PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
|
|
- Maria Chrzanowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać uczeń, który opanował wiedzę i zdobył umiejętności stanowiące 40 60% wymagań podstawowych, zaś ocenę dostateczną uczeń, który opanował wiedzę i zdobył umiejętności stanowiące powyżej 60% wymagań podstawowych. Ocenę dobrą powinien otrzymać uczeń, który opanował wiedzę i zdobył umiejętności stanowiące do 75% wymagań dopełniających, zaś ocenę bardzo dobrą uczeń, który opanował wiedzę i zdobył umiejętności stanowiące powyżej 75% wymagań dopełniających. Ocenę celującą powinien uzyskać uczeń, który opanował wiedzę i zdobył umiejętności zawarte w wymaganiach wykraczających. 1. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością prostą; potrafi wskazać współczynnik proporcjonalności; rozwiązuje zadania tekstowe z zastosowaniem proporcjonalności prostej; zna pojęcie funkcji liniowej; potrafi interpretować współczynniki we wzorze funkcji liniowej; potrafi sporządzić wykres funkcji liniowej danej wzorem; potrafi na podstawie wykresu funkcji liniowej (wzoru funkcji) określić monotoniczność funkcji; potrafi wyznaczyć algebraicznie i graficznie zbiór tych argumentów, dla których funkcja liniowa przyjmuje wartości dodatnie (ujemne, niedodatnie, nieujemne); potrafi sprawdzić algebraicznie, czy punkt o danych współrzędnych należy do wykresu funkcji liniowej; potrafi podać własności funkcji liniowej na podstawie wykresu tej funkcji; wie, że współczynnik kierunkowy a we wzorze funkcji y = ax + b, oznacza tangens kąta nachylenia wykresu funkcji liniowej do osi OX; wie, że współczynnik kierunkowy a we wzorze funkcji liniowej y = ax + b wyraża się wzorem y2 y1 a =, gdzie A(x 1, y 1 ), B(x 2, y 2 ) są punktami należącymi do wykresu tej funkcji; x x 2 1 Uczeń potrafi przeprowadzić dowód warunku na rozwiązuje zadania prostopadłość wykresów funkcji liniowych nietypowe, o współczynnikach różnych od zera; o podwyższonym stopniu potrafi rozwiązywać zadania z wartością trudności. bezwzględną i parametrem dotyczące własności funkcji liniowej (o średnim stopniu trudności); potrafi naszkicować wykres funkcji kawałkami liniowej i na jego podstawie omówić własności danej funkcji; potrafi wyznaczyć algebraicznie miejsca zerowe funkcji kawałkami liniowej oraz współrzędne punktu wspólnego wykresu funkcji i osi OY; potrafi wyznaczyć algebraicznie zbiór tych argumentów, dla których funkcja kawałkami liniowa przyjmuje wartości dodatnie (ujemne); potrafi obliczyć wartość funkcji kawałkami liniowej dla podanego argumentu; potrafi znaleźć wzór funkcji liniowej o zadanych własnościach (np. takiej, której wykres przechodzi przez dwa dane punkty; jest nachylony do osi OX pod danym kątem 1
2 i przechodzi przez dany punkt itp.); potrafi napisać wzór funkcji liniowej na podstawie informacji o jej wykresie; potrafi napisać wzór funkcji liniowej, której wykres jest równoległy do wykresu danej funkcji liniowej i przechodzi przez punkt o danych współrzędnych; potrafi napisać wzór funkcji liniowej, której wykres jest prostopadły do wykresu danej funkcji liniowej i przechodzi przez punkt o danych współrzędnych; na podstawie wzorów dwóch funkcji liniowych potrafi określić wzajemne położenie ich wykresów; potrafi rozwiązywać proste zadania z parametrem dotyczące własności funkcji liniowej: potrafi stosować wiadomości o funkcji liniowej do opisu zjawisk z życia codziennego (podać opis matematyczny zjawiska w postaci wzoru funkcji liniowej, odczytać informacje z wykresu (wzoru), zinterpretować je, przeanalizować i przetworzyć); potrafi rozwiązać równanie liniowe z jedną niewiadomą; potrafi rozwiązać nierówność liniową z jedną niewiadomą i przedstawić jej zbiór rozwiązań na osi liczbowej; potrafi rozwiązać układ nierówności