MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

Wielkość: px
Rozpocząć pokaz od strony:

Download "MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?"

Transkrypt

1 MES 4 błędu Zbieżność. Wskaźniki 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3 stopnie w skali Richtera), straty finansowe ok. 1G USD (w cenach 1991 roku). Przyczyna: zaniżenie wartości naprężeń stycznych w jednym z elementów konstrukcji o 47% w wyniku błędu w modelu MES. A jak z tą dokładnością jest teraz? Wyniki testów NAFEMS 2 Proces V&V. Weryfikacja i walidacja Czym są weryfikacja i walidacja? Uproszczona definicja Weryfikacja to proces porównania rozwiązania MES do dokładnego lub umownie dokładnego rozwiązania matematycznego. Umownie dokładnym nazywamy albo rozwiązanie ze znaną wysoką dokładnością, albo rozwiązanie, które przyjmuje się za dokładne w wyniku umowy (np. normy). Walidacja to proces porównania rozwiązania MES z danymi doświadczalnymi. Dokładna definicja: jest to proces sprawdzenia w jakim stopniu nasz model reprezentuje realny świat z punktu widzenia przyszłego zastosowania w praktyce. Czy jedno nie oznacza drugiego? 1. Pyt: Czy matematyczna poprawność modelu nie oznacza automatycznie zgodności z eksperymentem? Odp: Nie zawsze 2. Pyt: Czy zgodność z eksperymentem nie oznacza, że teoria jest poprawna? Odp: Nie zawsze Czy sam program MES jest sprawdzony? 1. Do sprawdzenia poprawności matematycznej (czyli weryfikacji) programów MES służą standardowe testy (ang. benchmark, dosłownie punkt odniesienia lub wzorzec ). Autorem większości testów jest NAFEMS (National Agency for Finite Element Methods and Standards brytyjska ale de facto międzynarodowa organizacja zajmująca się wprowadzeniem norm i zasad bezpiecznego używania MES w praktyce). 2. Ilość testów, którą jest w stanie zaliczyć program stanowi o jego wartości i wiarygodności. Kilka najbardziej sprawdzonych programów (nie SWS) na podstawie testów można używać w energetyce jądrowej. 3. Każda wersja SWS zawiera opis zaliczonych testów.

2 Walidacja główne przyczyny rozbieżności pomiędzy wynikami numerycznymi a doświadczalnymi W odróżnieniu od dokładnych wyników matematycznych, dane doświadczalne zawsze zawierają mniejsze lub większe błędy (np. pomiarowe). Dlatego ich zgodność z wynikami obliczeń w 100% jest zwykle niemożliwa. Geometria Stopień niepewności lub zagrożenia: mały. Źródła: odchyłki, błędy produkcyjne. Sposoby eliminacji: sprawdzenie możliwie dużej ilości niekorzystnych konfiguracji konstrukcji Materiał Stopień niepewności: od małego do dużego. Źródła: ograniczenia modeli konstytutywnych, technologia produkcji, starzenie się materiału, rozrzut statystyczny wyników badań. Sposoby eliminacji: używanie zaawansowanych modeli konstytutywnych, bardzo duża ilość obliczeń dla różnych parametrów materiałowych. Obciążenie Stopień niepewności: duży. Źródła: brak informacji o wszystkich możliwych scenariuszach eksploatacji konstrukcji. Sposoby eliminacji: w prostych sytuacjach próba oszacowania maksymalnego możliwego obciążenia, w skomplikowanych duża ilość obliczeń dla różnych wariantów obciążenia. Umocowanie i złącza Stopień niepewności: największy. Źródła: skomplikowana natura warunków kontaktu detali konstrukcji, brak możliwości stworzenia powtarzalnych warunków w złączach przy montażu, zużycie materiału w złączach. Sposoby eliminacji: metoda superelementów (w SWS nazywana "Tworzeniem podkonstrukcji"), duża ilość obliczeń dla różnych wariantów złącz. Prymitywna, ale skuteczna metoda ogólna Całą niepewność lub brak informacji na temat tych 4 parametrów ukrywamy we współczynnikach bezpieczeństwa Metody weryfikacji: badanie zbieżności Wynik Rozbieżność Zbieżność Zbieżność polega na uniezależnieniu wyniku od gęstości siatki. Siatka tylko narzędzie i nie może wpływać na wynik Rozbieżność naprężeń zwykle świadczy o istnieniu karbu Gęstość siatki (ilość węzłów) Często występuje zbieżność po jednemu parametru (np. przemieszczeniom) i rozbieżność po innemu (np. naprężeniom) Zbieżność nie zawsze oznacza osiągnięcie matematycznie dokładnego wyniku. Oznacza tylko to, że więcej z modelu niczego nie da się wycisnąć. Przykład: prędkość, którą osiąga Maluch po tuningu będzie niższą od maksymalnie możliwej dla samochodu w ogóle Pytania bez odpowiedzi Gdzie najlepiej zagęścić siatkę? Jaki jest poziom błędu dla obecnej siatki? Czy muszę dalej ją zagęszczać? 3 Wskaźniki błędu Łatwizna: błędy w miejscach przyłożenia siłowego obciążenia Wartości naprężeń na granicy badanego modelu zwykle są częściowo znane I.Rokach,

