UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH"

Transkrypt

1 POLITECHNIKA GDAŃSKA KRZYSZTOF LIPIŃSKI UKŁADY WIELOCZŁONOWE Z WIĘZAMI JEDNOSTRONNYMI W ZASTOSOWANIU DO MODELOWANIA ZŁOŻONYCH UKŁADÓW MECHANICZNYCH GDAŃSK 2012

2 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz REDAKTOR PUBLIKACJI NAUKOWYCH Janusz T. Cieśliński REDAKTOR SERII Marek Szkodo RECENZENCI Wojciech Blajer Stanisław Wojciech PROJEKT OKŁADKI Jolanta Cieślawska Wydano za zgodą Rektora Politechniki Gdańskiej Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem Copyright by Wydawnictwo Politechniki Gdańskiej, Gdańsk 2012 Utwór nie może być powielany i rozpowszechniany, w jakiejkolwiek formie i w jakikolwiek sposób, bez pisemnej zgody wydawcy ISBN WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ Wydanie I. Ark. wyd. 21,0, ark. druku 23,0, 123/639 Druk i oprawa: EXPOL P. Rybiński, J. Dąbek, Sp. Jawna ul. Brzeska 4, Włocławek, tel

3 SPIS TREŚCI WYKAZ WAŻNIEJSZYCH OZNACZEŃ WPROWADZENIE Sformułowanie problemu Cel pracy Zakres i układ pracy WSPÓŁRZĘDNE STOSOWANE W ANALIZIE UKŁADÓW WIELOCZŁONOWYCH Współrzędne niezależne Współrzędne absolutne Kąty Eulera Kąty Cardana (Cardano/Bryanta/Tait-Bryana/Tait-Bryanta) Kąty Eulera, kąty Cardana osie pasywne Parametry Eulera Parametry Eulera-Rodriguesa Niezależne elementy macierzy opisującej orientację członu Elementy skośno-symetrycznej macierzy Cayleya Alternatywne reprezentacje czteroparametrowe Reprezentacje sześcioparametrowe Współrzędne naturalne Współrzędne złączowe Współrzędne podukładów Współrzędne mieszane Stosowanie różnych rodzajów współrzędnych w zależności od etapu obliczeń STOSOWANE OZNACZENIA WERSORY, WEKTORY, TENSORY, TABLICE WEK- TORÓW Macierze, wektory, tablice wektorów Układy współrzędnych, wersory, wektory, tensory Macierze orientacji układów współrzędnych Współrzędne opisujące orientacje a macierze orientacji Obrót względem zadanej osi Obroty względem osi układu współrzędnych Kąty Eulera Kąty Cardana Kąty Eulera ujęcie pasywne Kąty Cardana ujęcie pasywne Znormalizowane parametry Eulera Parametry Eulera-Rodriguesa Niezależne elementy macierzy orientacji Elementy skośno-symetrycznej macierzy Cayleya Reprezentacje sześcioparametrowe Małe kąty obrotu Wyznaczanie pochodnych Macierze i ich pochodne względem czasu Macierze orientacji i ich pochodne względem czasu Sekwencja obrotów i ich pochodna względem czasu Prędkość kątowa a pochodne niezależnych elementów macierzy orientacji Obrót względem nieruchomej osi... 54