liniowych z jedną niewiadomą; potrafi interpretować graficznie równania i nierówności liniowe z jedną niewiadomą; potrafi rozwiązywać algebraicznie proste równania i nierówności liniowe z wartością bezwzględną i interpretować je graficznie np.: x 2 = 3, x + 4 > 2; zna pojęcia równania pierwszego stopnia z dwiema niewiadomymi; wie, że wykresem równania pierwszego stopnia z dwiema niewiadomymi jest prosta; zna pojęcie układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; potrafi rozpoznać układ oznaczony, nieoznaczony, sprzeczny i umie podać ich interpretację geometryczną; potrafi rozwiązywać algebraicznie (metodą przez podstawienie oraz metodą przeciwnych współczynników) układy dwóch równań pierwszego stopnia z dwiema niewiadomymi; potrafi graficznie rozwiązać układy dwóch równań pierwszego stopnia z dwiema niewiadomymi. potrafi rozwiązywać równania i nierówności liniowe z wartością bezwzględną (o średnim stopniu trudności) i interpretować je graficznie; potrafi przeprowadzić dyskusję liczby rozwiązań równania liniowego z parametrem; potrafi wyznaczyć wszystkie wartości parametru, dla których zbiorem rozwiązań nierówności liniowej z parametrem jest podany zbiór. 2
3 2. Funkcja kwadratowa potrafi naszkicować wykres funkcji kwadratowej określonej wzorem y = ax 2, gdzie a 0, oraz omówić jej własności na podstawie wykresu; zna wzór funkcji kwadratowej w postaci ogólnej y = ax 2 + bx + c, gdzie a 0; zna wzór funkcji kwadratowej w postaci kanonicznej y = a (x p) 2 + q, gdzie a 0; zna wzór funkcji kwadratowej w postaci iloczynowej y = a (x x 1 )(x x 2 ), gdzie a 0; zna wzory pozwalające obliczyć: wyróżnik funkcji kwadratowej, współrzędne wierzchołka paraboli, miejsca zerowe funkcji kwadratowej (o ile istnieją); potrafi obliczyć miejsca zerowe funkcji kwadratowej lub uzasadnić, że funkcja kwadratowa nie ma miejsc zerowych; potrafi rozwiązywać równania, które można sprowadzić do równań kwadratowych; potrafi rozwiązywać zadania tekstowe prowadzące do równań i nierówności kwadratowych z jedną niewiadomą (w tym zadania geometryczne); potrafi zastosować własności funkcji kwadratowej do rozwiązywania zadań optymalizacyjnych; potrafi rozwiązywać zadania z parametrem, Uczeń potrafi wyprowadzić wzory na miejsca zerowe funkcji kwadratowej; potrafi wyprowadzić wzory na współrzędne wierzchołka paraboli; potrafi rozwiązywać różne problemy dotyczące funkcji kwadratowej, które wymagają potrafi obliczyć współrzędne wierzchołka paraboli na podstawie poznanego wzoru oraz na o średnim stopniu trudności, dotyczące niestandardowych metod podstawie znajomości miejsc zerowych funkcji kwadratowej; własności funkcji kwadratowej; pracy oraz potrafi sprawnie zamieniać jedną postać wzoru funkcji kwadratowej na drugą (wzór funkcji potrafi rozwiązywać zadania na dowodzenie niekonwencjonalnych w postaci ogólnej, kanonicznej, iloczynowej); dotyczące własności funkcji kwadratowej. pomysłów. interpretuje współczynniki występujące we wzorze funkcji kwadratowej (wzór funkcji w postaci ogólnej, kanonicznej, iloczynowej); potrafi podać niektóre własności funkcji kwadratowej (bez szkicowania jej wykresu) na podstawie wzoru funkcji w postaci kanonicznej (przedziały monotoniczności funkcji, równanie osi symetrii paraboli, zbiór wartości funkcji) oraz na podstawie wzoru funkcji w postaci iloczynowej (miejsca zerowe funkcji, zbiór argumentów, dla których funkcja przyjmuje wartości dodatnie lub ujemne); potrafi naszkicować wykres dowolnej funkcji kwadratowej, korzystając z jej wzoru; potrafi na podstawie wykresu funkcji kwadratowej omówić jej własności; potrafi napisać wzór funkcji kwadratowej na podstawie informacji o jej wykresie; potrafi napisać wzór funkcji kwadratowej o zadanych własnościach; potrafi przekształcić wykres funkcji