Definicja 1.2. Niech A będzie niepustym zbiorem, a i działaniami w A. (1) Mówimy, że jest łączne, jeżeli. x, y, z A[x (y z) =(x y) z].
|
|
- Henryk Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 1. Wykład 1: Grupy i izomorfizmy grup. Podgrupy, podgrupy generowane przez zbiór Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. NiechponadtoB będzie niepustym zbiorem. Działaniem zewnętrznym wzbiorzea nazywamy funkcję : B A A. Uwaga 1.1. To, że w zbiorze A określono działanie wewnętrzne wszczególnościoznacza,że: (1) x, y A[ (x, y) istnieje], (2) x, y A[ (x, y) A]. Zamiast (x, y) będziemy na ogół pisać x y. Podobnie,jeśliB, toto,żewzbiorzea określono działanie zewnętrzne wszczególnościoznacza,że: (1) a B x A[ (a, x) istnieje], (2) a B x A[ (a, x) A]. Zamiast (a, x) będziemy na ogół pisać a x. Natymwykładziebędziemyzajmowaćsięprawiewyłącznie działaniami wewnętrznymi. (1) Dodawanie liczb naturalnych jest działaniem w zbiorze N. Zauważmy,żedodawaniemożemy formalnie zdefiniować rekurencyjnie jako funkcję d : N N N warunkiem: { d(x, 0) = x d(x, y) = d(x, S(y)) = S(d(x, y)), gdzie S : N N oznacza funkcję następnika liczb naturalnych. Symbol + dlaoznaczenia dodawania wprowadził w 1489 roku Johannes Widmann. (2) Mnożenie liczb naturalnych jest działaniem w zbiorze N. Podobniejakdodawanie,mnożenie możemy zdefiniować rekurencyjnie jako funkcję m : N N N daną warunkiem: { m(x, 0) = 0, m(x, y) = m(x, S(y)) = m(x, y)+x, gdzie, jak poprzednio, S : N N oznacza funkcję następnika liczb naturalnych. Znak dla oznaczenia mnożenia wprowadził w 1631 roku William Oughtred, zaś symbol zaproponował Gottfried Wilhelm von Leibniz w roku (3) Odejmowanie i dzielenie nie są działaniami w zbiorze N: 3 5 / N oraz 1 2 / N. Zdrugiej strony, odejmowanie jest działaniem w Z, a dzielenie jest działaniem w Q \{0}. (4) Mnożenie wektorów na płaszczyźnie przez skalary rzeczywiste jest przykładem działania zewnętrznego. Definicja 1.2. Niech A będzie niepustym zbiorem, a i działaniami w A. (1) Mówimy, że jest łączne, jeżeli (2) Mówimy, że jest przemienne, jeżeli x, y, z A[x (y z) =(x y) z]. x, y A[x y = y x]. 1
2 2 (3) Mówimy, że ma element neutralny e, jeżeli x A[x e = e x = x]. (4) Mówimy, że y jest elementem odwrotnym do x, jeżeli x y = y x = e. (5) Mówimy, że jest rozdzielne względem, jeżeli x, y, z A[x (y z) =x y x z]. (5) Dodawanie i mnożenie liczb naturalnych są łączne i przemienne. 0 jest elementem neutralnym dodawania, a 1 jest elementem neutralnym mnożenia. Ponadto mnożenie jest rozdzielne względem dodawania. 1 nie ma elementu odwrotnego względem dodawania,a2niemaelementuodwrotnego względem mnożenia. (6) Rozważmy dodawanie i mnożenie liczb całkowitych. Każda liczba całkowita ma element odwrotny względem dodawania, ale 2 nie ma elementu odwrotnego względem mnożenia. (7) Rozważmy dodawanie i mnożenie liczb wymiernych. Każda liczba wymierna ma element odwrotny względem dodawania i każda niezerowa liczba wymierna ma element odwrotny względem mnożenia. (8) Rozważmy dowolny niepusty zbiór X irodzinęa wszystkich funkcji f : X X oraz działanie składania funkcji. Jest to działanie łączne, ale nie jest przemienne. Funkcja identycznościowa X x x X jest elementem neutralnym tego działania, a jedyne funkcje, które mają elementy odwrotne, to funkcje różnowartościowe. Definicja 1.3. (1) Algebrą nazywamy ciąg (A, 1,..., n,b 1,...,B m, 1,..., m), gdziea jest niepustym zbiorem, 