4 4 Spis treści Obroty względem osi układu współrzędnych Zależności wiążące prędkość kątową i pochodne kątów Eulera Zależności wiążące prędkość kątową i pochodne kątów Cardana Zależności wiążące prędkość kątową i pochodne parametrów Eulera Zależności wiążące prędkość kątową i pochodne parametrów Eulera-Rodriguesa Prędkości i pochodne względne Macierze i ich pochodne względem zmiennej Pochodne cząstkowe funkcji skalarnych, wektorów i tablic wektorów Pochodna zupełna funkcji skalarnej, wektora i tablicy wektorów Macierze i ich pochodne zupełne SKŁADNIKI ELEMENTARNE I TOPOLOGIA UKŁADU WIELOCZŁONOWEGO Macierze teorii grafów Najważniejsze definicje Macierze opisujące grafy Dedykowany sposób numerowania członów Informacja kodowana w równaniach więzów KINEMATYKA UKŁADU WIELOCZŁONOWEGO Położenia, prędkości i przyśpieszenia punktów układu opisanego współrzędnymi absolutnymi Układ, w którym orientację opisano kątami Eulera lub kątami Cardana Układ, w którym orientację opisano parametrami Eulera Położenia, prędkości i przyśpieszenia punktów układu opisanego współrzędnymi naturalnymi Człon opisany przez współrzędne dwóch punktów i dwóch wektorów nieleżących w jednej płaszczyźnie Człon opisany przez współrzędne trzech punktów i jednego wektora nieleżącego w płaszczyźnie wyznaczonej przez punkty Człon opisany przez współrzędne dwóch punktów i jednego wektora nieleżącego na linii wyznaczonej przez punkty Położenia, prędkości i przyśpieszenia punktów układu opisanego współrzędnymi złączowymi Metoda korzystająca z macierzy ścieżek i macierzy sąsiedztwa Transformacje jednorodne Transformacje jednorodne we współrzędnych Denavita-Hartenberga Sumowanie parametrów łańcucha odniesienia Układ opisany współrzędnymi dla położenia i prędkości Równania więzów Jawna (rozwikłana) postać równań więzów (metoda podziału współrzędnych) Podprzestrzeń styczna do równań więzów (macierz uzupełnienia ortogonalnego) Równania więzów dla wybranych typów więzów dwustronnych Równania więzów opisujące styk członów DYNAMIKA UKŁADU WIELOCZŁONOWEGO Dynamika członu swobodnego Wykorzystanie parametrów Eulera Wykorzystanie współrzędnych naturalnych Dynamika układu członów swobodnych Dynamika układu członów z więzami Równania ruchu we współrzędnych zależnych Równania ruchu we współrzędnych zależnych, wykorzystanie macierzy dopełnienia ortogonalnego Stabilizacja więzów Metoda eliminacji redukcja do równań we współrzędnych niezależnych

5 Spis treści Dynamika układu wieloczłonowego o strukturze drzewa Analiza rekurencyjna z eliminacją oddziaływań bezpośrednich następców Kinetostatyka górnej części łańcucha kinematycznego Wykorzystanie tablic wektorów Współrzędne wektorów występujących w równaniach dynamiki Metoda korzystająca z macierzy ścieżek i macierzy sąsiedztwa Pozostałe, najważniejsze metody wyznaczania równań dynamiki WIĘZY JEDNOSTRONNE MODELOWANIE UDERZEŃ O PRZESZKODĘ Zderzenia z powierzchniami idealnie gładkimi Impulsy fazy kompresji sformułowanie we współrzędnych niezależnych Impulsy fazy ekspansji sformułowanie we współrzędnych niezależnych Impulsy fazy kompresji sformułowanie ze współrzędnymi zależnymi (układ z więzami domykającymi) Układ z tarciem zderzenie zakończone stykiem bez poślizgu Kontrola realizowalności wymaganego impulsu stycznego Zderzenia w układach płaskich Zderzenia w układach przestrzennych NAPĘDY NADMIAROWE Relacje wiążące kinematykę elementu wykonawczego i kinematykę węzłów Wielkości napędowe siły i pary sił generowane w napędach Pseudoodwrotność Selekcja najmniejszego zbioru wielkości napędowych Warunki nakładane na mnożniki Lagrange a Warunki nakładane na wielkości napędowe i relacje między nimi Równoczesne nakładanie warunków na mnożniki Lagrange a oraz relacje między wielkościami napędowymi Rozwiązania dedykowane maszynom kroczącym Napędy symetryczne Napędy symetryczno-antysymetryczne PRZYKŁADY Macierz mas i wektor sił dla przykładowego, otwartego łańcucha kinematycznego Równania więzów płaskiego czworoboku przegubowego Przestrzenny układ wieloczłonowy o dwóch stopniach swobody Sferyczny czworobok przegubowy Drgania wyrównoważonego płaskiego czworoboku przegubowego Kontakt z nieruchomą krzywką Przegub występujący pomiędzy układem wieloczłonowym i belką odkształcalną Układ wieloczłonowy ślizgający się po belce odkształcalnej Wieloczłonowy model pojazdu dwukołowego Wieloczłonowy model pojazdu szynowego Równania nieliniowe względem mnożników Lagrange a wybór współrzędnych zależnych oraz równań służących do wyznaczenia mnożników Lagrange a Uderzenie o przeszkodę płaski otwarty łańcuch kinematyczny Uderzenie o przeszkodę płaski zamknięty łańcuch kinematyczny Wózek dwukołowy uderzający kołami o grunt Układ przestrzenny odnóże uderzające o grunt Napęd nadmiarowy dla płaskiego manipulatora równoległego Napęd nadmiarowy dla siedmioczłonowej, płaskiej maszyny kroczącej Napęd nadmiarowy dla pięcioczłonowej, płaskiej maszyny kroczącej PODSUMOWANIE BIBLIOGRAFIA