kwadratowej (symetria względem osi OX, symetria względem osi OY, symetria względem punktu O(0, 0), przesunięcie równoległe o wektor) oraz napisać wzór funkcji, której wykres otrzymano w danym przekształceniu; potrafi wyznaczyć najmniejszą oraz największą wartość funkcji kwadratowej w danym przedziale domkniętym; potrafi algebraicznie rozwiązywać równania i nierówności kwadratowe z jedną niewiadomą; potrafi graficznie rozwiązywać równania i nierówności kwadratowe z jedną niewiadomą; potrafi rozwiązywać proste zadania prowadzące do równań i nierówności kwadratowych z jedną niewiadomą; 3
4 potrafi rozwiązywać proste zadania z parametrem dotyczące własności funkcji kwadratowej; potrafi przeanalizować zjawisko z życia codziennego, opisane wzorem (wykresem) funkcji kwadratowej. 3. Geometria płaska czworokąty zna podział czworokątów; potrafi wyróżnić wśród trapezów: trapezy prostokątne i trapezy równoramienne; poprawnie posługuje się takimi określeniami, jak: podstawa, ramię, wysokość trapezu; wie, że suma kątów przy każdym ramieniu trapezu jest równa 180 i umie tę własność wykorzystać w rozwiązywaniu prostych zadań; zna twierdzenie o odcinku łączącym środki ramion trapezu i umie zastosować je w rozwiązywaniu prostych zadań; potrafi rozwiązywać proste zadania dotyczące własności trapezów; zna podstawowe własności równoległoboków i umie je stosować w rozwiązywaniu prostych zadań; wie, jakie własności ma romb; zna własności prostokąta i kwadratu; wie, co to są trapezoidy, potrafi podać przykłady takich figur; wie, czym charakteryzuje się deltoid; rozwiązując zadania dotyczące czworokątów, korzysta z wcześniej poznanych twierdzeń, takich jak twierdzenie Pitagorasa oraz twierdzenie Talesa, wykorzystuje wiedzę na temat trójkątów, stosuje również wiadomości z trygonometrii; zna i potrafi stosować wzór na liczbę przekątnych wielokąta wypukłego; zna i potrafi stosować w zadaniach wzór na sumę miar kątów wewnętrznych wielokąta wypukłego; wie, co to jest kąt zewnętrzny wielokąta wypukłego i ile wynosi suma miar wszystkich kątów zewnętrznych wielokąta wypukłego; wie, jaki wielokąt jest wielokątem foremnym; zna i rozumie definicję podobieństwa; potrafi wskazać figury podobne; potrafi rozwiązywać proste zadania dotyczące podobieństwa czworokątów. umie na podstawie własności czworokąta podanych w zadaniu wywnioskować, jaki to jest czworokąt; umie udowodnić twierdzenie o odcinku łączącym środki ramion trapezu; potrafi rozwiązywać zadania o średnim stopniu trudności dotyczące czworokątów, w tym trapezów i równoległoboków; potrafi uzasadnić, że suma miar kątów zewnętrznych wielokąta wypukłego jest stała i wynosi 720. potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności dotyczące czworokątów. 4
5 4. Geometria płaska pole czworokąta zna wzory na pola czworokątów, takich jak: kwadrat, prostokąt, romb, równoległobok oraz trapez i potrafi je stosować w prostych zadaniach, korzystając z wcześniej zdobytej wiedzy (w tym także z trygonometrii); zna i potrafi stosować w prostych zadaniach zależność między skalą podobieństwa czworokątów a polami tych czworokątów; potrafi rozwiązywać proste zadania z zastosowaniem skali mapy. wie, jak obliczyć pole czworokąta, jeśli dane są długości jego przekątnych i miara kąta, pod jakim przecinają się te przekątne; potrafi rozwiązywać zadania dotyczące pól czworokątów o średnim stopniu trudności. potrafi rozwiązywać zadania o podwyższonym stopniu trudności dotyczące pól czworokątów. 