3 y p x Na ścianach bocznychσ xx = 0,τ xy = 0 Na górnej krawędzi też τ xy = 0. Pośrodku σ yy = p, na końcach σ yy = 0 Na dolnej krawędzi brak przyłożonych naprężeń. Nic konkretnego o dokładności rozwiązania nie da się powiedzieć. Można tylko zsumować reakcje. Zasada maksimum W zagadnieniach statycznych, przy braku obciążenia wewnątrz konstrukcji, ekstremalne wartości naprężeń są osiągane zawsze na granicach ciała. Ekstremalne wartości błędu obliczeniowego też. Realnie porównanie obciążenia i wartości naprężeń na granicach jest łatwe tylko jeżeli granicy modelu są równolegle do osi układu współrzędnych. Nie da się stosować tego podejścia dla obciążeń w postaci sił skupionych lub przemieszczeń. 3.1 Gdzie najlepiej liczyć naprężenia? Przybliżenie funkcji i jej pochodnej 1 Funkcja, sin(x) Aproksymacja Pochodna funkcji, cos(x) Pochodna łamanej Aproksymacja funkcji jest (czasami) dokładna tylko w węzłach Pochodna łamanej ma skoki. Przybliża pochodną funkcji bardzo niedokładnie i nie jednoznacznie (na granicach). Ale w 1 punkcie wewnątrz elementu (zwykle) mamy dokładną wartość pochodnej. Magiczne punkty znajdują się obok środku każdego z odcinków linii prostej (dla liniowej pochodnej dokładnie pośrodku) Przybliżenie funkcji i jej pochodnej 2 Funkcja, sin(x) Krótka historia tematu: 1. Barlow (1976) zauważył zjawisko doświadczalnie 2. Herrmann (1972) twierdzenie Pochodna funkcji, cos(x) Pochodne 2 paraboli Programy MES obliczają pochodne rozwiązania (np. odkształcenia, naprężenia) tylko w punktach całkowania numerycznego. W pozostałych punktach uśrednianie, interpolacja, itp. Krótkie podsumowanie I.Rokach,