6 6 Spis treści Streszczenie w języku polskim Streszczenie w języku angielskim

MODELE STRUMIENIA POWIETRZA W PNEUMATYCE

MODELE STRUMIENIA POWIETRZA W PNEUMATYCE POLITECHNIKA GDAŃSKA SZYMON GRYMEK MODELE STRUMIENIA POWIETRZA W PNEUMATYCE GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński REDAKTOR PUBLIKACJI

Bardziej szczegółowo

Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem

Oferta wydawnicza Politechniki Gdańskiej jest dostępna pod adresem Wydawnictwo Politechniki Gdańskiej Gdańsk 2013 Przewodniczący Komitetu Redakcyjnego Wydawnictwa Politechniki Gdańskiej Janusz T. Cieśliński Zespół redakcyjny Danuta Beger, Jolanta Dymkowska, Barbara Wikieł

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

BADANIE METOD I PROJEKTOWANIE USŁUG LOKALIZACYJNYCH W SIECIACH RADIOKOMUNIKACYJNYCH

BADANIE METOD I PROJEKTOWANIE USŁUG LOKALIZACYJNYCH W SIECIACH RADIOKOMUNIKACYJNYCH POLITECHNIKA GDAŃSKA JACEK STEFAŃSKI BADANIE METOD I PROJEKTOWANIE USŁUG LOKALIZACYJNYCH W SIECIACH RADIOKOMUNIKACYJNYCH GDAŃSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ

Bardziej szczegółowo

WOJCIECH WYRZYKOWSKI PODATKOWE UWARUNKOWANIA ROZWOJU PRZEDSIĘBIORCZOŚCI W POLSCE

WOJCIECH WYRZYKOWSKI PODATKOWE UWARUNKOWANIA ROZWOJU PRZEDSIĘBIORCZOŚCI W POLSCE WOJCIECH WYRZYKOWSKI PODATKOWE UWARUNKOWANIA ROZWOJU PRZEDSIĘBIORCZOŚCI W POLSCE GDAŃSK 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński REDAKTOR PUBLIKACJI

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Automatyzacja i sterowanie statkiem

Automatyzacja i sterowanie statkiem Automatyzacja i sterowanie statkiem Komitet Automatyki i Robotyki Polskiej Akademii Nauk Monografie Tom 18 Komitet Redakcyjny serii Tadeusz Kaczorek (przewodnicz¹cy) Stanis³aw Bañka Miko³aj Bus³owicz W³adys³aw

Bardziej szczegółowo

Modele matematyczne do badania bezpieczenstwa systemu elektroenergetycznego TOM

Modele matematyczne do badania bezpieczenstwa systemu elektroenergetycznego TOM Jacek Klucznik Robert Małkowski Zbigniew Lubośny Maciej Łosiński Ryszard Zajczyk TOM Modele matematyczne do badania bezpieczenstwa systemu elektroenergetycznego redaktor Ryszard Zajczyk Gdańsk 2012 PRZEWODNICZĄCY

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów

Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów Prof. dr hab. inż. Janusz Frączek Instytut

Bardziej szczegółowo

Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz

Ogłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz Laboratorium Badań Technoklimatycznych i Maszyn Roboczych Ogłoszenie Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz. 9 00 12 00. II

Bardziej szczegółowo

PALE PRZEMIESZCZENIOWE WKRĘCANE

PALE PRZEMIESZCZENIOWE WKRĘCANE POLITECHNIKA GDAŃSKA ADAM KRASIŃSKI PALE PRZEMIESZCZENIOWE WKRĘCANE WSPÓŁPRACA Z NIESPOISTYM PODŁOŻEM GRUNTOWYM GDAŃSK 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz

Bardziej szczegółowo

Oferta wydawnicza Politechniki Gda skiej jest dost pna pod adresem

Oferta wydawnicza Politechniki Gda skiej jest dost pna pod adresem Wydawnictwo Politechniki Gdańskiej Gdańsk 2011 Przewodnicz cy Komitetu Redakcyjnego Wydawnictwa Politechniki Gda skiej Romuald Szymkiewicz Zespół redakcyjny Danuta Beger, Jolanta Dymkowska, Barbara Wikieł