5. Wielomiany potrafi rozwiązywać równania wielomianowe, które można sprowadzić do równań kwadratowych przez odpowiednie podstawienie; potrafi rozwiązywać zadania o wielomianach o średnim stopniu trudności; potrafi rozwiązywać zadania tekstowe prowadzące do równań wielomianowych. zna pojęcie jednomianu jednej zmiennej i potrafi określić stopień tego jednomianu; potrafi wskazać jednomiany podobne; potrafi rozpoznać wielomian jednej zmiennej rzeczywistej; potrafi uporządkować wielomian (malejąco lub rosnąco); potrafi określić stopień wielomianu jednej zmiennej; potrafi obliczyć wartość wielomianu dla danej wartości zmiennej; potrafi wykonać dodawanie, odejmowanie, mnożenie wielomianów; potrafi sprawdzić, czy podana liczba jest pierwiastkiem wielomianu; potrafi rozłożyć wielomian na czynniki poprzez wyłączanie wspólnego czynnika poza nawias, zastosowanie wzorów skróconego mnożenia: (a b) 2 = a 2 2ab + b 2, (a + b) 2 = a 2 + 2ab + b 2, (a b)(a + b) = a 2 b 2 oraz zastosowanie metody grupowania wyrazów; potrafi rozwiązywać równania wielomianowe, które wymagają umiejętności rozkładania wielomianów na czynniki wymienionych w poprzednim punkcie; potrafi rozwiązywać proste zadania dotyczące własności wielomianów, w których występują parametry. potrafi rozwiązywać zadania dotyczące wielomianów wymagające niekonwencjonalnych metod lub pomysłów, a także zadania o podwyższonym stopniu trudności z zastosowaniem poznanej wiedzy. 5
6 6. Ułamki algebraiczne. Równania wymierne potrafi określić dziedzinę ułamka algebraicznego; zna definicję funkcji homograficznej potrafi rozwiązywać potrafi napisać ułamek algebraiczny o zadanej dziedzinie; a zadania o podwyższonym f(x) = + q, gdzie a 0 potrafi wykonywać działania na ułamkach algebraicznych, takie jak: skracanie ułamków, x p stopniu trudności rozszerzanie ułamków, dodawanie, odejmowanie, mnożenie i dzielenie ułamków dotyczące wyrażeń potrafi przekształcić wzór funkcji f(x) = algebraicznych; wymiernych. ax + b potrafi rozwiązywać proste równania wymierne;, gdzie x c, tak by znany był wzór a x + c potrafi narysować wykres funkcji f(x) =, funkcji x gdzie a R {0}, x R {0}; y = x a i współrzędne wektora przesunięcia potrafi opisać własności funkcji f(x) = x a, a R {0}, x R {0}; wie, jaką zależność pomiędzy dwiema wielkościami zmiennymi nazywamy proporcjonalnością odwrotną; potrafi wskazać współczynnik proporcjonalności odwrotnej; potrafi rozwiązywać proste zadania tekstowe z zastosowaniem wiadomości o proporcjonalności odwrotnej. równoległego; potrafi narysować wykres funkcji f(x) = ax + b, gdzie x c; x + c potrafi opisać własności funkcji ax + b homograficznej f(x) =, gdzie x c, na x + c podstawie jej wykresu; potrafi obliczyć miejsce zerowe funkcji homograficznej oraz współrzędne punktu, w którym wykres przecina oś OY; potrafi wyznaczyć przedziały monotoniczności funkcji homograficznej; potrafi rozwiązywać równania i nierówności związane z funkcją homograficzną; potrafi przekształcić wykres funkcji homograficznej w symetrii względem osi OX, symetrii względem osi OY, symetrii względem punktu (0, 0), w przesunięciu równoległym o dany wektor oraz napisać wzór funkcji, której wykres otrzymano w wyniku tego przekształcenia; potrafi rozwiązywać zadania tekstowe prowadzące do równań wymiernych. 6
7 7. Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wypisać kilka kolejnych wyrazów ciągu uczeń potrafi rozwiązywać potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym; potrafi narysować wykres ciągu liczbowego określonego wzorem ogólnym; potrafi podać własności ciągu liczbowego na podstawie jego wykresu; zna definicję ciągu arytmetycznego; zna i potrafi stosować w rozwiązywaniu zadań wzór na n-ty wyraz ciągu arytmetycznego; zna i potrafi stosować w rozwiązywaniu zadań wzór na sumę n kolejnych początkowych wyrazów ciągu arytmetycznego; danego wzorem rekurencyjnym; potrafi sprawdzić, które wyrazy ciągu należą do danego przedziału; potrafi zbadać na podstawie definicji monotoniczność ciągu określonego wzorem ogólnym; potrafi zbadać na podstawie definicji, czy zadania na dowodzenie dotyczące ciągów i ich własności; potrafi udowodnić wzór na sumę n kolejnych początkowych wyrazów ciągu arytmetycznego; zna definicję ciągu geometrycznego; dany ciąg określony wzorem ogólnym jest potrafi udowodnić wzór zna i potrafi stosować w rozwiązywaniu zadań wzór na n-ty wyraz ciągu geometrycznego; arytmetyczny; na sumę n kolejnych zna i potrafi stosować w rozwiązywaniu zadań wzór na sumę n kolejnych początkowych potrafi zbadać na podstawie definicji, czy początkowych wyrazów wyrazów ciągu geometrycznego; dany ciąg określony wzorem ogólnym jest ciągu geometrycznego. potrafi wyznaczyć pierwszy wyraz i różnicę ciągu arytmetycznego na podstawie informacji geometryczny; o innych wyrazach ciągu; potrafi wykorzystać średnią arytmetyczną do potrafi znaleźć wzór na wyraz ogólny ciągu arytmetycznego; obliczenia wyrazu środkowego ciągu potrafi wyznaczyć pierwszy wyraz i iloraz ciągu geometrycznego na podstawie informacji arytmetycznego; o wartościach innych wyrazów ciągu; potrafi wykorzystać średnią geometryczną do potrafi znaleźć wzór na wyraz ogólny ciągu geometrycznego; obliczenia wyrazu środkowego ciągu geometrycznego; potrafi rozwiązywać zadania z życia codziennego dotyczące ciągu arytmetycznego i geometrycznego; potrafi rozwiązywać różne zadania dotyczące ciągu arytmetycznego lub ciągu potrafi stosować procent prosty i składany w zadaniach dotyczących oprocentowania lokat geometrycznego, które wymagają i kredytów. rozwiązania układów równań o podwyższonym stopniu trudności; potrafi rozwiązywać zadania mieszane dotyczące ciągu arytmetycznego i geometrycznego. 7
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór
1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:
1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Klasa Matematyka (poziom podstawowy) II a lo I. Wymagania ogólne 1. Wykorzystanie i tworzenie informacji. - interpretuje
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
Wymagania na egzamin poprawkowy z matematyki
23 czerwca 2017r. Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej LICEUM Strona 1 z 13 1. Funkcja i jej własności Uczeń:
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Podstawowy., Oficyna Edukacyjna
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
PLAN WYNIKOWY (zakres podstawowy) klasa 2.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
PLAN WYNIKOWY (zakres podstawowy) klasa 2.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
PLAN WYNIKOWY (zakres podstawowy) klasa 2.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
PLAN WYNIKOWY (zakres podstawowy) klasa 2.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.
1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony. Wymagania ogólne Uczeń: używa języka matematycznego do opisu rozumowania
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Klasa Matematyka III T I. Wymagania ogólne 1. Wykorzystanie i tworzenie informacji. - interpretuje tekst matematyczny
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności
Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Liceum Ogólnokształcące Klasa I Poniżej przedstawiony został podział wymagań edukacyjnych na poszczególne oceny. Wiedza i umiejętności konieczne do opanowania (K) to zagadnienia,
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
1, y = x 2, y = x 3, y= x, y = [x], y = sgn x;
Wymagania edukacyjne dla uczniów klasy II z rozszerzonym programem nauczania matematyki, niezbędne do uzyskania rocznych i śródrocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY /
WYMAGANIA EDUKACYJNE Z MATEMATYKI / POZIOM PODSTAWOWY / Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być opanowane przez każdego ucznia. Wymagania
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
PLAN WYNIKOWY (zakres podstawowy) klasa 2.
PLAN WYNIKOWY (zakres podstawowy) klasa. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach, autorstwa Marcina Kurczaba, Elżbiety Kurczab
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Warszawa 2019 LICZBY RZECZYWISTE stosować prawidłowo pojęcie zbioru, podzbioru, zbioru pustego; zapisywać zbiory w różnej postaci
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY
PRZEDMIOTOWY SYSTEM OCENIANIA PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY I ROZSZERZONY Copyright by Nowa Era Sp. z o.o. Warszawa 2019 LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych
1. LICZBY RZECZYWISTE. Uczeń otrzymuje ocenę dopuszczającą, jeśli:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI WYMAGANIA EDUKACYJNE POZIOM PODSTAWOWY KLASA 1 1. LICZBY RZECZYWISTE podaje przykłady
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka Poznać, zrozumieć Kształcenie w zakresie podstawowym Klasa 1 (4 godziny tygodniowo) Poniżej podajemy umiejętności, jakie powinien
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego.
WYMAGANIA EDUKACYJNE KLASA I Pogrubieniem oznaczono wymagania, które wykraczają poza podstawę programową dla zakresu podstawowego. 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Matematyka do liceów i techników
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa II zakres rozszerzony 7 tygodni 6 godzin = godziny Lp. I. Funkcja liniowa Tematyka zajęć Liczba godzin. Proporcjonalność prosta. Funkcja
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS /02
Wymagania na ocenę dopuszczającą z matematyki klasa I Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Temat lekcji Zakres treści Osiągnięcia ucznia 1. Liczby naturalne definicja dzielnika
Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury
LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne
ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste
CZĘŚĆ I ZAKRES PODSTAWOWY W nawiasach proponowane oceny: 2 poziom konieczny wymagań edukacyjnych 3 poziom podstawowy wymagań edukacyjnych 4 poziom rozszerzający wymagań edukacyjnych 5 poziom dopełniający
Wymagania z matematyki, poziom podstawowy. nowa podstawa programowa
z matematyki, poziom podstawowy nowa podstawa programowa Nauczyciel matematyki: mgr Joanna Nowaczyk Zbiór liczb rzeczywistych i jego podzbiory ponad potrafi odróżnić zdanie logiczne od innej wypowiedzi;
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
Wymagania z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14
z wiedzy i umiejętności na poszczególne stopnie szkolne z matematyki w Zasadniczej Szkole Zawodowej nr 14 Liczby rzeczywiste Wiadomości i umiejętności rozpoznać liczby naturalne w tym pierwsze i złożone,
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
I. Funkcja kwadratowa
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas III w roku szkolnym 2017/2018 w Zespole Szkół Ekonomicznych w Zielonej Górze Dla każdej klasy 3 obowiązuje taka ilość poniższego
MATEMATYKA Katalog wymagań programowych
MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY PIERWSZEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. LICZBY RZECZYWISTE DLA KLASY PIERWSZEJ 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i
KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1.
Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA OCENIANIA MATEMATYKA (podstawowy) klasa 1. Prace klasowe
WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
PLAN WYNIKOWY (zakres rozszerzony) klasa 2.
PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Spis treści 1. Funkcja liniowa 4 2. Funkcja kwadratowa.. 11 3. Geometria płaska czworokąty 17 4. Geometria płaska pole czworokąta 21 5. Wielomiany 24 6. Ułamki
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Wymagania edukacyjne z matematyki w klasie III gimnazjum
Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):
Wymagania dla kl. 1. Zakres podstawowy. podaje przykłady liczb pierwszych, parzystych i nieparzystych cechy podzielności liczb naturalnych
Wymagania dla kl. 1 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. LICZBY RZECZYWISTE 1. Liczby naturalne definicja dzielnika liczby naturalnej definicja liczby pierwszej podaje przykłady
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi