTORÓW N PRZYKŁDZIE ROBOT LINIOWEGO O CZTERECH STOPNICH SWOBODY Streszczenie:
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA1 2. Kod przedmiotu: Ro1 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka Okrętowa
POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA
POLITECHNIKA WROCŠAWSKA WYDZIAŠ ELEKTRONIKI Kierunek: Specjalno± : Automatyka i Robotyka (AIR) Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Podatny manipulator planarny - budowa i sterowanie Vulnerable planar
Rok akademicki: 2014/2015 Kod: EIB-2-230-BN-s Punkty ECTS: 5. Kierunek: Inżynieria Biomedyczna Specjalność: Bionanotechnologie
Nazwa modułu: Telechirurgia i robotyka medyczna Rok akademicki: 2014/2015 Kod: EIB-2-230-BN-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria
po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)
Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji
Wyk lad 11 1 Wektory i wartości w lasne
Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: PODSTAWY ROBOTYKI 2. Kod przedmiotu: Sr 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka
Wyk lad 3 Wyznaczniki
1 Określenie wyznacznika Wyk lad 3 Wyznaczniki Niech A bedzie macierza kwadratowa stopnia n > 1 i niech i, j bed a liczbami naturalnymi n Symbolem A ij oznaczać bedziemy macierz kwadratowa stopnia n 1
Roboty. wirutalnym, a wi ec nie symulator software owy). Rodzaje robotów:
Roboty Robot: aktywny, sztuczny agent dzia lajacy w świecie fizycznym (nie wirutalnym, a wi ec nie symulator software owy). Rodzaje robotów: manipulatory inaczej robotyczne ramiona, przytwierdzone do miejsca
MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE
1 SZKO LA PODSTAWOWA HELIANTUS 0-89 WARSZAWA ul. BAŻANCIA 16 3 1 0 1 3 Oś liczbowa. Liczby ca lkowite x MATEMATYKA W SZKOLE HELIANTUS LICZBY NATURALNE I CA LKOWITE Prof. dr. Tadeusz STYŠ WARSZAWA 018 1
Transformacja Lorentza - Wyprowadzenie
Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Mechatronika Profil: Ogólnoakademicki
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy robotyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 6 38-0_1 Rok: III Semestr: 6 Forma studiów:
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 1. Wiadomości wstępne 1.1. Robotyka Po raz pierwszy terminu robot użył Karel Čapek w sztuce Rossum s Universal Robots w 1921r. Od
2.9. Kinematyka typowych struktur manipulatorów
Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:
SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],
Wykład Ćwiczenia Laborat orium. Zaliczenie na ocenę
Wydział Elektroniki PWr KARTA PRZEDMIOTU Nazwa w języku polskim: Robotyka 1 Nazwa w języku angielskim: Robotics 1 Kierunek studiów: Automatyka i Robotyka Stopień studiów i forma: I stopień, stacjonarna
Analiza zrekonstruowanych śladów w danych pp 13 TeV
Analiza zrekonstruowanych śladów w danych pp 13 TeV Odtwarzanie rozk ladów za pomoc a danych Monte Carlo Jakub Cholewiński, pod opiek a dr hab. Krzysztofa Woźniaka 31 lipca 2015 r. Jakub Cholewiński, pod
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy robotyki Rodzaj przedmiotu: Zaliczenie Język wykładowy:
Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy robotyki Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT 1 S 0 6 38-0_1 Rok: III Semestr: 6 Forma studiów:
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE
WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na
Geometria odwzorowań inżynierskich Zadania 01
Scriptiones Geometrica Volumen I (2007), No. Z1, 1 4. Geometria odwzorowań inżynierskich Zadania 01 Edwin Koźniewski Instytut Inżynierii Budowlanej, Politechnika Bia lostocka 1. Twierdzenie o punkcie wȩz
Rok akademicki: 2013/2014 Kod: RAR s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Roboty przemysłowe Rok akademicki: 2013/2014 Kod: RAR-1-604-s Punkty ECTS: 5 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność: - Poziom studiów: Studia
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Fizyka Nazwa w języku angielskim : Physics Kierunek studiów : Informatyka Specjalność (jeśli dotyczy) :
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium PODSTAWY ROBOTYKI Fundamentals of Robotics Forma studiów: studia
stosunek przyrostu funkcji y do odpowiadajacego dy dx = lim y wielkości fizycznej x, y = f(x), to pochodna dy v = ds edkości wzgl edem czasu, a = dv
Matematyka Pochodna Pochodna funkcji y = f(x) w punkcie x nazywamy granice, do której daży stosunek przyrostu funkcji y do odpowiadajacego mu przyrostu zmiennej niezaleźnej x, g przyrost zmiennej daży
Geometria odwzorowań inżynierskich Zadania 04
Scriptiones Geometrica Volumen I (2014), No. Z4, 1 3. Geometria odwzorowań inżynierskich Zadania 04 Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Punkt przebicia p laszczyzny prost a w aksonometrii
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 01/013 Kierunek studiów: Informatyka Profil: Ogólnoakademicki
Interfejs GSM/GPRS LB-431
LAB-EL Elektronika Laboratoryjna ul. Herbaciana 9, 05-816 Regu ly Witryna: http://www.label.pl/ Poczta: info@label.pl Tel. (22) 753 61 30, Fax (22) 753 61 35 Interfejs GSM/GPRS LB-431 modem LWA Instrukcja
Podstawy robotyki wykład VI. Dynamika manipulatora
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu
Normy wektorów i macierzy
Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,
Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C
Scriptiones Geometrica Volumen I (2014), No. 6C, 1 8. Geometria odwzorowań inżynierskich perspektywa wnȩtrza 06C Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa czo lowa wnȩtrza Rys. 6C-01:
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ROBOTYKA 3 2. Kod przedmiotu: Ro3 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Informatyka Stosowana
edzi (local edge detectors) Lokalne operatory wykrywania kraw
Lokalne operatory wykrywania kraw edzi (local edge detectors) Jeśli dwie reprezentacje sa zbyt odleg le, by można by lo latwo określić transformacje miedzy nimi, to u latwić zadanie można przez wprowadzenie
Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8