Bardziej szczegółowo

Wacław Matulewicz Dariusz Karkosiński Marek Chomiakow. Podstawy badań obwodów elektrycznych i elektromagnetycznych dla mechaników

Wacław Matulewicz Dariusz Karkosiński Marek Chomiakow. Podstawy badań obwodów elektrycznych i elektromagnetycznych dla mechaników Wacław Matulewicz Dariusz Karkosiński Marek Chomiakow Podstawy badań obwodów elektrycznych i elektromagnetycznych dla mechaników Gdańsk 2013 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI

Bardziej szczegółowo

Podstawy mechaniki. Maciej Pawłowski

Podstawy mechaniki. Maciej Pawłowski Podstawy mechaniki Maciej Pawłowski Gdańsk 2016 Recen zent prof. nadzw. dr hab. inż. Adam Cenian Książka wykorzystuje bogate doświadczenie badawcze i dydaktyczne autora, zdobyte podczas 40-letniej pracy

Bardziej szczegółowo

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same

Egzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2

Bardziej szczegółowo

Spis treści. Przedmowa... 7

Spis treści. Przedmowa... 7 Spis treści SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac przygotowanych... 22 1.4. Przyrost funkcji i wariacja funkcji...

Bardziej szczegółowo

Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE

Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE Paweł Kłosowski Andrzej Ambroziak METODY NUMERYCZNE W MECHANICE KONSTRUKCJI Z PRZYKŁADAMI W PROGRAMIE GDAŃSK 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

KRZYSZTOF REDLARSKI PODSTAWY METODYKI ZARZĄDZANIA PROJEKTAMI W UJĘCIU KLASYCZNYM

KRZYSZTOF REDLARSKI PODSTAWY METODYKI ZARZĄDZANIA PROJEKTAMI W UJĘCIU KLASYCZNYM KRZYSZTOF REDLARSKI PODSTAWY METODYKI ZARZĄDZANIA PROJEKTAMI W UJĘCIU KLASYCZNYM Gdańsk 2016 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński RECENZENT Witold

Bardziej szczegółowo

REGULACYJNE USŁUGI SYSTEMOWE W ZAKRESIE MOCY CZYNNEJ

REGULACYJNE USŁUGI SYSTEMOWE W ZAKRESIE MOCY CZYNNEJ POLITECHNIKA GDAŃSKA PAWEŁ BUĆKO REGULACYJNE USŁUGI SYSTEMOWE W ZAKRESIE MOCY CZYNNEJ GDAŃSK 2011 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Romuald Szymkiewicz REDAKTOR PUBLIKACJI

Bardziej szczegółowo

EWA ZABOROWSKA. Zasady projektowania WODNYCH WEZŁÓW CIEPŁOWNICZYCH

EWA ZABOROWSKA. Zasady projektowania WODNYCH WEZŁÓW CIEPŁOWNICZYCH EWA ZABOROWSKA Zasady projektowania WODNYCH WEZŁÓW CIEPŁOWNICZYCH GDANSK 2012 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz REDAKTOR PUBLIKACJI NAUKOWYCH Janusz

Bardziej szczegółowo

Teoria maszyn mechanizmów

Teoria maszyn mechanizmów Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii

Bardziej szczegółowo

ZARYS TEORII MECHANIZMÓW I MASZYN

ZARYS TEORII MECHANIZMÓW I MASZYN cssno JAN ODERFELD ZARYS TEORII MECHANIZMÓW I MASZYN ŁÓDŹ - 1959 - WARSZAWA PAŃSTWOWE WYDAWNICTWO NAUKOWE Spia- rzeczy SPIS' RZECZY Pr a edmowa... 4... *.... 3 1. Wstęp '. 5 2. Struktura mechanizmów-k

Bardziej szczegółowo

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z poprzedniego wykładu: Człon: Ciało stałe posiadające możliwość poruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stopni swobody) Niższe i wyższe pary

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Rachunek różniczkowy w zadaniach

Rachunek różniczkowy w zadaniach Rachunek różniczkowy w zadaniach Rachunek różniczkowy w zadaniach Jolanta Dymkowska Danuta Beger Przewodniczący Komitetu Redakcyjnego Wydawnictwa Politechniki Gdańskiej Janusz T. Cieśliński Recenzent

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

Karolina A. Krośnicka. Przestrzenne aspekty kształtowania i rozwoju morskich terminali kontenerowych

Karolina A. Krośnicka. Przestrzenne aspekty kształtowania i rozwoju morskich terminali kontenerowych Karolina A. Krośnicka Przestrzenne aspekty kształtowania i rozwoju morskich terminali kontenerowych Gdańsk 2016 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO Prowadzący: dr Krzysztof Polko WSTĘP z r C C(x C,y C,z C ) r C -r B B(x B,y B,z B ) r C -r A r B r B -r A A(x A,y A,z A ) Ciało sztywne

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia Przedmiot: Mechanika Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: IM 1 S 0 2 24-0_1 Rok: I Semestr: 2 Forma studiów:

Bardziej szczegółowo

Laboratorium Podstaw Energoelektroniki. Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz

Laboratorium Podstaw Energoelektroniki. Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz Laboratorium Podstaw Energoelektroniki Krzysztof Iwan Piotr Musznicki Jarosław Guziński Jarosław Łuszcz Gdańsk 2011 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Romuald Szymkiewicz

Bardziej szczegółowo

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora

Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia drugiego stopnia Przedmiot: Mechanika analityczna Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu: MBM 2 S 0 1 02-0_1 Rok: 1 Semestr: 1

Bardziej szczegółowo

ROZWÓJ BIOAKTYWNYCH IMPLANTÓW POROWATYCH NA OSNOWIE STOPÓW TYTANU

ROZWÓJ BIOAKTYWNYCH IMPLANTÓW POROWATYCH NA OSNOWIE STOPÓW TYTANU POLITECHNIKA GDAŃSKA SYLWIA SOBIESZCZYK ROZWÓJ BIOAKTYWNYCH IMPLANTÓW POROWATYCH NA OSNOWIE STOPÓW TYTANU GDAŃSK 2013 PRZEWODNICZ CY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDA SKIEJ Janusz T. Cie

Bardziej szczegółowo

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Mechanika Ogólna General Mechanics. Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I

KARTA PRZEDMIOTU 1/6. Wydział Mechaniczny PWR. Nazwa w języku polskim: Mechanika I. Nazwa w języku angielskim: Mechanics I Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:

Bardziej szczegółowo

Wykaz oznaczeń Przedmowa... 9

Wykaz oznaczeń Przedmowa... 9 Spis treści Wykaz oznaczeń... 6 Przedmowa... 9 1 WPROWADZENIE... 11 1.1 Mechanika newtonowska... 14 1.2 Mechanika lagranżowska... 19 1.3 Mechanika hamiltonowska... 20 2 WIĘZY I ICH KLASYFIKACJA... 23 2.1

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw udowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2016/2017

Bardziej szczegółowo

Zadania kinematyki mechanizmów

Zadania kinematyki mechanizmów Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2

(R) przy obciążaniu (etap I) Wyznaczanie przemieszczenia kątowego V 2 SPIS TREŚCI Przedmowa... 10 1. Tłumienie drgań w układach mechanicznych przez tłumiki tarciowe... 11 1.1. Wstęp... 11 1.2. Określenie modelu tłumika ciernego drgań skrętnych... 16 1.3. Wyznaczanie rozkładu

Bardziej szczegółowo

TERMODYNAMIKA ZADANIA I PRZYKŁADY OBLICZENIOWE WIESŁAWA PUDLIKA WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ

TERMODYNAMIKA ZADANIA I PRZYKŁADY OBLICZENIOWE WIESŁAWA PUDLIKA WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ TERMODYNAMIKA ZADANIA I PRZYKŁADY OBLICZENIOWE JANUSZ T. CIEŚLIŃSKI DARIUSZ GRUDZIŃSKI WIESŁAW JASIŃSKI WIESŁAW PUDLIK pod redakcją WIESŁAWA PUDLIKA WYDAWNICTWO POLITECHNIKI GDAŃSKIEJ GDAŃSK 2017 PRZEWODNICZĄCY

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

TEORIA MECHANIZMÓW I MANIPULATORÓW

TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW Dr inż. Artur Handke Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów Wydział Mechaniczny ul. Łukasiewicza 7/9, 50-371

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu:

Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia. Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: Karta (sylabus) przedmiotu Kierunek studiów Mechatronika Studia pierwszego stopnia Przedmiot: Mechanika Techniczna Rodzaj przedmiotu: Podstawowy Kod przedmiotu: MT 1 S 0 2 14-0_1 Rok: I Semestr: II Forma

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11 WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 1/11 DEFORMACJA OŚRODKA CIĄGŁEGO Rozważmy dwa elementy płynu położone w pewnej chwili w bliskich sobie punktach A i B. Jak zmienia się ich względne położenie w krótkim

Bardziej szczegółowo

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika Techniczna I Engineering Mechanics I. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Przedmiot: Mechanika stosowana Liczba godzin zajęć dydaktycznych: Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych Studia magisterskie: wykład 30

Bardziej szczegółowo

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych.

Zasady i kryteria zaliczenia: Zaliczenie pisemne w formie pytań opisowych, testowych i rachunkowych. Jednostka prowadząca: Wydział Techniczny Kierunek studiów: Inżynieria bezpieczeństwa Nazwa przedmiotu: Mechanika techniczna Charakter przedmiotu: podstawowy, obowiązkowy Typ studiów: inżynierskie pierwszego

Bardziej szczegółowo

Symulacje komputerowe

Symulacje komputerowe Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 5

INSTRUKCJA DO ĆWICZENIA NR 5 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego

Bardziej szczegółowo

PROJEKTOWANIE WIEDZY RELACYJNEBAZYDANYCH TACJANA NIKSA-RYNKIEWICZ

PROJEKTOWANIE WIEDZY RELACYJNEBAZYDANYCH TACJANA NIKSA-RYNKIEWICZ PROJEKTOWANIE WIEDZY RELACYJNEBAZYDANYCH TACJANA NIKSA-RYNKIEWICZ GDAŃSK 2017 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński RECENZENT Krzysztof Cpałka REDAKCJA

Bardziej szczegółowo

SPIS TREŚCI. Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 2. STATYKA... 46

SPIS TREŚCI. Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 2. STATYKA... 46 SPIS TREŚCI Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 1.1. Pojęcia podstawowe... 21 1.2. Zasada d Alemberta... 28 1.3. Zasada prac przygotowanych... 32 1.4. Przyrost funkcji i wariacja funkcji... 34

Bardziej szczegółowo

Zadania kinematyki mechanizmów

Zadania kinematyki mechanizmów Zadania kinematyki mechanizmów struktura mechanizmu wymiary ogniw ruch ogniw napędowych związki kinematyczne położeń, prędkości, przyspieszeń ogniw zadanie proste kinematyki zadanie odwrotne kinematyki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez

Bardziej szczegółowo

VII.1 Pojęcia podstawowe.

VII.1 Pojęcia podstawowe. II.1 Pojęcia podstawowe. Jan Królikowski Fizyka IBC 1 Model matematyczny ciała sztywnego Zbiór punktów materialnych takich, że r r = const; i, j= 1,... N i j Ciało sztywne nie ulega odkształceniom w wyniku

Bardziej szczegółowo

Wyznaczenie współczynnika restytucji

Wyznaczenie współczynnika restytucji 1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących

Bardziej szczegółowo

dynamiki mobilnego robota transportowego.

dynamiki mobilnego robota transportowego. 390 MECHANIK NR 5 6/2018 Dynamika mobilnego robota transportowego The dynamics of a mobile transport robot MARCIN SZUSTER PAWEŁ OBAL * DOI: https://doi.org/10.17814/mechanik.2018.5-6.51 W artykule omówiono

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika I Nazwa w języku angielskim: Mechanics I Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Stopień studiów i forma:

Bardziej szczegółowo

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17 Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią

Bardziej szczegółowo

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik

Z-ETI-1027 Mechanika techniczna II Technical mechanics II. Stacjonarne. Katedra Inżynierii Produkcji Dr inż. Stanisław Wójcik Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1027 Mechanika

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Matematyczne metody fizyki 1 Rok akademicki: 2013/2014 Kod: JFT-1-103-s Punkty ECTS: 5 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: - Poziom studiów:

Bardziej szczegółowo

Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.

Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C. Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: WYBRANE ZAGADNIENIA MECHANIKI ANALITYCZNEJ, DRGAŃ I STATECZNOŚCI KONSTRUKCJI MECHANICZNYCH (cz. I MECHANIKA ANALITYCZNA) Kierunki: Budowa i Eksploatacja Maszyn Rodzaj przedmiotu: obieralny

Bardziej szczegółowo

2.9. Kinematyka typowych struktur manipulatorów

2.9. Kinematyka typowych struktur manipulatorów Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa

Bardziej szczegółowo

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

Wprowadzenie do modelowania MES w programie SOFISTIK Materiały pomocnicze do laboratorium z metody elementów skończonych

Wprowadzenie do modelowania MES w programie SOFISTIK Materiały pomocnicze do laboratorium z metody elementów skończonych Jacek Chróścielewski, Mikołaj Miśkiewicz, Łukasz Pyrzowski Wprowadzenie do modelowania MES w programie SOFISTIK Materiały pomocnicze do laboratorium z metody elementów skończonych Gdańsk 2016 PRZEWODNICZĄCY

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

TEORIA MECHANIZMÓW I MANIPULATORÓW

TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW TEORIA MECHANIZMÓW I MANIPULATORÓW Dr inż. Artur Handke Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów Wydział Mechaniczny ul. Łukasiewicza 7/9, 50-371

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. Odniesienie do efektów dla kierunku studiów. Forma prowadzenia zajęć

KARTA PRZEDMIOTU. Odniesienie do efektów dla kierunku studiów. Forma prowadzenia zajęć (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MECHANIKA 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia 5. Forma

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

Zygmunt Towarek MECHANIKA OGÓLNA. Zagadnienia wybrane. Wydanie II uzupełnione

Zygmunt Towarek MECHANIKA OGÓLNA. Zagadnienia wybrane. Wydanie II uzupełnione Zygmunt Towarek MECHANIKA OGÓLNA Zagadnienia wybrane Wydanie II uzupełnione Politechnika Łódzka Łódź 2017 Recenzenci pierwszego wydania: prof. dr hab. inż. Wiesław Ostachowicz prof. dr hab. inż. Jan Osiecki

Bardziej szczegółowo

Teoria maszyn i podstawy automatyki ćwiczenia projektowe Wydział Samochodów i Maszyn Roboczych

Teoria maszyn i podstawy automatyki ćwiczenia projektowe Wydział Samochodów i Maszyn Roboczych grupa 1 (poniedziałek, 8-10, s. 2.19, mgr inż. M. Bieliński) grupa 2 (poniedziałek, 8-10, s. 2.19, mgr inż. R. Nowak) grupa 7 (poniedziałek, 17-19, s. 2.19, mgr inż. M. Bieliński) grupa 8 (poniedziałek,

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Teoria Maszyn i Dynamika Mechanizmów II

Teoria Maszyn i Dynamika Mechanizmów II Teoria Maszyn i Dynamika Mechanizmów II Wydział Mechaniczny, Kierunek studiów: Mechatronika, studia II stopnia (magisterskie), rok akademicki: 2010/2011 Liczba godzin: wykład 15 ćwiczenia 15 Wykład: prof.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Podstawy robotyki wykład III. Kinematyka manipulatora

Podstawy robotyki wykład III. Kinematyka manipulatora Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1 PUMA układy

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

Podstawy analizy strukturalnej układów kinematycznych

Podstawy analizy strukturalnej układów kinematycznych Podstawy analizy strukturalnej układów kinematycznych Układem kinematycznym nazywamy dowolny zespół elementów składowych (członów) połączonych ze sobą w sposób umożliwiający ruch względny stworzony przez

Bardziej szczegółowo

Krystyna Dzierzbicka Grzegorz Cholewiński Janusz Rachoń DLA ZAINTERESOWANYCH PYTANIA I ODPOWIEDZI

Krystyna Dzierzbicka Grzegorz Cholewiński Janusz Rachoń DLA ZAINTERESOWANYCH PYTANIA I ODPOWIEDZI Krystyna Dzierzbicka Grzegorz Cholewiński Janusz Rachoń DLA ZAINTERESOWANYCH PYTANIA I ODPOWIEDZI Gdańsk 2016 PRZEWODNICZĄCY KOMITETU REDAKCYJNEGO WYDAWNICTWA POLITECHNIKI GDAŃSKIEJ Janusz T. Cieśliński

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ).

1. Zbadać liniową niezależność funkcji x, 1, x, x 2 w przestrzeni liniowej funkcji ciągłych na przedziale [ 1, ). B 2 Suma Zbadać, czy liniowo niezależne wektory u, v, w stanowią bazę przestrzeni liniowej lin { u + 2 v + w, u v + 2 w, 3 u + 5 w } 2 Współrzędne wektora (, 4, 5, 4 ) w pewnej bazie podprzestrzeni U R

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo