MAGNETYCZNY REZONANS JĄDROWY - podstawy
|
|
- Bronisława Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie Rozwój fizyki ciała stałego i inżynierii materiałowej na poziomie atomowym (atomic engineering) wymaga stosowania metod badawczych, które pozwalają na uzyskiwanie informacji o lokalnych właściwościach substancji. Informacje te można uzyskać m. in. poprzez badanie metodą magnetycznego rezonansu jądrowego (MRJ, ang. NMR). Metoda ta ma szereg zalet wynikających przede wszystkim z dużej rozdzielczości charakterystycznej dla spektroskopii w zakresie częstości radiowych. Większość pierwiastków posiada jeden (lub więcej) użyteczny do MRJ izotop (I> n ). Informację o strukturze elektronowej, otoczeniu atomowym, właściwościach magnetycznych itp. otrzymuje się poprzez oddziaływania nadsubtelne pozwalające mierzyć pola magnetyczne (I>), czy
2 gradienty pól elektrycznych (I>1/ Q n ) w miejscu jądra.. Teoria Magnetycznego Rezonansu Jądrowego.1 Ruch magnetyzacji jądrowej, relaksacja opis pół klasyczny: jądrowy moment magnetyczny n precesujący wokół pola magnetycznego z n jest powiązane z momentem pędu ħi: n ni (.1) gdzie I - spin jądra, n współczynnikiem giromagnetycznym Szybkość zmian momentu pędu w jednorodnym polu magnetycznym wynosi: di n dt dn n n dt (.) Równanie. transformuje się z ukł. (x,y,z) do układu wirującego z prędkością kątową wokół osi z. W tym układzie pole widziane przez moment magnetyczny wynosi:
3 3 rot _ ' z' n (.3) Dla = = n (.4) moment nie widzi pola zewnętrznego spoczywa w układzie wirującym. Częstość kołowa przetransformowana do układu laboratoryjnego wynosi: a częstość rezonansowa: n (.5) n (.6) - podstawowe równanie MRJ częstość rezonansowa jest proporcjonalna do pola w miejscu jądra. Jądrowe momenty magnetyczne są rzędu magnetonu jądrowego N e m p JT 1 (.7) gdzie m p - masa protonu, e ładunek elementarny. Energia spinu jądra w polu magnetycznym wynosi:
4 4 = - n m (.8) gdzie m przyjmuje wartości od I do I co 1. Dla I= ½, mamy dwa poziomy - magnetyzacja jądrowa jest proporcjonalna do różnicy obsadzeń. Prawdopodobieństwo obsadzenia jest dane rozkładem oltzmanna - magnetyzacja jądrowa wyniesie: e e n M n 1 1 (.9) gdzie = 1/k T, = n, a n - liczba jąder/m 3. Warunek wysokotemperaturowy 1, jest zwykle spełniony więc: _ 4 z T k n M n (.1) Ogólnie, dla spinu I, magnetyzacja jądrowa wynosi: 3 1) ( kt I I n M n (.11) a podatność statyczna zdefiniowana jest wzorem: M H M (.1)
5 5 Gdy próbka zostanie nagle włożona w pole magnetyczne, magnetyzacja nie wzrośnie natychmiast. Dojście do stanu równowagi jest opisane równaniem: M( t) t / T1 M( ) 1 e (.13) Czas relaksacji spin sieć (T 1 ) w zależności od materiału i temperatury może być rzędu od mikrosekund do godzin.. Liniowa i kołowa polaryzacja pola zmiennego (RF). Prąd zmienny w cewce otaczającej próbkę wytwarza pole magnetyczne liniowo spolaryzowane wzdłuż jej osi. Można je rozłożyć na dwa wirujące w przeciwnych kierunkach pola o tej samej częstości kołowej i dwukrotnie mniejszej amplitudzie: i RF t i RF t e e t 1 cos RF 1 (.14) W rezonansie jeden z wektorów pól spoczywa w układzie wirującym x y z, drugi wiruje z częstością nie wpływając na rezonans. Efektywne pole magnetyczne w układzie wirującym: rot ' z' 1 x' n (.15) w rezonansie upraszcza się do:
