Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika
|
|
- Bogusław Król
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Matematyczny PAN Konwersatorium dla doktorantów Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika Joanna Jaszuńska IM PAN Warszawa, 10 listopada 2006 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 1 Joanna Jaszuńska
2 Rozkłady I cięcie nożyczkami brzeg nieistotny, części przyzwoite, ograniczone krzywymi Jordana R 2 : zachowane pole równoważność wielokątów przez rozkład skończony (Wallace-Bolyai-Gerwien) R 3 : III problem Hilberta Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 2 Joanna Jaszuńska
3 Rozkłady I cięcie nożyczkami brzeg nieistotny, części przyzwoite, ograniczone krzywymi Jordana R 2 : zachowane pole równoważność wielokątów przez rozkład skończony (Wallace-Bolyai-Gerwien) R 3 : III problem Hilberta paradoksy-oszustwa Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 2 Joanna Jaszuńska
4 Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska
5 Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Kwadratura koła Tarskiego Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska
6 Rozkłady II równoważność przez rozkład A G B części dowolne, mogą być dziwne (jednopunktowe, niemierzalne etc) nie musi się być zachowana miara paradoksy relacja równoważności (w szczególności przechodnia), rozkłady skończone Kwadratura koła Tarskiego nożyczkami niemożliwa przez rozkład możliwa Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 3 Joanna Jaszuńska
7 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
8 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
9 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
10 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
11 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
12 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 S 1 S 1 S 1, S 1 S 1 S 1 S 1, S 1 S 1 S 1... Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
13 Paradoksy nieintuicyjne rozkłady Zbiór E nazwiemy G-paradoksalnym, jeśli zawiera rozłączne podzbiory A, B takie, że A G E oraz B G E. N N N, N N N N, N N N... Paradoksalny rozkład okręgu zbiór niemierzalny Vitaliego na S 1 każda klasa równoważności przeliczalna z aksjomatu wyboru zbiór reprezentantów M przeliczalnie wiele jego obrotów daje cały S 1 S 1 S 1 S 1, S 1 S 1 S 1 S 1, S 1 S 1 S 1... Wkręcanie S 1 2 S 1 \ {punkt} Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 4 Joanna Jaszuńska
14 Grupa wolna F 2 dwa generatory: a i b bez relacji element neutralny e alfabet a, b, a 1, b 1 elementami grupy są słowa zredukowane działanie konkatenacja, czyli dopisanie Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 5 Joanna Jaszuńska
15 Paradoksalny rozkład F 2 F 2 = {e} S(a) S(b) S(a 1 ) S(b 1 ) F 2 = S(a) as(a 1 ) F 2 = S(b) bs(b 1 ) Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 6 Joanna Jaszuńska
16 Grupa F 2 jako podgrupa grupy izometrii R 3 Niech ϕ = arccos ( ) 1 3. a, b antyzegarowe obroty o kąt ϕ odpowiednio wokół osi x oraz z a ±1 = ± , b±1 = ± Można sprawdzić, że a i b generują grupę wolną F 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 7 Joanna Jaszuńska
17 Wąż Sierpińskiego Czy istnieje w R 3 zamknięty pierścień przystających czworościanów? Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 8 Joanna Jaszuńska
18 Wąż Sierpińskiego Czy istnieje w R 3 zamknięty pierścień przystających czworościanów? Nie istnieje = nie istnieje parkietaż przestrzeni R 3 takimi czworościanami. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 8 Joanna Jaszuńska
19 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
20 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
21 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
22 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
23 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii id(x) = x Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
24 Działanie grupy G na zbiorze X dla dowolnych g G, x X mamy zdefiniowane g(x) X g 2 (g 1 (x)) = (g 2 g 1 )(x) id(x) = x Na przykład grupa G 3 izometrii przestrzeni R 3 działa na zbiorze X = R 3 dla dowolnej izometrii g G 3 oraz punktu x R 3 możemy zdefiniować g(x) jako obraz punktu x przy izometrii g składanie izometrii id(x) = x Orbita elementu x to zbiór {g(x): g G}. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 9 Joanna Jaszuńska
25 Grupa paradoksalna zbiór paradoksalny Stwierdzenie: Jeśli grupa paradoksalna G działa, bez nietrywialnych punktów stałych, na pewnym zbiorze, to ten zbiór jest G-paradoksalny. zbiór X rozpada się na orbity przy działaniu elementów grupy aksjomat wyboru M to zbiór reprezentantów orbit {g(m): g G} podział zbioru X paradoksalny rozkład G przenosi się na paradoksalny rozkład X Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 10 Joanna Jaszuńska
26 Grupa paradoksalna zbiór paradoksalny Stwierdzenie: Jeśli grupa paradoksalna G działa, bez nietrywialnych punktów stałych, na pewnym zbiorze, to ten zbiór jest G-paradoksalny. zbiór X rozpada się na orbity przy działaniu elementów grupy aksjomat wyboru M to zbiór reprezentantów orbit {g(m): g G} podział zbioru X paradoksalny rozkład G przenosi się na paradoksalny rozkład X Wniosek 1: To samo dla F 2 (wiemy, że jest paradoksalna). Wniosek 2: To samo dla naszej F 2 G 3. Problem (mały): Ma nie być punktów stałych. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 10 Joanna Jaszuńska
27 Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska
28 Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Stąd Paradoks Hausdorffa: Istnieje taki przeliczalny podzbiór D sfery S 2, że zbiór S 2 \ D jest paradoksalny. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska
29 Paradoks Hausdorffa Niech D S 2 oznacza zbiór końców osi obrotów z F 2. Można sprawdzić, że F 2 działa na S 2 \ D bez punktów stałych. Stąd Paradoks Hausdorffa: Istnieje taki przeliczalny podzbiór D sfery S 2, że zbiór S 2 \ D jest paradoksalny. Zbiór D przeliczalny można się go pozbyć ( wkręcając ): S 2 \ D S 2 Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 11 Joanna Jaszuńska
30 Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska
31 Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska
32 Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Kula bez środka jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska
33 Paradoks Banacha-Tarskiego (1924 r.) Wiemy już, że dla odpowiedniego D zbiór S 2 \ D jest paradoksalny oraz S 2 \ D S 2. Zbiór równoważny ze zbiorem paradoksalnym też jest paradoksalny. Stąd paradoks B-T dla sfer: Sfera S 2 jest paradoksalna. Kula bez środka jest paradoksalna. Wiemy, że S 1 S 1 \ {punkt}, zatem B \ {0} B. Stąd paradoks B-T: Kula jest paradoksalna. Przestrzeń R 3 jest paradoksalna. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 12 Joanna Jaszuńska
34 Uwagi i komentarze G 3, nie tylko SO 3. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
35 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
36 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
37 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
38 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
39 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
40 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Uogólnienie P.B-T: Dla dowolnych ograniczonych podzbiorów A, B R 3 o niepustym wnętrzu zachodzi A B. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
41 Uwagi i komentarze G 3, nie tylko SO 3. Tu były podzbiory, można zrobić rzeczywisty rozkład. Można ograniczyć liczbę części do 5. Części można przenosić bezkolizyjnie. Aksjomat wyboru nie jest konieczny do konstrukcji paradoksów. Tak samo dla R n, n > 3. Uogólnienie P.B-T: Dla dowolnych ograniczonych podzbiorów A, B R 3 o niepustym wnętrzu zachodzi A B. Inna wersja P.B-T: Ziarnko grochu można rozłożyć na kawałki i na nowo złożyć tak, aby otrzymać kulę wielkości Słońca. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 13 Joanna Jaszuńska
42 Miara Nie istnieje miara skończenie addytywna, określona na wszystkich podzbiorach R 3, G 3 -niezmiennicza, przyjmująca wartość 1 na kostce jednostkowej. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 14 Joanna Jaszuńska
43 Miara Nie istnieje miara skończenie addytywna, określona na wszystkich podzbiorach R 3, G 3 -niezmiennicza, przyjmująca wartość 1 na kostce jednostkowej. Tw. Banacha Na R 2 istnieje analogiczna miara (rozszerzająca miarę Jordana). Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 14 Joanna Jaszuńska
44 Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska
45 Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska
46 Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, na płaszczyźnie zachodzi relacja x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska
47 Prosta i płaszczyzna Analogiczne paradoksalne rozkłady nie istnieją, bo w G 1 i G 2 nie ma podgrup F 2. Dla dowolnych dwóch izometrii x, y na prostej zachodzi relacja x 2 y 2 x 2 y 2 = 1, na płaszczyźnie zachodzi relacja x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1. Komutatory, rozwiązalność grup izometrii G 1 i G 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 15 Joanna Jaszuńska
48 Prosta R 1 Izometrie prostej R 1 to przesunięcia i symetrie względem punktu. Kwadrat każdej izometrii jest przesunięciem. Przesunięcia są przemienne. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 16 Joanna Jaszuńska
49 Prosta R 1 Izometrie prostej R 1 to przesunięcia i symetrie względem punktu. Kwadrat każdej izometrii jest przesunięciem. Przesunięcia są przemienne. Stąd dla dowolnych dwóch izometrii x, y zachodzi relacja x 2 y 2 x 2 y 2 = 1, czyli nie ma podgrupy wolnej rzędu 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 16 Joanna Jaszuńska
50 Płaszczyzna R 2 Izometrie R 2 to przesunięcia, obroty i symetrie z poślizgiem. Kwadrat każdej izometrii jest przesunięciem lub obrotem. Dla dowolnych dwóch izometrii x, y wyrażenia x 2 y 2 x 2 y 2 oraz x 2 y 2 x 2 y 2 są przesunięciami. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 17 Joanna Jaszuńska
51 Płaszczyzna R 2 Izometrie R 2 to przesunięcia, obroty i symetrie z poślizgiem. Kwadrat każdej izometrii jest przesunięciem lub obrotem. Dla dowolnych dwóch izometrii x, y wyrażenia x 2 y 2 x 2 y 2 oraz x 2 y 2 x 2 y 2 są przesunięciami. Przesunięcia są przemienne, zatem x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 2 (x 2 y 2 x 2 y 2 ) 1 (x 2 y 2 x 2 y 2 ) 1 = 1. To po uproszczeniu daje relację x 2 y 2 x 2 y 2 x 2 y 2 x 2 y 4 x 2 y 2 x 2 y 2 x 2 y 2 x 2 = 1, czyli też nie ma podgrupy wolnej rzędu 2. Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 17 Joanna Jaszuńska
52 Płaszczyzna hiperboliczna Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 18 Joanna Jaszuńska
53 Płaszczyzna hiperboliczna Stan Wagon, The Banach-Tarski Paradox Leonard M. Wapner, The Pea and the Sun Twierdzenie Banacha-Tarskiego z punktu widzenia algebraika 18 Joanna Jaszuńska
Paradoksalny rozkład kuli
Wydział Fizyki UW Katedra Metod Matematycznych Fizyki Paradoksalny rozkład kuli Joanna Jaszuńska Centrum Studiów Zaawansowanych Politechniki Warszawskiej Warszawa, 9 grudnia 2010 Paradoksalny rozkład kuli
Grupa klas odwzorowań powierzchni
Grupa klas odwzorowań powierzchni Błażej Szepietowski Uniwersytet Gdański Horyzonty matematyki 2014 Błażej Szepietowski (UG) Grupa klas odwzorowań Horyzonty matematyki 2014 1 / 36 Grupa klas odwzorowań
Rozkład figury symetrycznej na dwie przystające
Rozkład figury symetrycznej na dwie przystające Tomasz Tkocz 10 X 2010 Streszczenie Tekst zawiera notatki do referatu z seminarium monograficznego Wybrane zagadnienia geometrii. Całość jest oparta na artykule
Topologia I Wykład 4.
Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski
Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową
Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.
3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X
Zbiory liczbowe widziane oczami topologa
Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,
Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.
1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Projekt matematyczny
Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie
Informacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Zad.3. Jakub Trojgo i Jakub Wieczorek. 14 grudnia 2013
Zad.3 Jakub Trojgo i Jakub Wieczorek 14 grudnia 2013 W pierwszej części naszej pracy będziemy chcieli zbadać ciągłość funkcji f(x, y) w przypadku gdy płaszczyzna wyposażona jest w jedną z topologii: a)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Ćwiczenia 1 - Pojęcie grupy i rzędu elementu
Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające
TwierdzeniePoincaré 1 Bendixsona 2
Twierdzenie Poincaré Bendixsona 1 TwierdzeniePoincaré 1 Bendixsona 2 1 TwierdzeniePoincaré Bendixsona W bieżącym podrozdziale zakładamy, że U jest otwartym podzbiorem płaszczyzny R 2 if:u R 2 jestpolemwektorowymklasyc
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Izoperymetria gaussowska
Politechnika Wrocławska 6 lipca 2010 Klasyczny problem izoperymetryczny Spośród wszystkich ograniczonych płaskich figur o zadanym obwodzie znaleźć tę, która ma największe pole. Klasyczny problem izoperymetryczny
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.
1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.
Teoria miary i całki
Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane
Metody probabilistyczne
Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa
A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii
TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty
TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Planimetria 1 12 godz.
Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
ϕ(t k ; p) dla pewnego cigu t k }.
VI. Trajektorie okresowe i zbiory graniczne. 1. Zbiory graniczne. Rozważamy równanie (1.1) x = f(x) z funkcją f : R n R n określoną na całej przestrzeni R n. Będziemy zakładać, że funkcja f spełnia założenia,
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28
G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28 1.9 Zadania 1.9.1 Niech R będzie pierścieniem zbiorów. Zauważyć, że jeśli A, B R to A B R i A B R. Sprawdzić, że (R,, ) jest także pierścieniem w sensie
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.
Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)
Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).
Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,
Krzywa uniwersalna Sierpińskiego
Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę
Ilustracja S1 S2. S3 ściana zewnętrzna
Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Dekompozycje prostej rzeczywistej
Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii
Paradoksy log o i g czne czn i inne 4 marca 2010
Paradoksy logiczne i inne 4 marca 2010 Paradoks Twierdzenie niezgodne z powszechnie przyjętym mniemaniem, rozumowanie, którego elementy są pozornie oczywiste, ale wskutek zawartego w nim błędu logicznego
Analiza Funkcjonalna - Zadania
Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Statystyka Astronomiczna
Statystyka Astronomiczna czyli zastosowania statystyki w astronomii historycznie astronomowie mieli wkład w rozwój dyscypliny Rachunek prawdopodobieństwa - gałąź matematyki Statystyka - metoda oceny właściwości
Twierdzenie spektralne
Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi
Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?
Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Prawdopodobieństwo geometryczne
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,
Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH
BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH WSTĘP Zbiór liczb całkowitych można definiować na różne sposoby. Jednym ze sposobów określania zbioru liczb całkowitych jest
1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.
Literatura P. Billingsley, Miara i prawdopodobieństwo, PWN, Warszawa 1997, P. R. Halmos, Measure theory, Springer-Verlag, 1994, W, Kołodziej, naliza matematyczna, PWN, Warszawa 1978, S. Łojasiewicz, Wstęp
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2
Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.
Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).
Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α
FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X
KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH
KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH Nazwa Nazwa w j. ang. Geometria Geometry Punktacja ECTS* 9 Opis kursu (cele kształcenia) Celem przedmiotu jest powtórzenie i pogłębienie wiadomości słuchaczy z geometrii
Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego
Sumy kwadratów TWIERDZENIE LAGRANGE A Każda liczba naturalna da się przedstawić w postaci sumy czterech kwadratów. Twierdzenie Fermata-Eulera Każda liczba pierwsza postaci 4k + 1 daje się przedstawić w
Analiza II.2*, lato komentarze do ćwiczeń
Analiza.2*, lato 2018 - komentarze do ćwiczeń Marcin Kotowski 5 czerwca 2019 1 11 2019, zadanie 2 z serii domowej 1 Pokażemy, że jeśli f nie jest stała, to całka: f(x f(y B B x y dx dy jest nieskończona.
Zmienne losowe i ich rozkłady
Zmienne losowe i ich rozkłady 29 kwietnia 2019 Definicja: Zmienną losową nazywamy mierzalną funkcję X : (Ω, F, P) (R n, B(R n )). Definicja: Niech A będzie zbiorem borelowskim. Rozkładem zmiennej losowej
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo geometryczne.
Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład 1: Przestrzeń probabilistyczna. Prawdopodobieństwo klasyczne. Prawdopodobieństwo
Matematyka II - Organizacja zajęć. Egzamin w sesji letniej
Matematyka II - Organizacja zajęć Wykład (45 godz.): 30 godzin - prof. zw. dr hab. inż. Jan Węglarz poniedziałek godz.11.45 15 godzin - środa godz. 13.30 (tygodnie nieparzyste) s. A Egzamin w sesji letniej
A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.
M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
Grupa izometrii płaszczyzny hiperbolicznej
Grupa izometrii płaszczyzny hiperbolicznej Arkadiusz Męcel O różnych geometriach 21 października 2008r. UWAGA: Notatki te były pisane szybko i niechlujnie(choć starałem się). Czytelników przepraszam. InwersjewC
Algebraiczne własności grup klas odwzorowań
Algebraiczne własności grup klas odwzorowań Michał Stukow Uniwersytet Gdański Forum Matematyków Polskich 7 września 2006 1 Definicje i przykłady 2 Zastosowania 3 Skręcenia Dehna 1 Definicje i przykłady
Wyk lad 4 Warstwy, dzielniki normalne
Wyk lad 4 Warstwy, dzielniki normalne 1 Warstwy grupy wzgl edem podgrupy Niech H bedzie podgrupa grupy (G,, e). W zbiorze G wprowadzamy relacje l oraz r przyjmujac, że dla dowolnych a, b G: a l b a 1 b
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych
Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia
Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu.
II Interdyscyplinarne Warsztaty Matematyczne p. 1/1 Liczba obrotu i twierdzenie Poincare go o klasyfikacji homeomorfizmów okręgu. Justyna Signerska jussig@wp.pl Wydział Fizyki Technicznej i Matematyki
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
11. Pochodna funkcji
11. Pochodna funkcji Definicja pochodnej funkcji w punkcie. Niech X R będzie zbiorem niepustym, f:x >R oraz niech x 0 X. Funkcję określoną wzorem, nazywamy ilorazem różnicowym funkcji f w punkcie Mówimy,
Dydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 9: Geometria w szkole geometria dynamiczna, miejsca geometryczne, przekształcenia geometryczne Semestr zimowy 2018/2019 DGS = Dynamic Geometry
Rekurencyjna przeliczalność
Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018
Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy
1 Grupy. 1.1 Grupy. (2) dla działania istnieje element neutralny, tzn. istnieje e G taki, że ae = a = ea dla dowolnego a G;
1 Grupy 1.1 Grupy Definicja. Grupą nazywamy niepusty zbiór G z działaniem : G G G, (a, b) ab, spełniającym warunki: (1) działanie jest łączne, tzn. a(bc) = (ab)c dla dowolnych a, b, c G; (2) dla działania
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i
Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i A (symbol F i oznacza ilość argumentów funkcji F i ). W rozważanych przez nas algebrach
METODY PROBABILISTYCZNE I STATYSTYKA
Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku