O niektórych kształtach linii rezonansowych stosowanych w ERP. oraz o paru innych tematach przy tej okazji
|
|
- Wiktor Cichoń
- 8 lat temu
- Przeglądów:
Transkrypt
1 O niektórych kształtach linii rezonansowych stosowanych w ERP oraz o paru innych tematach przy tej okazji
2 Plan seminarium Podejście fenomenologiczne i stochastyczne do znajdywania kształtu linii Klasyczne kształty linii rezonansowych: Lorentz, Gauss, Voigt Statystyka i kształt linii Tsallis a Zastosowanie badania kształtu linii do wyznaczania wymiarowości układu spinowego
3 Kształt linii rezonansowej jak go otrzymać? Kształt linii rezonansowej można otrzymać stosując dwa różne podejścia: Fenomenologiczne - rozwiązując równanie ruchu magnetyzacji, w którym zawarte są człony opisujące tłumienie (Bloch) Stochastyczne - rozważając modele stochastycznych fluktuacji częstotliwości rezonansowej (Kubo)
4 Kształt linii podejście fenomenologiczne
5 Kształt linii podejście fenomenologiczne Równania Blocha
6 Kształt linii podejście fenomenologiczne Dotyczy kształtów linii szerokich (np. FMR, SPR)
7 Berger, Bissey, Kliava (1) Bloch-Bloembergen (1950, NMR FMR) Wady modelu: Zerowa absorpcja dla B=0 Ujemna absorpcja dla B<0, kołowa polaryzacja,
8 Berger, Bissey, Kliava (2) Zmodyfikowany Bloch-Bloembergen Garstens, Kaplan (1955) Relaksacja podłużna wzdłuż kierunku efektywnego pola magnetycznego
9 Berger, Bissey, Kliava (3) Gilbert (1955) Równanie ruchu powinno zawierać człon z szybkością relaksacji proporcjonalną do szybkości zmiany magnetyzacji
10 Berger, Bissey, Kliava (4) Landau-Lifshitz (1935) Człon tłumiący zawiera szybkość relaksacji proporcjonalną do składnika precesyjnego M. Jest równoważne równaniom Gilberta dla małego tłumienia Równania na podatność są takie same jak w przypadku zmodyfikowanego Blocha-Bloembergena
11 Berger, Bissey, Kliava (5) Callen (1958)
12 Kształt linii - podejście stochastyczne (1) Funkcja korelacji G(τ)
13 Kształt linii - podejście stochastyczne (2) Funkcja gęstości spektralnej J(ω) a,b,c malejący czas korelacji Wniosek: maksymalny wkład do częstości ω jest wtedy, gdy τc=1/ ω
14 Kształt linii - podejście stochastyczne (3) Stochastyczny model fluktuacji gaussowskich Dla takich fluktuacji gaussowskich funkcja korelacji wyraża się równaniem Funkcja relaksacji ϕ(t) gdzie funkcja ψ(τ) charakteryzuje fluktuacje lokalnego pola dipolowego modulowanego oddziaływaniem wymiennym
15 Kształt linii - podejście stochastyczne (4) Długi czas korelacji kształt linii Gaussa t<<τc Krótki czas korelacji kształt linii Loentza t>>τc, funkcja ψ zaniknie, zanim osiągniemy górną granicę całki t Przypadek ogólny
16 Origin: Lorentz Lorentz Hendrik Antoon Lorentz ( ) y0=1000 Absorpcja 8000 w=300 Gs xc=3300 Gs szerokosc nachyleniowa=w/sqrt(3)=173 Gs A= FWHM=w=300 Gs w Pole magnetyczne [Gs] 4000
17 Origin: Gauss Gauss Absorpcja Johann Carl Friedrich Gauss ( ) 8000 y0=1000 w=300 Gs xc=3300 Gs szerokosc nachyleniowa=w=300 Gs 6000 FWHM=w1=w*sqrt(ln(4))=353.2 Gs A= ,7 w w Pole magnetyczne [Gs] 4000
18 Voigt Woldemar Voigt ( ) Göttingen Universität Kształt Voigt a V(x,σ,γ) jest konwolucją kształtu Gaussa G(x,σ) i kształtu Lorentza L(x,γ)
19 Voigt, pseudo-voigt
20 Origin: Voigt Voigt y0=1000 wl=300 Gs 8000 wg=300 Gs Absorpcja xc=3300 Gs A= , FWHM=486 Gs Pole magnetyczne [Gs] 4000
21 Voigt: porównanie Voigt y0 =1000 wl =1, wg =300 wl =1-300 Gs wg =1-300 Gs Absorpcja xc =3300 Gs A= ,68 wl =100, wg =300 wl =200, wg =300 wl =300, wg =1 wl =300, wg =100 wl =300, wg =200 wl =300, wg = Pole magnetyczne [Gs] 4000
22 Porównanie kształtów: Gauss vs. Lorentz vs. Voigt y0 =1000 xc =3300 Gs w=wl =wg = 300 Gs (3300 Gs, 1000) Absorpcja 8000 A= (Gauss) A= (Lorentz) A= (Voigt) Pole magnetyczne [Gs]
23 Porównanie kształtów: monokryształ YVO Model: Gauss (black) Chi^2/DoF = R^2 = Absorpcja [j. u.] y0 xc w A ± ± ± ± Model: Lorentz (blue) Chi^2/DoF = R^2 = y0 xc w A ± ± ± ± Model: Voigt (red) Chi^2/DoF = R^2 = y0 xc A wg wl ± ± ± ± ± Pole magnetyczne [Gs]
24 Porównanie: monokryształ, różnica X Voigt Lorentz Y exp-y teoret 0 Gauss Pole magnetyczne [Gs]
25 Porównanie kształtów: proszek TiC/C Model: Gauss (black) Chi^2/DoF = 70,7E6 M odel: Lorentz (blue) Chi^2/DoF = 367E6 R^2 = R^2 = y xc w ± ± ± y0 xc A ± w A Model: V oigt (red) Chi^2/DoF =6,4E Absorbcja [j.u.] ± ± ± ± R^2 = y0 xc A wg wl ± ± ± ± ± Pole magnetyczne [Gs]
26 Porównanie: proszek, różnica X Lorentz Y exp -Y teoret Voigt Gauss Pole magnetyczne [Gs]
27 Kształt Tsallis a Contantino Tsallis (1943, Athens) TSALLIS, C Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, vol. 52, p
28 Statystyka Tsallis a (1) Entropia (1865) Clausius, makroskopowa, ds=δq/t (1872-7) Boltzmann, mikroskopowa, entropia Boltzmanna-Gibbsa Addytywność jest słuszna dla układu, który składa się z niezależnych (kwaziniezależnych) części oddziaływują siłami krótkozasięgowymi lub w przypadku układu kwantowego słabo splątanego. Uogólnienie statystyki Boltzmanna-Gibbsa - (1988) Tsallis
29 Statystyka Tsallis a (2) Nieaddytywna entropia Dla układów składających się z części silnie skorelowanych (oddziaływania dalekozasięgowe, kwantowo silnie splątane)
30 Statystyka Tsallis a (3) Nieekstensywna mechanika statystyczna
31 Tsallis (4)
32 Tsallis -zastosowanie w ERP
33 Tsallis: różne parametry q 2000 xc =3300 Gs w=300 Gs A=2000 Absorpcja 1500 q=5,5 q=2,5 q=2 q=1,5 q= Pole magnetyczne [Gs]
34 Tsallis: różne parametry q 6 q=5,5 q=1,0 q=1,5 q=2,0 4 xc=3300 Gs w=300 Gs A=2000 q=2,5 Absorpcja Pole magnetyczne [Gs]
35 Tsallis:q=1=Gauss 0,35 0,30 q=1.001 Absorpcja 0,25 A Gauss fit of F1_A Lorentz fit of F1_A 0,20 0,15 0,10 0,05 0,00-0, Pole magnetyczne [Gs]
36 Tsallis:q=2=Lorentz 0,35 0,30 q= ,25 B Lorentz fit of F2_B Gauss fit of F2_B Absorpcja 0,20 0,15 0,10 0,05 0,00-0, Pole magnetyczne [Gs]
37 Tsallis dy/db=[(2q-1-1)/(q-1)]*(2/(w 2))*(B r-x)*[1+(2 q-1-1)*((x-b r)/w) 2]-q/(q-1) Pochodna absorpcji 0,002 q=3.5 q=1.1 Br =3300 Gs q=1.5 q=1.9 w=300 Gs 0,000-0, Pole magnetyczne [Gs]
38 Tsallis: proszek Model: tsallis Chi^2/DoF = R^2 = P1 P2 P3 P Absorpcja ± ± ± ± Pole magnetyczne [Gs]
39 Tsallis: proszek, różnica X Lorentz Yexp-Yteoret Voigt 0 Tsallis Gauss Pole magnetyczne [Gs]
40 Tsallis: monokryształ Model: tsallis Chi^2/DoF = R^2 = P1 P2 P3 P4 Absorpcja ± ± ± ± Pole magnetyczne [Gs]
41 Tsallis: monokryształ Voigt 1000 Lorentz Tsallis 0 Yexp-Yteoret Gauss Pole magnetyczne [Gs]
42 Kształt linii a wymiar
43 Mo, Jiang, Ke (2) funkcja korelacji ψ ( τ ) C=1 n=0 n=0,5 n=1 n=1,5 n=2 n=2,5 n=3 -n/2 ψ ( τ ) =C τ 2,0 1,5 Funkcja korelacji ψ(τ) 1,0 Funkcja relaksacji φ(t) (zanik poprzecznej magnetyzacji) 0,5 0, czas τ 8 10
44 Mo, Jiang, Ke (3) 1,2 n=2, B(0,2)=complex infinity n=3, B(-1/2,2)=-4 Funkcja relaksacji 1,0 n=0 n=0.5 n=1 n=1.5 n=2 0,8 0,6 0,4 0,2 0, Czas 3
45 Mo, Jiang, Ke (4) wykresy kształtu
46 Wykres kształtu dla Tsallis'a Absorpcja q=1 q= q=3 q=2 q=1,5 q= Pole magnetyczne [Gs] q=2 Y(H0)/Y(H) q= [(H-H0)/ H1/2]
47 EPR układów spinowych 1D
48 EPR układów spinowych 2D Dla układu 3D: (1+3cos2θ)
49 Wpływ dyspersji na kształ linii (1)
50 Wpływ dyspersji na kształ linii (2)
51 Wnioski: W fitowaniu linii EPR czasami warto spróbować kształtu Voigta lubtsallisa Wykres kształtu pomoże zobrazować zmiany kształtu linii rezonansowej Kształt linii może być zdeformowany przez dodatek dyspersji Kształt linii silnie zależy od konkretnych mechanizmów relaksacji spinowej porównać z materiałami z podobnej klasy magnetyków
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Efekt Halla i konforemna teoria pola
Efekt Halla i konforemna teoria pola 19.01.2012 / Seminarium UJ O czym będziemy mówić? Efekt Halla Wstępne informacje Klasycznie i kwantowo Rozwiazanie Laughlina Mini wprowadzenie Laughlin w Dalsza perspektywa
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
MAGNETYCZNY REZONANS JĄDROWY - podstawy
1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
TERMODYNAMIKA I FIZYKA STATYSTYCZNA
TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1
Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład osiemnasty 12 maja 2016 Z poprzedniego wykładu Podłużny magnetoopór Prawo Ampèra Bezźródłowość pola B,
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms
J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ
J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się: a. ze zjawiskiem magnetycznego rezonansu jądrowego ( MRJ ), b.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.
Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Zagadnienia na egzamin ustny:
Zagadnienia na egzamin ustny: Wstęp 1. Wielkości fizyczne, ich pomiar i podział. 2. Układ SI i jednostki podstawowe. 3. Oddziaływania fundamentalne. 4. Cząstki elementarne, antycząstki, cząstki trwałe.
Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ
J1 - BADANIE MAGNETYCZNEGO REZONANSU JĄDROWEGO W CIAŁACH STAŁYCH METODĄ FALI CIĄGŁEJ I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się: a. ze zjawiskiem magnetycznego rezonansu jądrowego ( MRJ ), b.
Wykład Budowa atomu 2
Wykład 7.12.2016 Budowa atomu 2 O atomach cd Model Bohra podsumowanie Serie widmowe O czym nie mówi model Bohra Wzbudzenie, emisja, absorpcja O liniach widmowych Kwantowomechaniczny model atomu sformułowanie
Paramagnetyki i ferromagnetyki
Wykład VI Przejścia fazowe 1 Paramagnetyki i ferromagnetyki Różne substancje znalazłszy się w polu magnetycznym wykazują zróżnicowane własności, które, co więcej, istotnie się zmieniają wraz z temperaturą.
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Transport elektronów w biomolekułach
Transport elektronów w biomolekułach Równanie Arrheniusa, energia aktywacji Większość reakcji chemicznych zachodzi ze stałą szybkości (k) zaleŝną od temperatury (T) i energii aktywacji ( G*) tej reakcji,
Zadania kwalifikacyjne na warsztaty "Zjawiska krytyczne"
Zadania kwalifikacyjne na warsztaty "Zjawiska krytyczne" Maciej Kolanowski 1 maja 018 Lista zadań już jest zamknięta. Rozwiązania proszę wysyłać na maila (do znalezienia na moim WWW profilu) lub telepatycznie.
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie
Transport elektronowy w metalicznych materiałach nieuporządkowanych Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie Plan wystąpienia.
KOOF Szczecin: www.of.szc.pl
3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Atom dwupoziomowy w niezerowej temperaturze
Seminarium CFT p. 1/24 Atom dwupoziomowy w niezerowej temperaturze Tomasz Sowiński 1 paździenika 2008 Seminarium CFT p. 2/24 Atom dwupoziomowy Hamiltonian Ĥ = Ĥ0 + ĤI Ĥ 0 = mσ z + 0 dk k a (k)a(k), Ĥ I
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Ekscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fizyczny charakter wiązań w cząsteczkach. 2. Elektryczne momenty dipolowe cząsteczek.
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Solitony i zjawiska nieliniowe we włóknach optycznych
Solitony i zjawiska nieliniowe we włóknach optycznych Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
Podstawy fizyki / Władysław Bogusz, Jerzy Garbarczyk, Franciszek Krok. Wyd. 5 popr. Warszawa, Spis treści
Podstawy fizyki / Władysław Bogusz, Jerzy Garbarczyk, Franciszek Krok. Wyd. 5 popr. Warszawa, 2016 Spis treści PRZEDMOWA DO WYDANIA V 9 1. PRZEDMIOT, JĘZYK I METODOLOGIA FIZYKI 11 1.1. Czym jest fizyka?
Plan. Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych. Kropki samorosnące. Kropki fluktuacje szerokości
Plan Kropki kwantowe - część III spektroskopia pojedynczych kropek kwantowych Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika 1. Techniki pomiarowe 2. Podstawowe wyniki 3. Struktura
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Fizyka 2 Wróbel Wojciech
Fizyka w poprzednim odcinku 1 Prawo Faradaya Fizyka B Bd S Strumień magnetyczny Jednostka: Wb (Weber) = T m d SEM B Siła elektromotoryczna Praca, przypadająca na jednostkę ładunku, wykonana w celu wytworzenia
Kropki samorosnące. Optyka nanostruktur. Gęstość stanów. Kropki fluktuacje szerokości. Sebastian Maćkowski. InAs/GaAs QDs. Si/Ge QDs.
Kropki samorosnące Optyka nanostruktur InAs/GaAs QDs Si/Ge QDs Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon:
WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego
WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Magnetyzm cz.ii. Indukcja elektromagnetyczna Równania Maxwella Obwody RL,RC
Magnetyzm cz.ii Indukcja elektromagnetyczna Równania Mawella Obwody RL,RC 1 Indukcja elektromagnetyczna Prawo indukcji Faraday a Co się stanie gdy przewodnik elektryczny umieścimy w zmiennym polu magnetycznym?
Fizyka statystyczna Równanie Fokkera-Plancka
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne
RÓWNANIE RÓśNICZKOWE LINIOWE
Analiza stanów nieustalonych metodą klasyczną... 1 /18 ÓWNANIE ÓśNICZKOWE INIOWE Pod względem matematycznym szukana odpowiedź układu liniowego o znanych stałych parametrach k, k, C k w k - tej gałęzi przy
Fizyka statystyczna Zerowa Zasada Termodynamiki. P. F. Góra
Fizyka statystyczna Zerowa Zasada Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Stan układu Fizyka statystyczna (i termodynamika) zajmuje się przede wszystkim układami dużymi, liczacymi
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
Klasyczna mechanika statystyczna Gibbsa I
Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia
Zagadnienia na egzamin z fizyki 2/F2
Zagadnienia na egzamin z fizyki 2/F2 Wydział PPT 2016/17 Uwaga: Na egzaminie zadania mogą być sformułowanie nieco inaczej: doprecyzowane, połączone, podzielone na fragmenty itp. 1 Szczególna teoria względności
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Rozmycie pasma spektralnego
Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości
Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p
STATYSTYKA ODPORNOŚCIOWA referat dydaktyczny
Seminarium WFiIS AGH, 25 listopada 2005 STATYSTYKA ODPORNOŚCIOWA referat dydaktyczny Plan: 1. Statystyka klasyczna 2. Powstanie statystyki odpornościowej 3. Estymatory statystyki odpornościowej 4. Własności
Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji
Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji Wymagane wiadomości Podstawy korozji elektrochemicznej, podstawy kinetyki procesów elektrodowych, równanie Tafela,
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Różniczkowe prawo Gaussa i co z niego wynika...
Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni
1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Równania Maxwella. Wstęp E B H J D
Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),
Prawo Biota-Savarta. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo Biota-Savarta Autorzy: Zbigniew Kąkol Piotr Morawski 2018 Prawo Biota-Savarta Autorzy: Zbigniew Kąkol, Piotr Morawski Istnieje równanie, zwane prawem Biota-Savarta, które pozwala obliczyć pole B
Jądra atomowe jako obiekty kwantowe. Wprowadzenie Potencjał jądrowy Spin i moment magnetyczny Stany energetyczne nukleonów w jądrze Prawo rozpadu
Jąda atomowe jako obiekty kwantowe Wpowadzenie Potencjał jądowy Spin i moment magnetyczny Stany enegetyczne nukleonów w jądze Pawo ozpadu Jąda atomowe jako obiekty kwantowe Magnetyczny Rezonans Jądowy
WYKŁAD FIZYKAIIIB 2000 Drgania tłumione
YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy
Dyfuzyjna metoda MC. 5 listopada Dyfuzyjna metoda MC
5 listopada 2018 metoda czasu urojonego kwantowa dyfuzyjna metoda Monte Carlo równanie Schroedingera i Ψ t = HΨ (*) równanie własne operatora energii HΨ n = E n Ψ n ewolucja w czasie stanu własnego Ψ n