6 6 _ rot 1 x' (.16)..3 Metoda echa spinowego Załóżmy: próbka w równowadze termodynamicznej (tzn. M = M, M z ) Rozpatrzmy zachowanie się magnetyzacji w układzie wirującym ( x y z ): - spiny widzą tylko pole zmienne 1 równoległe do osi impulsu (u nas x ) - magnetyzacja wykonuje precesję w polu 1 z prędkością 1 w płaszczyźnie zy pokonując w czasie trwania i tego impulsu ( i ) drogę kątową 1 Dobieramy wartości 1 i i aby droga kątowa wynosiła i / (impulsy i /). i 1 pole radiowe 1 sygnał MRJ SP ES t= t= t= czas [s]
7 7 Rys. 1. Schemat sekwencji impulsów nadawczych w dwuimpulsowej metodzie echa spinowego, oraz relacji czasowych pomiędzy pobudzeniem a odpowiedzią próbki. 1, - długości impulsów wzbudzających, SP sygnał swobodnej precesji po czasie 1, ES-sygnał echa spinowego. M magnetyzacja jądrowa Impuls / przeprowadza magnetyzację z położenia wzdłuż osi z do położenia równoległego do osi y, następnie: magnetyzacja precesuje w polu zewnętrznym, a jej składowa poprzeczna indukuje w cewce napięcie o częstości rezonansowej ( sygnał precesji swobodnej ) składowa poprzeczna i proporcjonalny do niej sygnał precesji swobodnej maleją eksponencjalnie. W idealnie jednorodnym polu zanik ten można opisać równaniem: d dt M M / T (.17) gdzie T - czas relaksacji spin-spin. Zwykle pole jest nieco różne w różnych punktach próbki. Magnetyzację jądrową M rozkładamy więc na sumę elementarnych momentów magnetycznych z różnych elementów objętości próbki. Składowe poprzeczne M tych momentów mają nieco różne częstości kołowe, więc każda z osobna zmienia swą orientację w płaszczyźnie x y. Po czasie t od impulsu / kąt pojedynczej magnetyzacji cząstkowej wynosi: = t( ) (.18) wobec czego powstaje sytuacja przedstawiona na rys. b.
8 Rys. Powstawanie sygnału swobodnej precesji i dwu kolejnych ech przy zastosowaniu koherentnych impulsów, których osie pokrywają się z osią x (a). działanie impulsu / (obrót magnetyzacji jądrowej na płaszczyznę xy) (b). rozwijanie się magnetyzacji jądrowej w wachlarz (c). działanie pierwszego impulsu (zamiana spinów wolniejszych z szybszymi ) (d). pierwsze echo (e). działanie drugiego impulsu (zamiana spinów wolniejszych z szybszymi ) (f). drugie echo 8
9 9 Rozwijanie się magnetyzacji w wachlarz, jest oprócz procesu relaksacji spinowo spinowej, dodatkowym (i na ogół przeważającym) powodem zaniku sygnału precesji swobodnej. W powyższym opisie założono, że: pojawienie się (i zanik) impulsu pola zmiennego jest natychmiastowe, w przeciwnym razie magnetyzacja podążałaby za polem 1 zamiast wykonywać wokół niego precesję czas trwania impulsu jest krótki: i << T 1, T, dzięki temu możemy zaniedbać procesy relaksacji w czasie trwania impulsu. Aby impuls obrócił wszystkie magnetyzacje cząstkowe o ten sam żądany kąt / (lub ), konieczne jest aby: 1 >>, - 1 leży wtedy w pł. x y dla wszystkich punktów próbki Pole 1 jest dostatecznie jednorodne w całej objętości próbki Aby otrzymać echo spinowe czas pomiędzy impulsami musi być taki, aby w chwili przyłożenia impulsu proces rozwijania się magnetyzacji w wachlarz był już daleko posunięty i aby równocześnie < T. Zobaczmy co dzieje się po przyłożeniu impulsu w dwóch elementach objętości próbki różniących się nieco wartością. Rzuty elementarnych wektorów magnetyzacji L i N na pł. x y mają różną szybkość precesji w (x y z ) więc powstaje między nimi w czasie t różnica faz (rys. 3).
10 1 Rys. 3 Działanie impulsu przedstawione na przykładzie dwóch wybranych elementarnych wektorów magnetyzacji L i N. Impuls powoduje precesję wokół osi OA będącej osią impulsu. Wektor OL przejdzie więc do położenia OL symetrycznego wobec OA i podobnie wektor ON przejdzie do położenia ON. Wynikiem działania impulsu jest zmiana różnicy faz pomiędzy wektorami L i N z wartości na, czyli że wektor N, który z powodu szybszej precesji wyprzedził wektor L o kąt, po impulsie opóźnia się o ten sam kąt. Prędkość kątowa obu wektorów nie ulega zmianie, więc muszą się one ponownie spotkać po czasie od impulsu, czyli po t = od impulsu / (rys. c). W chwili t = wszystkie poprzeczne wektory elementarnych będą miały ten sam kierunek (rys. d). Duża poprzeczna składowa
11 11 magnetyzacji jądrowej wyindukuje więc napięcie o częstości rezonansowej w cewce odbiorczej, zwane sygnałem echa spinowego. Impuls likwiduje więc wpływ lokalnych niejednorodności pola zewnętrznego gdy prędkość precesji każdego spinu z osobna jest stała. Procesy zakłócające, to relaksacja i dyfuzja. Relaksacja wynika z przejść kwantowych - powoduje przypadkowe zmiany fazy poszczególnych jądrowych momentów magnetycznych. Literatura uzupełniająca: 1. J.W. Hennel, "Wstęp do magnetycznego rezonansu jądrowego", PWN Warszawa 1966 i wyd. późniejsze.. C. Kittel, "Wstęp do fizyki ciała stałego" PWN Warszawa E. Fukushima, S..W. Roeder, "Experimental pulse NMR" Addison-Wesley Publishing Comp. Inc. 1981
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)
h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...
Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)
MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści
Obrazowanie Metodą Magnetycznego Rezonansu Jądrowego Spis treści 1 Kilka uwag na temat Mechaniki Kwantowej, Mechaniki Klasycznej oraz nazewnictwa. 2 Spin 3 Spin i moment magnetyczny jądra atomowego 4 Moment
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Drgania i fale II rok Fizyk BC
00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem
Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego
Laboratorium z Fizyki Materiałów 2010 Ćwiczenie 10 adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. 1. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).
Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie
Fizyczne podstawy magnetycznego rezonansu jądrowego (NMR) - obrazowania za pomocą rezonansu jądrowego (MRI)
Postępy Psychiatrii i Neurologii. 1996. 5. 1-8 Fizyczne podstawy magnetycznego rezonansu jądrowego (NMR) - obrazowania za pomocą rezonansu jądrowego (MRI) Physicalfoundations ofnuclear magnetic resonance
Atomy mają moment pędu
Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny
Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.
Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
IM - 6a MAGNETYCZNY REZONANS JĄDROWY. I. Cel ćwiczenia
IM - 6a MAGNETYCZNY REZONANS JĄDROWY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z impulsowymi metodami magnetycznego rezonansu jądrowego. Podczas ćwiczenia student wykonuje pomiary czasów relaksacji
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)
Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Badanie właściwości magnetycznych
Ćwiczenie 20 Badanie właściwości magnetycznych ciał stałych Filip A. Sala Spis treści 1 Cel ćwiczenia 2 2 Wstęp teoretyczny 2 2.1 Zagadnienia z teorii atomu............................ 2 2.2 Magnetyzm....................................
Impulsy selektywne selektywne wzbudzenie
Impulsy selektywne selektywne wzbudzenie Impuls prostokątny o długości rzędu mikrosekund ( hard ): cały zakres 1 ( 13 C) Fala ciągła (impuls o nieskończonej długości): jedna częstość o Impuls prostokątny
Techniki Jądrowe w Diagnostyce i Terapii Medycznej
Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 5, 4 kwietnia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 5 NMR, MRI,
Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego
Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Kinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
RUCH HARMONICZNY. sin. (r.j.o) sin
RUCH DRGAJĄCY Ruch harmoniczny Rodzaje drgań Oscylator harmoniczny Energia oscylatora harmonicznego Wahadło matematyczne i fizyczne Drgania tłumione Drgania wymuszone i zjawisko rezonansu Politechnika
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018
LABORATORIA APARATURA BADANIA ISSN-1427-5619 3/ 2018 DWUMIESIĘCZNIK Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań ŚRODOWISKO TECHNIKI I
Bryła sztywna. Fizyka I (B+C) Wykład XXII: Porównanie ruchu obrotowego z ruchem postępowym. Bak Precesja Żyroskop
Bryła sztywna Wykład XXII: Fizyka I (B+C) Porównanie ruchu obrotowego z ruchem postępowym Bak Precesja Żyroskop Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Porównanie Punkt
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
ekranowanie lokx loky lokz
Odziaływania spin pole magnetyczne B 0 DE/h [Hz] bezpośrednie (zeemanowskie) 10 7-10 9 pośrednie (ekranowanie) 10 3-10 6 spin spin bezpośrednie (dipolowe) < 10 5 pośrednie (skalarne) < 10 3 spin moment
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW
Ćwiczenie 65 POMIAR TEMPERATURY CURIE FERROMAGNETYKÓW 65.1. Wiadomości ogólne Pole magnetyczne można opisać za pomocą wektora indukcji magnetycznej B lub natężenia pola magnetycznego H. W jednorodnym ośrodku
Tomografia magnetyczno-rezonansowa 1
12 FOTON 96, Wiosna 2007 Tomografia magnetyczno-rezonansowa 1 Jadwiga Tritt-Goc Instytut Fizyki Molekularnej PAN, Poznań Wstęp Od połowy lat osiemdziesiątych XX w. rezonans magnetyczny najczęściej kojarzony
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XXI:
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XXI: Porównanie ruchu obrotowego z ruchem postępowym Ogólne wyrażenie na moment pędu Tensor momentu bezwładności Osie główne Równania Eulera Bak swobodny Porównanie
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników
Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje
Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Wykład Atom o wielu elektronach Laser Rezonans magnetyczny
Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE
ZASTOSOWANIE SPEKTROSKOPII NMR W MEDYCYNIE LITERATURA 1. K.H. Hausser, H.R. Kalbitzer, NMR in medicine and biology. Structure determination, tomography, in vivo spectroscopy. Springer Verlag. Wydanie polskie:
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym
II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów
impulsowe gradienty B 0 Pulsed Field Gradients (PFG)
impulsowe gradienty B 0 Pulsed Field Gradients (PFG) częstość Larmora w polu jednorodnym: w = gb 0 liniowy gradient B 0 : w = g(b 0 + xg x + yg y + zg z ) w spektroskopii gradienty z w obrazowaniu x,y,z
Tarcie poślizgowe
3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.
Spektroskopia magnetyczna
Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,
Model uogólniony jądra atomowego
Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)
Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz
Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Zaburzenia periodyczności sieci krystalicznej
Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.
Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych
Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia Prowadzący: dr Krzysztof Polko PRACA MECHANICZNA SIŁY STAŁEJ Pracą siły stałej na prostoliniowym przemieszczeniu w kierunku działania siły nazywamy iloczyn
MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI
MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMI Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder wodoru
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Podstawy fizyki kwantowej i budowy materii
Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Model oscylatorów tłumionych
Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII
J4 MAGNETYCZNY REZONANS JĄDROWY W POLU MAGNETYCZNYM ZIEMII Cel ćwiczenia Celem ćwiczenia laboratoryjnego jest uzyskanie w ziemskim polu magnetycznym sygnału rezonansu magnetycznego pochodzącego od jąder
Zastosowanie spektroskopii NMR do określania struktury związków organicznych
Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
MECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.
Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................