Podstawy opracowania wyników pomiarów

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy opracowania wyników pomiarów"

Transkrypt

1 Podstawy opracowania wyników pomiarów I Pracownia Fizyczna Chemia C na podstawie wykładu dr hab. Pawła Koreckiego Katarzyna Dziedzic-Kocurek Instytut Fizyki UJ, Zakład Fizyki Medycznej

2 I Pracownia Fizyczna po co? Obserwacja zjawisk i efektów fizycznych. Samodzielne wykonywanie doświadczeń. O2 C1 C4 E3/E11 F6 F6

3 I Pracownia Fizyczna po co? Nauka obsługi prostych i trochę bardziej skomplikowanych urządzeń pomiarowych

4 I Pracownia Fizyczna po co? Nauka podstaw opracowania wyników pomiarów Nauka poprawnego wyznaczania wielkości fizycznych Nauka pomiaru zależności fizycznych i ich opisu Nauka poprawnej prezentacji wyników - dzisiejszy wykład

5 W jakiej formie prezentujemy wyniki? Plan sprawozdania 1. Strona administracyjna 2. Strona tytułowa 3. Wprowadzenie 4. Opis doświadczenia 5. Opracowanie wyników błędów z analizą niepewności pomiarowych 6. Dyskusja uzyskanych wyników 7. Bibliografia 8. Kopia notatek z zeszytu laboratoryjnego

6 1. Strona administracyjna do pobrania ze strony IPF 2. Strona tytułowa - M-16: Wyznaczanie współczynnika lepkości cieczy metodą Stokesa Magdalena Igrekowa CHEMIA C Wprowadzenie - krótkie, max. 2 strony tekstu, określenie celu ćwiczenia i podstawowych koncepcji fizycznych, wraz ze wzorami (numerowanymi, z opisanymi użytymi symbolami) potrzebnymi do ilościowego opisu badanego zjawiska SAMODZIELNIE NAPISANE 4. Opis doświadczenia - opis układu doświadczalnego (schemat), sposobu wykonywania doświadczenia co i w jakiej kolejności jest mierzone

7 5. Opracowanie wyników błędów z analizą niepewności pomiarowych

8 Pomiar bezpośredni doświadczenie, w którym przy pomocy odpowiednich przyrządów mierzymy (tj. porównujemy ze wzorcem) interesującą nas wielkość fizyczną: Przykład: pomiar długości przedmiotu linijką

9 Pomiar pośredni doświadczenie, w którym wyznaczamy wartość interesującej nas wielkości fizycznej przez pomiar innej wielkości fizycznej związanej z dana wielkością znanym związkiem funkcyjnym Przykład 1: Pomiar pola powierzchni Przykład 2: Pomiar częstotliwości kołowej

10 Pomiar wielkości złożonej doświadczenie, w którym wyznaczamy wartość interesującej nas wielkości fizycznej przez pomiar wielu innych wielkości fizycznych Przykład: pomiar średniej prędkości poprzez pomiar drogi i czasu oraz

11 Niepewność pomiaru [błąd pomiaru] Wszystkie pomiary mogą być wykonywane tylko ze skończoną dokładnością! Powód: niedoskonałość przyrządów pomiarowych nieprecyzyjność naszych zmysłów szumy, zakłócenia Jedyny sensowny zapis wyniku pomiaru (zmierzona wartość ± niepewność pomiarowa) jednostka np.: S= (2.20 ± 0.11) mm Niepewność pomiarowa ma taki sam wymiar [jednostkę] jak mierzona wielkość!!!

12 Niepewność względna i bezwzględna niepewność bezwzględna niepewność względna niepewność procentowa L=(100 1)mm ; DL/ L =0.01 lub 1%

13 Wynik pomiaru bez podania niepewności pomiaru nie jest wartością w pełni użyteczną Przykład: eksperyment Galileusza Swobodny spadek kuli z żelaza i ołowiu: (55.6 ± 1.0 )m Uzyskujemy wyniki: t żelazo = 3.31 s t ołow = 3.28 s Moglibyśmy zatem wnioskować t zelazo > t ołów Jeżeli wyniki podamy uwzględniając niepewność t zelazo = (3.31 ± 0.20) s t ołów = (3.28 ± 0.20) s to widać, że t żelazo t ołów =0.03 s < <0.20 s Jak było naprawdę? _Wieza_w_Pizie

14 Rodzaje niepewności pomiarowych SYSTEMATYCZNE W przybliżeniu ta sama różnica ( w jedną stronę) pomiędzy wartością rzeczywistą a wynikami pomiarów Np: skończona dokładność przyrządów PRZYPADKOWE Spowodowane przez wiele niezależnych przyczyn o porównywalnym znaczeniu nieprecyzyjność naszych zmysłów, szumy, zakłócenia symetryczny przypadkowy rozrzut wyników pomiaru wokół wartości rzeczywistej

15 Błędy grube GRUBE Drastycznie duże odchyłki. Nieumiejętność obsługi, pomyłki przy odczycie lub zapisie [ELIMINACJA!] t=239s

16 Niepewności systematyczne Przesuwają wynik zawsze w jedną stronę w stosunku do prawdziwej wartości = najmniejsza działka (w tym przypadku 1 mm, 1 C) Taki zapis oznacza, że prawdziwa wartość prawie na pewno [ z prawdopodobieństwem bliskim 100%] znajdzie się w tym przedziale [niepewność maksymalna] Błąd paralaksy!

17 Ale! Zazwyczaj przyjmujemy odległość między dwoma kolejnymi działkami, choć gdy te są daleko można przyjąć połowę albo nawet 1/3 tej odległości niepewność klasy przyrządu Δ k x D x k klasa zakres 100

18 Niepewności systematyczne przyrządów cyfrowych = specyfikacja urządzenia! to nie jest ostatnia cyfra znacząca!!! Należy przeczytać specyfikację instrukcję urządzenia! Notujcie typ przyrządów. W Internecie prawie zawsze można znaleźć specyfikację!!!

19 D s C = 1) C=0.010mF [200nF] 2%rdg= mf 3dgt=0.003 mf D s C=0.003 mf 2) C=10.00mF [20mF] 3%rdg=0.30 mf 5dgt=0.05 mf D s C=0.35 mf Notujcie typ przyrządów. W Internecie prawie zawsze można znaleźć specyfikację!!!

20 Niepewności przypadkowe pomiarów bezpośrednich niepewności statystyczne Przykład: pomiar okresu drgań wahadła Dokładny stoper (0.01s) Czas reakcji człowieka jest rzędu 0.2s

21 Wyniki kolejnych pomiarów okresu i-ty Ti [s] pomiar Naszym zadaniem jest podanie wyniku i jego niepewności

22 Analiza statystyczna niepewności przypadkowych Dla błędów przypadkowych rozkład wielkości mierzonych wokół wartości prawdziwej dany jest rozkładem Gaussa ( x, S x ) ( x x ) / 2Sx ( x) e S x 2 Prawdziwa wartość mierzonej wielkości utożsamiana z wartością oczekiwaną W przedziale [x-s x,x+s x ] mieści się 68,3% wszystkich wyników W przedziale [x-3s x,x+3s x ] mieści się 99,8% wszystkich wyników UWAGA!!! Przy skończonej liczbie pomiarów parametr rozkładu można tylko estymować (przybliżać)

23 Analiza statystyczna niepewności przypadkowych Poziom ufności prawdopodobieństwo z jakim wyznaczony przedział zawiera wartość rzeczywistą mierzonej wielkości.

24 Wynik pomiaru średnia arytmetyczna wielkością najbardziej zbliżoną do wartości rzeczywistej [estymatorem wartości oczekiwanej] jest średnia arytmetyczna pomiarów. Ogólnie: - wartość średnia - i-ty pomiar - liczba pomiarów W tym przypadku:

25 Niepewność wyniku niepewność średniej arytmetycznej Wielkością najlepiej opisującą niepewność wyniku jest odchylenie standardowe średniej arytmetycznej Ostateczny wynik pomiaru:

26 Niepewność wyniku niepewność średniej arytmetycznej Wielkością najlepiej opisującą niepewność wyniku jest odchylenie standardowe średniej arytmentycznej W 68% identycznych doświadczeń otrzymamy średnią arytmetyczną mieszczącą się w przedziale można zmniejszać zwiększając liczbę pomiarów n

27 Niepewność wyniku małe serie pomiarowe Dla małych serii pomiarowych (kilka pomiarów - ok. 6) do oszacowania niepewności bierze się maksymalne odchylenie od średniej [nie oblicza się odchyleń standardowych] wynik maksymalnie odbiegający od średniej Ostateczny wynik pomiaru:

28 Niepewność wyniku małe serie pomiarowe rozkład Studenta-Fishera Dla małej liczby pomiarów: daje zaniżoną wartość niepewności Współczynnik Studenta Liczba pomiarów Poziom ufności n a a 0.95 a Poziom ufności prawdopodobieństwo z jakim wyznaczony przedział zawiera wartość rzeczywistą mierzonej wielkości.

29 Niepewności pomiarów pośrednich x - wielkość mierzona bezpośrednio (znamy także jej niepewność Dx ) y - wielkość którą chcemy wyznaczyć (wraz z niepewnością Dy) Znamy równanie, które łączy obie wielkości tu liczymy pochodną

30 Przykład 1 Pomiar pola powierzchni na podstawie zmierzonej średnicy Identyfikujemy nasze zmienne Obliczamy pochodną Zatem:

31 Przykład 2 Pomiar częstości kołowej na podstawie pomiaru okresu Identyfikujemy nasze zmienne Obliczamy pochodną Zatem:

32 Niepewność wielkości złożonej x,y - wielkości mierzone bezpośrednio w doświadczeniu (znamy także Dx i Dy ) z - wielkość którą chcemy wyznaczyć (wraz z niepewnościa Dz ) Znamy równanie, które te wielkości [ tutaj zależność od dwóch zmiennych] Tutaj liczymy tzw. pochodne cząstkowe. Liczy się je tak samo jak zwykłe pochodne. Wszystkie inne zmienne (oprócz tej po której różniczkujemy) traktujemy jako stałe.

33 Przykład 1 Mierzona wielkość jest sumą/różnicą dwóch innych wielkości Uwaga: dla różnicy też +!

34 Przykład 2 Pomiar prędkości na podstawie pomiaru przebytej drogi i czasu Obliczamy pochodne cząstkowe: Identyfikujemy nasze zmienne

35 Zapis niepewności zaokrąglanie Podaje się tylko dwie cyfry znaczące niepewności. Liczymy co najmniej trzy i zaokrąglamy zawsze do góry. Wynik pomiaru obliczamy o co najmniej jedno miejsce dziesiętne dalej niż miejsce dziesiętne, na którym zaokrąglono błąd, a następnie zaokrąglamy wg. normalnych reguł do tego samego miejsca dziesiętnego, do którego zaokrąglono błąd. Notatki: Sprawozdanie: g=(9.81±0.22) m/s2 Bez sensu:

36 Zapis niepewności Wyniki pomiarów i obliczeń najlepiej podawać w jednostkach, dla których wartość liczbowa zawarta jest przedziale od 0,01 do Można używać: przedrostków, [m, m, M, G] itd. lub notacji potęgowej typu 2x10 6, 2x10-6 I= A ± A I=(31.21 ± 0.12) ma I=(31.21 ± 0.12) x 10-6 A

37 Ostateczny zapis niepewności pomiarowej B. Damski

38 Przykład 3 B. Damski

39 Ostateczny zapis niepewności pomiarowej B. Damski

40 Jak robić wykresy?

41 Jak robić wykresy?

42 Jak robić wykresy?

43 Jak robić wykresy?

44 Jak robić wykresy?

45 Jak robić wykresy?

46 Jak robić wykresy?

47 Jak robić wykresy?

48 Jak robić wykresy? źle dobrze

49 Regresja liniowa Badanie związku między dwoma wielkościami związanymi zależnością liniową pomiary Regresja pozwala sprawdzić czy zależność jest liniowa oraz wyznaczyć parametry a i b Wyniki (kartka lub komputer) Wartości oczekiwane parametrów a oraz b i ich niepewności Współczynnik korelacji [im bliższy 1 tym lepiej]

50 Regresja liniowa Badanie związku między dwoma wielkościami związanymi zależnością liniową pomiary Regresja pozwala sprawdzić czy zależność jest liniowa oraz wyznaczyć parametry a i b - parametry a i b też mają swoje jednostki Wyniki (kartka lub komputer) Wartości oczekiwane parametrów a oraz b i ich niepewności Współczynnik korelacji r (lub R) - im bliższy 1 tym lepiej

51 6. Dyskusja otrzymanych wyników porównanie z wielkością tablicową zgodność porównanie dwóch zmierzonych wielkości zgodność

52 6. Dyskusja otrzymanych wyników B. Damski

53 Bibliografia [1] I Pracownia Fizyczna, red. A. Magiera, OWI Kraków 2006 (Kraków 2010 wydanie trzecie, tylko wersja elektroniczna) [2] H. Szydłowski, Pracownia fizyczna, PWN Warszawa 1999 [3] J.R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, Warszawa, 1995.

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii (2018) Autor prezentacji :dr hab. Paweł Korecki dr Szymon Godlewski e-mail: szymon.godlewski@uj.edu.pl

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Biologii A i B dr hab. Paweł Korecki e-mail: pawel.korecki@uj.edu.pl http://www.if.uj.edu.pl/pl/edukacja/pracownia_i/

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Dzięki uprzejmości: Paweł Korecki Instytut Fizyki UJ pok. 256 e-mail: pawel.korecki@uj.edu.pl http://users.uj.edu.pl/~korecki

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka Stankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Statystyczne Metody Opracowania Wyników Pomiarów

Statystyczne Metody Opracowania Wyników Pomiarów Statystyczne Metody Opracowania Wyników Pomiarów dla studentów Ochrony Środowiska Teresa Jaworska-Gołąb 2017/18 Co czytać [1] H. Szydłowski, Pracownia fizyczna, PWN, Warszawa 1999. [2] A. Zięba, Analiza

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

Statystyczne Metody Opracowania Wyników Pomiarów

Statystyczne Metody Opracowania Wyników Pomiarów Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2017/18 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura

Bardziej szczegółowo

Statystyczne Metody Opracowania Wyników Pomiarów

Statystyczne Metody Opracowania Wyników Pomiarów Statystyczne Metody Opracowania Wyników Pomiarów dla studentów ZMIN Teresa Jaworska-Gołąb 2018/19 Co czytać [1] I Pracownia fizyczna, Andrzej Magiera red., Oficyna Wydawnicza IMPULS, Kraków 2006; http://www.1pf.if.uj.edu.pl/materialy/zalecana-literatura

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły

Bardziej szczegółowo

Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka

Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Zmierzyłem i co dalej? O opracowaniu pomiarów i analizie niepewności słów kilka Jakub S. Prauzner-Bechcicki Grupa: Chemia A Kraków, dn. 7 marca 2018 r. Plan wykładu Rozważania wstępne Prezentacja wyników

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Określanie niepewności pomiaru

Określanie niepewności pomiaru Określanie niepewności pomiaru (Materiały do ćwiczeń laboratoryjnych z przedmiotu Materiałoznawstwo na wydziale Górnictwa i Geoinżynierii) 1. Wprowadzenie Pomiar jest to zbiór czynności mających na celu

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Laboratorium Fizyczne Inżynieria materiałowa. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Laboratorium Fizyczne Inżynieria materiałowa Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego błąd pomiaru = x i x 0 Błędy pomiaru dzielimy na: Błędy

Bardziej szczegółowo

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów Projektowanie systemów pomiarowych 02 Dokładność pomiarów 1 www.technidyneblog.com 2 Jak dokładnie wykonaliśmy pomiar? Czy duża / wysoka dokładność jest zawsze konieczna? www.sparkfun.com 3 Błąd pomiaru.

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Analiza niepewności pomiarowych i opracowanie wyników. Chemia C

Analiza niepewności pomiarowych i opracowanie wyników. Chemia C Analiza niepewności pomiarowych i opracowanie wyników dr Anna Majcher 5 marca 2015 Chemia C I Pracownia Fizyczna, WFAiIS UJ Po co nam niepewności pomiarowe? Pytania: Jak daleko jest stąd do najbliższego

Bardziej szczegółowo

Ćw. 2: Analiza błędów i niepewności pomiarowych

Ćw. 2: Analiza błędów i niepewności pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (200/20) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 2: Analiza błędów i niepewności pomiarowych

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru

Niepewność pomiaru. Wynik pomiaru X jest znany z możliwa do określenia niepewnością. jest bledem bezwzględnym pomiaru iepewność pomiaru dokładność pomiaru Wynik pomiaru X jest znany z możliwa do określenia niepewnością X p X X X X X jest bledem bezwzględnym pomiaru [ X, X X ] p Przedział p p nazywany jest przedziałem

Bardziej szczegółowo

Analiza i monitoring środowiska

Analiza i monitoring środowiska Analiza i monitoring środowiska CHC 017003L (opracował W. Zierkiewicz) Ćwiczenie 1: Analiza statystyczna wyników pomiarów. 1. WSTĘP Otrzymany w wyniku przeprowadzonej analizy ilościowej wynik pomiaru zawartości

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.

Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów. Wykład 9. Terminologia i jej znaczenie. Cenzurowanie wyników pomiarów.. KEITHLEY. Practical Solutions for Accurate. Test & Measurement. Training materials, www.keithley.com;. Janusz Piotrowski: Procedury

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU

WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE DO TEORII BŁĘDÓW I NIEPEWNOŚCI POMIARU 1. Błąd a niepewność pomiaru Pojęcia błędu i niepewności

Bardziej szczegółowo

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH

ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby

Bardziej szczegółowo

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta

Wprowadzenie do rachunku niepewności pomiarowej. Jacek Pawlyta Wprowadzenie do rachunku niepewności pomiarowej Jacek Pawlyta Fizyka Teorie Obserwacje Doświadczenia Fizyka Teorie Przykłady Obserwacje Przykłady Doświadczenia Przykłady Fizyka Potwierdzanie bądź obalanie

Bardziej szczegółowo

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x

Bardziej szczegółowo

Laboratorium z Metrologii

Laboratorium z Metrologii Zachodniopomorski niwersytet Technologiczny w Szczecinie Wydział Elektryczny Katedra Sterowania i Pomiarów Zakład Metrologii Laboratorium z Metrologii Opracował: dr inż. A.Wollek 1 Prowadzący dr inż. Andrzej

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu

Pracownia Astronomiczna. Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Pracownia Astronomiczna Zapisywanie wyników pomiarów i niepewności Cyfry znaczące i zaokrąglanie Przenoszenie błędu Każdy pomiar obarczony jest błędami Przyczyny ograniczeo w pomiarach: Ograniczenia instrumentalne

Bardziej szczegółowo

Niepewność pomiaru w fizyce.

Niepewność pomiaru w fizyce. Niepewność pomiaru w fizyce. 1. Niepewność pomiaru - wprowadzenie Każda badana doświadczalnie zależność fizyczna jest zależnością wyidealizowaną pomiędzy pewną liczbą wielkości fizycznych, to znaczy nie

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW

ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW ĆWICZENIE 3 ANALIZA DOKŁADNOŚCI WYNIKU POMIARÓW 3.. Cel ćwiczenia Celem ćwiczenia jest nauczenie studentów określania błędów granicznych oraz niepewności całkowitej w pomiarach bezpośrednich i pośrednich

Bardziej szczegółowo

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG.

A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. A. Metody opracowania i analizy wyników pomiarów K.Kozłowski i R Zieliński I Laboratorium z Fizyki część 1 Wydawnictwo PG. B. Metodyka wykonywania pomiarów oraz szacowanie niepewności pomiaru. Celem każdego

Bardziej szczegółowo

Precyzja a dokładność

Precyzja a dokładność Precyzja a dokładność Precyzja pomiaru jest miarą rzetelności przeprowadzenia doświadczenia, lub mówi nam jak powtarzalny jest ten eksperyment. Dokładność pomiaru jest miarą tego jak wyniki doświadczalne

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 41: Busola stycznych Cel ćwiczenia: Wyznaczenie składowej poziomej ziemskiego pola magnetycznego. Literatura [1] Kąkol Z., Fizyka dla inżynierów, OEN Warszawa,

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej

Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej P. OTOMAŃSKI Politechnika Poznańska P. ZAZULA Okręgowy Urząd Miar w Poznaniu Wyznaczanie budżetu niepewności w pomiarach wybranych parametrów jakości energii elektrycznej Seminarium SMART GRID 08 marca

Bardziej szczegółowo

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie Wyznaczanie parametrów ruchu obrotowego bryły sztywnej Kalisz, luty 005 r. Opracował: Ryszard Maciejewski Natura jest

Bardziej szczegółowo

Ćwiczenie 1. Metody określania niepewności pomiaru

Ćwiczenie 1. Metody określania niepewności pomiaru Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów

Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów wielkość mierzona wartość wielkości jednostka miary pomiar wzorce miary wynik pomiaru niedokładność pomiaru Zajęcia wprowadzające W-1 termin I temat: Sposób zapisu wyników pomiarów 1. Pojęcia podstawowe

Bardziej szczegółowo

Analiza korelacyjna i regresyjna

Analiza korelacyjna i regresyjna Podstawy Metrologii i Technik Eksperymentu Laboratorium Analiza korelacyjna i regresyjna Instrukcja do ćwiczenia nr 5 Zakład Miernictwa i Ochrony Atmosfery Wrocław, kwiecień 2014 Podstawy Metrologii i

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 00/009 sem.. grupa II Termin: 10 III 009 Nr. ćwiczenia: 1 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta: 6 Nr. albumu: 15101

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych

Ćw. 1&2: Wprowadzenie do obsługi przyrządów pomiarowych oraz analiza błędów i niepewności pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2011/2012) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1&2: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Rozkład Gaussa i test χ2

Rozkład Gaussa i test χ2 Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 3 Wyznaczanie modułu sztywności metodą dynamiczną Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski Doświadczenie

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

Uwagi na temat pisania sprawozdań na I Pracowni Fizycznej Bogdan Damski, ZOA Plan sprawozdania:

Uwagi na temat pisania sprawozdań na I Pracowni Fizycznej Bogdan Damski, ZOA Plan sprawozdania: Uwagi na temat pisania sprawozdań na I Pracowni Fizycznej Bogdan Damski ZOA 1-3-2017 Plan sprawozdania: 1. Strona administracyjna 2. Strona tytułowa 3. Wprowadzenie 4. Opis doświadczenia 5. Opracowanie

Bardziej szczegółowo

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE

JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE JAK WYZNACZA SIĘ PARAMETRY WALIDACYJNE 1 Dokładność i poprawność Dr hab. inż. Piotr KONIECZKA Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska ul. G. Narutowicza 11/12 80-233 GDAŃSK e-mail:

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych

Ćw. 1: Wprowadzenie do obsługi przyrządów pomiarowych Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 1: Wprowadzenie do obsługi przyrządów

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Laboratorium fizyczne

Laboratorium fizyczne Laboratorium fizyczne Spis ćwiczeń dostępnych w pracowni fizycznej 1. MECHANIKA 1.1 Wyznaczanie gęstości ciał stałych metodą hydrostatyczną 1.2 Wyznaczanie gęstości ciał stałych za pomocą piknometru 1.3

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru

Dr inż. Paweł Fotowicz. Procedura obliczania niepewności pomiaru Dr inż. Paweł Fotowicz Procedura obliczania niepewności pomiaru Przewodnik GUM WWWWWWWWWWWWWWW WYRAŻANIE NIEPEWNOŚCI POMIARU PRZEWODNIK BIPM IEC IFCC ISO IUPAC IUPAP OIML Międzynarodowe Biuro Miar Międzynarodowa

Bardziej szczegółowo

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego:

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 5 Wyznaczanie przyspieszenia grawitacyjnego g za pomocą wahadła balistycznego Kalisz, luty 2005 r. Opracował: Ryszard

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 1 Metody określania niepewności pomiaru. I. Zagadnienia do przygotowania na kartkówkę: 1. Podstawowe założenia teorii niepewności. Wyjaśnić znaczenie pojęć randomizacja

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz

Agrofi k zy a Wyk Wy ł k ad I Marek Kasprowicz Agrofizyka Wykład I Marek Kasprowicz Agrofizyka nauka z pogranicza fizyki i agronomii, której obiektem badawczym jest ekosystem i obiekty biologiczne kształtowane poprzez działalność człowieka, badane

Bardziej szczegółowo

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE

PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE PODSTAWOWE TECHNIKI PRACY LABORATORYJNEJ: WAŻENIE, SUSZENIE, STRĄCANIE OSADÓW, SĄCZENIE CEL ĆWICZENIA Zapoznanie studenta z podstawowymi technikami pracy laboratoryjnej: ważeniem, strącaniem osadu, sączeniem

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Mierzymy długość i szybkość fali dźwiękowej. rezonans w rurze.

Mierzymy długość i szybkość fali dźwiękowej. rezonans w rurze. 1 Mierzymy długość i szybkość fali dźwiękowej rezonans w rurze. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń: - opisuje mechanizm

Bardziej szczegółowo