4 W programach MES mamy dwa zasadniczo różniące się rodzaje wyników: 1. Wyniki węzłowe (ang. nodal results), np. przemieszczenia. Są obliczane w węzłach na podstawie rozwiązania układu równań równowagi. Mają najwyższą dokładność właśnie w węzłach, wewnątrz elementów błąd generalnie jest wyższy. 2. Wyniki elementowe (ang. elemental results), np. odkształcenia i naprężenia. Są wyznaczane poprzez różniczkowanie danych węzłowych. Mają najwyższą dokładność w punktach Barlowa. Dla najprostszych liniowych elementów, takich jak pręt 2-węzłowy, trójkąt 3-węzłowy lub czworościan 4- węzłowy w środku ciężkości. Na granicach elementów błąd jest największy (jest widoczny jako skoki). 3. Punkty Barlowa dla elementów w kształcie trójkąta (2D) lub czworościanu (3D), czyli używanych w SWS, nie są magiczne Każdy program MES oblicza wyniki węzłowe tylko w węzłach, a wyniki elementowe tylko w punktach Barlowa. Wyniki pokazywane na wykresach lub wyprowadzane do pliku np. wartości naprężeń w węzłach powstają po dodatkowym uśrednianiu, wygładzaniu, itp. Gdzie są te cudowne punkty w 2D? 3.2 Wskaźniki błędu Pojęcie wskaźniku błędu Max? Max? MES oblicza naprężenia tylko w punktach całkowania numerycznego. Wszytko reszta interpolacja. Błąd Skoki naprężeń na granicach elementów (wskutek interpolacji) pozwalają oszacować błąd obliczeń na tych granicach. W wielu programach wskaźnik błędu = skok naprężeń / maksymalna ich wartość. Po mnożeniu przez 100% można uważać, ze jest to błąd względny na tej granicy Podstawa wszystkich wskaźników musimy mieć dwa rozwiązania w jednym punkcie I.Rokach,

5 Uwagi praktyczne 1. Realnie wskaźnik błędu wyznacza się tylko dla wybranej komponenty naprężeń (np. σ xx lub naprężeń efektywnych). Praktyka pokazuje, że dla różnych komponent dokładność obliczeń jest różna. Najgorsze wyniki zwykle mamy dla naprężeń stycznych. Który z tych błędów musimy zminimalizować? Ten, który dotyczy naprężeń, na których nam zależy najbardziej: dla materiałów kruchych maksymalnych rozciągających, dla materiałów plastycznych naprężeń efektywnych. 2. SolidWorks Simulation postanowił obejść problem zależności wielkości wskaźniku błędu od wybranej komponenty naprężeń lub odkształceń przez porównanie energii odkształceń na granicach elementów. Zaletą tego rozwiązania jest uniwersalność (pozwala zlecić automatyczne zagęszczanie siatki programowi, wadą brak konkretnego przełożenia otrzymanej wartości wskaźnika błędu po energii na błąd po naprężeniom. SolidWorks Simulation, podejście praktyczne Uśrednianie elementowe Uśrednianie węzłowe Krok 1 Policz zagadnienie i wyświetl rozkład wybranych naprężeń (głównych lub efektywnych) elementowo i węzłowo. Pierwsza metoda zwykle daje wartości lekko zawyżone, druga wyraźnie zaniżone. Krok 2 Porównaj maksymalne wartości naprężeń w obydwu przypadkach. Jeżeli różnica jest większa 10%, zagęść siatkę i idź do kroku 1. Równolegle warto sprawdzić wartość błędu energii w interesującym nas obszarze. Czy to działa? /(x 2 +1) pochodna aproksymacja /(x 2 +1) pochodna aproksymacja /(x 2 +1) pochodna aproksymacja Wnioski 1. Bezmyślne zagęszczanie siatki w całej konstrukcji obniża błąd obliczeń w najbardziej obciążonych częściach bardzo powolnie I.Rokach,

6 2. Bardziej opłaca się zagęszczać siatkę lokalnie w okolicach stref z dużymi błędami. 3. Zagęszczenie siatki N razy powoduje N-krotny spadek błędu dla elementów liniowych i N 2 -krotny spadek błędu dla elementów kwadratowych (domyślne w SWS). 4. Jest to droga zabawa N-krotne zwiększenie ilości węzłów siatki skutkuje co najmniejn 3 -krotnym wydłużeniem czasu obliczeń. 5. Wskaźnik błędu pozwala nie tyle oszacować prawdziwą wartość błędu obliczeniowego, ile określić w jakich miejscach konstrukcji on jest stosunkowo większy. Dobrze zaprojektowana siatka (ostatni rys.) ma wszędzie mniej-więcej ten sam poziom błędu (np. poniżej 5%). Siatki z samoadaptacją przykład 1 Siatki z samoadaptacją przykład 2 W tym przykładzie (element turbiny) program działa wyjątkowo inteligentnie: zagęszcza siatkę w strefach wysokich naprężeń i robi ją rzadką w strefach naprężeń niskich lub stałych. Samoadaptacja w SWS 1. Samoadaptacja w SWS jest dostępna tylko w najprostszych przypadkach 2. Samoadaptacja typu h polega na zagęszczaniu siatki bez zmiany typu elementu 3. Samoadaptacja typu p polega zwiększeniu stopnia aproksymacji w elemencie (liniowa, kwadratowa, itp.) bez zagęszczania siatki I.Rokach,

7 4. Najbardziej efektywną jest metoda mieszana (nie jest dostępna w SWS), następną jest p-metoda Podsumowanie praktyczne Wszystkie wyniki analizy MES są wynikami przybliżonymi Najdokładniejsze wartości przemieszczeń są w węzłach, naprężeń w tzw. punktach Barlowa. Dla elementów dobrych (czworokąt, sześcian) pokrywają się oni z punktami całkowania numerycznego. Do uzyskania dobrego wyniku w SWS zaleca się rozwiązać zagadnienie na kilku siatkach o różnej gęstości oraz używając dwie metody wygładzania i porównać wyniki. Stabilizacja poziomu naprężeń i spadek różnicy pomiędzy nimi poniżej 10% (zwykle) świadczy o tym, że wynik jest w okolicach dokładnego rozwiązania. Do oceny (zwykle mało precyzyjnej) dokładności wyniku na jednej siatce służą wskaźniki błędu. W niektórych prostych sytuacjach SWS sam zapewnia zbieżność i wystarczającą dokładność wyniku używając procedurę samoadaptacji Wykład został opracowany w LATEXe za pomocą klasy BEAMER, graficznego pakietu PGF/TikZ i pakietu do tworzenia wykresów PGFPLOTS I.Rokach,

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES 4. 1 Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES 4 Zbieżność. Wskaźniki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3

Bardziej szczegółowo

MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? Zbieżność. Wskaź- MES1 05 niki błędu 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi

Bardziej szczegółowo

Zbieżność. Wskaźniki błędu MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny?

Zbieżność. Wskaźniki błędu MES Przykłady błędów MES. 2 Proces V&V. Weryfikacja i walidacja. Czy MES jest nieomylny? MES-1 05 1 Przykłady błędów MES Czy MES jest nieomylny? Katastrofa platformy Sleipner A 23.08.1991. Skutki: kompletne zniszczenie konstrukcji o wadzę 97K ton, trzęsienie ziemi (3 stopnie w skali Richtera),

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Kilka spraw praktycz-

Kilka spraw praktycz- Kilka spraw praktycz- MES2 2 nych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię rakz -displ. y-displ.=z-displ. z z y y z y rak z-displ. rak z-displ. W tym przypadku wystarczy

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0).

Modelowanie w MES. Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok

Bardziej szczegółowo

Kolejność postępowania w prostej analizie MES w SWS

Kolejność postępowania w prostej analizie MES w SWS MES-1 10 Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowane są materiał, obciążenie i umocowanie (krok 0). Krok 1. Wstępna

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

8. Metody rozwiązywania układu równań

8. Metody rozwiązywania układu równań 8. Metody rozwiązywania układu równań [K][u e ]=[F e ] Błędy w systemie MES Etapy modelowania metodami komputerowymi UKŁAD RZECZYWISTY MODEL FIZYCZNY MODEL DYSKRETNY Weryfikacja modelu fiz. Weryfikacja

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

Kilka spraw prak- Uproszczenia, cd. Symetria konstrukcji. Zasada nr 1. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-)

Kilka spraw prak- Uproszczenia, cd. Symetria konstrukcji. Zasada nr 1. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-) Kilka spraw prak- MES-2 5 tycznych Część I Uproszczenia, cd. Symetria konstrukcji Zasada nr. Uwzględniamy symetrię. Nawet jeżeli jej nie ma:-) Kiedy możemy zastosować symetrię automatycznie Model ma być

Bardziej szczegółowo

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił

gruparectan.pl 1. Silos 2. Ustalenie stopnia statycznej niewyznaczalności układu SSN Strona:1 Dla danego układu wyznaczyć MTN metodą sił 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] 2. Ustalenie stopnia statycznej

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Symulacja Analiza_wytrz_kor_ra my

Symulacja Analiza_wytrz_kor_ra my Symulacja Analiza_wytrz_kor_ra my Data: 19 września 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Nazwisko i imię: Zespół: Data: Ćwiczenie nr 11: Moduł Younga Cel ćwiczenia: Wyznaczenie modułu Younga i porównanie otrzymanych wartości dla różnych materiałów. Literatura [1] Wolny J., Podstawy fizyki,

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Symulacja Analiza_wytrz_os_kol o_prz

Symulacja Analiza_wytrz_os_kol o_prz Symulacja Analiza_wytrz_os_kol o_prz Data: 19 września 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje

Bardziej szczegółowo

Symulacja Analiza_moc_kosz_to w

Symulacja Analiza_moc_kosz_to w Symulacja Analiza_moc_kosz_to w Data: 16 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...

Bardziej szczegółowo

Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.

Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny

Bardziej szczegółowo

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2) Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy

Bardziej szczegółowo

Wyłączenie redukcji parametrów wytrzymałościowych ma zastosowanie w następujących sytuacjach:

Wyłączenie redukcji parametrów wytrzymałościowych ma zastosowanie w następujących sytuacjach: Przewodnik Inżyniera Nr 35 Aktualizacja: 01/2017 Obszary bez redukcji Program: MES Plik powiązany: Demo_manual_35.gmk Wprowadzenie Ocena stateczności konstrukcji z wykorzystaniem metody elementów skończonych

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

Obszary sprężyste (bez możliwości uplastycznienia)

Obszary sprężyste (bez możliwości uplastycznienia) Przewodnik Inżyniera Nr 34 Aktualizacja: 01/2017 Obszary sprężyste (bez możliwości uplastycznienia) Program: MES Plik powiązany: Demo_manual_34.gmk Wprowadzenie Obciążenie gruntu może powodować powstawanie

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Metody numeryczne. Sformułowanie zagadnienia interpolacji

Metody numeryczne. Sformułowanie zagadnienia interpolacji Ćwiczenia nr 4. Sformułowanie zagadnienia interpolacji Niech będą dane punkty x 0,..., x n i wartości y 0,..., y n, takie że i=0,...,n y i = f (x i )). Szukamy funkcji F (funkcji interpolującej), takiej

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Analiza Matematyczna MAEW101 MAP1067

Analiza Matematyczna MAEW101 MAP1067 1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

Analiza osiadania terenu

Analiza osiadania terenu Przewodnik Inżyniera Nr 21 Aktualizacja: 01/2017 Analiza osiadania terenu Program: Plik powiązany: MES Demo_manual_21.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania terenu pod

Bardziej szczegółowo

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów:

gruparectan.pl 1. Metor Strona:1 Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: 1. Metor Dla danego układu wyznaczyć MTN metodą przemieszczeń Rys. Schemat układu Współrzędne węzłów: węzeł 1 x=[0.000][m], y=[0.000][m] węzeł 2 x=[2.000][m], y=[0.000][m] węzeł 3 x=[2.000][m], y=[2.000][m]

Bardziej szczegółowo

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM.

{H B= 6 kn. Przykład 1. Dana jest belka: Podać wykresy NTM. Przykład 1. Dana jest belka: Podać wykresy NTM. Niezależnie od sposobu rozwiązywania zadania, zacząć należy od zastąpienia podpór reakcjami. Na czas obliczania reakcji można zastąpić obciążenie ciągłe

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...

1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ... 1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia

Bardziej szczegółowo

Iteracyjne rozwiązywanie równań

Iteracyjne rozwiązywanie równań Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Symulacja Analiza_stopa_plast

Symulacja Analiza_stopa_plast Symulacja Analiza_stopa_plast Data: 31 maja 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...

Bardziej szczegółowo

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b]. Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego

Bardziej szczegółowo

DOPASOWYWANIE KRZYWYCH

DOPASOWYWANIE KRZYWYCH DOPASOWYWANIE KRZYWYCH Maciej Patan Uniwersytet Zielonogórski Motywacje Przykład 1. Dane o przyroście światowej populacji są aktualizowane co każde 10 lat, celem szacowania średniego przyrostu rocznego.

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki

MES1 Metoda elementów skończonych - I Finite Element Method - I. Mechanika i Budowa Maszyn I stopień ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 MES1 Metoda elementów skończonych - I Finite Element Method - I A. USYTUOWANIE

Bardziej szczegółowo

Symulacja Analiza_belka_skladan a

Symulacja Analiza_belka_skladan a Symulacja Analiza_belka_skladan a Data: 6 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu...

Bardziej szczegółowo

Osiadanie kołowego fundamentu zbiornika

Osiadanie kołowego fundamentu zbiornika Przewodnik Inżyniera Nr 22 Aktualizacja: 01/2017 Osiadanie kołowego fundamentu zbiornika Program: MES Plik powiązany: Demo_manual_22.gmk Celem przedmiotowego przewodnika jest przedstawienie analizy osiadania

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH.

INFORMATYKA ELEMENTY METOD NUMERYCZNYCH. INFORMATYKA ELEMENTY METOD NUMERYCZNYCH http://www.infoceram.agh.edu.pl METODY NUMERYCZNE Metody numeryczne zbiór metod rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów

Podstawy opracowania wyników pomiarów Podstawy opracowania wyników pomiarów I Pracownia Fizyczna Chemia C 02. 03. 2017 na podstawie wykładu dr hab. Pawła Koreckiego Katarzyna Dziedzic-Kocurek Instytut Fizyki UJ, Zakład Fizyki Medycznej k.dziedzic-kocurek@uj.edu.pl

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

Symulacja Analiza_rama

Symulacja Analiza_rama Symulacja Analiza_rama Data: 29 czerwca 2016 Projektant: Nazwa badania: Analiza statyczna 1 Typ analizy: Analiza statyczna Opis Brak danych Spis treści Opis... 1 Założenia... 2 Informacje o modelu... 2

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ.

DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. Cw1_Tarcza.doc 2015-03-07 1 DWUWYMIAROWE ZADANIE TEORII SPRĘŻYSTOŚCI. BADANIE WSPÓŁCZYNNIKÓW KONCENTRACJI NAPRĘŻEŃ. 1. Wprowadzenie Zadanie dwuwymiarowe teorii sprężystości jest szczególnym przypadkiem

Bardziej szczegółowo

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).

Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa). Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ

WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY KATODOWEJ INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - WYZNACZANIE PRACY WYJŚCIA ELEKTRONÓW Z LAMPY

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Używanie nowego modelu statycznego w TrussCon zgodnego z Eurokodem 5.

Używanie nowego modelu statycznego w TrussCon zgodnego z Eurokodem 5. Używanie nowego modelu statycznego w TrussCon zgodnego z Eurokodem 5. Wprowadzenie W Eurokodzie 5 przedstawione są reguły opisujące w jaki sposób poślizg w łączniku powinien być uwzględniony w obliczeniach.

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, Spis treści

Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, Spis treści Zarysowanie ścian zbiorników żelbetowych : teoria i projektowanie / Mariusz Zych. Kraków, 2017 Spis treści Ważniejsze oznaczenia 9 Przedmowa 17 1. Przyczyny i mechanizm zarysowania 18 1.1. Wstęp 18 1.2.

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z

Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej

Bardziej szczegółowo