1,..., n działaniami wewnętrznymi w zbiorze A, a 1,..., m działaniami zewnętrznymi w zbiorze A (wraz z odpowiadającymi im zbiorami B 1,...,B m ). (2) Grupą nazywamy algebrę (G, ), gdzie jest łączne, ma element neutralny i każdy element w zbiorze G ma element odwrotny. Jeżeli ponadto jest przemienne, to grupę (G, ) nazywamy przemienną (lub abelową). (9) Przykładami algebr znanymi z wykładu z algebry liniowej są ciała, czyli algebry (F, +, ), gdzie + i są działaniami łącznymi, przemiennymi, mającymi elementy neutralne, odpowiednio, 0 i 1 oraz takie, że każdy element zbiorów, odpowiednio, F i F ma element odwrotny. Przykładami algebr, w których występują działania zewnętrzne, są przestrzenie liniowe, czyli algebry (V,+,F, ), gdzie+ jest działaniem wewnętrznym zbioru F,którejestłączne,przemienne, ma element neutralny i względem którergo każdy element zbioru V ma element odwrotny, natomiast : F V V jest pewnym działaniem zewnętrznym, przy czym F jest ciałem. (10) Grupy liczbowe. (Z, +), (Q, +), (R, +), (C, +) są przykładami grup przemiennych. (N, +) nie jest grupą. Podobnie (Q, ), (R, ), (C, ), gdziea = A \{0}, sągrupamiprzemiennymi.(n, ) i (Z, ) nie są grupami. (11) Grupy pochodzące od ciała. Uogólniając poprzedni przykład, dla dowolnego ciała (F,+, ) algebry (F, +) oraz (F, ) są grupami przemiennymi. (12) Grupy reszt. Niech n N ioznaczmyprzezz n = {0, 1,...,n 1}. WzbiorzeZ n definiujemy dodawanie modulo n: x n y = reszta z dzielenia x + y przez n
3 oraz mnożenie modulo n: Niech ponadto x n y = reszta z dzielenia x y przez n. U(Z n )={k Z n : NWD(k, n) =1}. (Z n, n ) i (U(Z n ), n ) są przykładami grup przemiennych. (Z n, n) na ogół nie jest grupą, chyba że n jest liczbą pierwszą wówczas Z n = U(Z n). (13) Grupy macierzy. Niech F będzie dowolnym ciałem, niech M(n, F ) oznacza zbiór macierzy kwadratowych stopnia n owspółczynnikachzciałaf. (M(n, F ), +) jest grupą przemienną, przy czym + oznacza tu dodawanie macierzy. Niech GL(n, F )={A M(n, F ):deta 0}. (GL(n, F ), ) jest grupą, która na ogół nie jest przemienna, przy czym oznacza tu mnożenie macierzy. Grupę tę nazywamy grupą liniową stopnia n nad ciałem F. Niech SL(n, F )={A M(n, F ):deta =1}. (SL(n, F ), ) jest grupą, która na ogół nie jest przemienna. Grupę tę nazywamy specjalną grupą liniową stopnia n nad ciałem F. (14) Grupy związane z przestrzenią liniową. Niech V będzie przestrzenią liniową. (V,+) jest grupą przemienną, przy czym + oznacza tu dodawanie wektorów. Oznaczmy przez Aut(V ) zbiór automorfizmów liniowych przestrzeni V. (Aut(V ), ) jest grupą, która na ogół nie jest przemienna, przy czym jest tu działaniem składania przekształceń liniowych. Załóżmy, że w przestrzeni V zdefiniowaliśmy funkcjonał dwuliniowy ξ określający na V strukturę przestrzeni euklidesowej. Oznaczmy przez O(V ) zbiór automorfizmów ortogonalnych przestrzeni V. (O(V ), ) jest grupą, która na ogół nie jest przemienna. Grupę tę nazywamy grupą ortogonalną przestrzeni (V,ξ). (15) Grupy funkcji. Niech (G, ) będzie grupą, niech X. Wrodziniefunkcji definiujemy działanie G X = {f : X G : f jest funkcją} (f g)(x) =f(x) g(x). (G X, ) jest grupą, która jest przemienna, gdy G jest przemienna. (16) Grupy zadane tabelkami Cayleya. Działania w grupach często wygodnie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie (Z 5, 5) wygląda następująco: Przykładem grupy zadanej przez tabelkę Cayleya, która nie ma odpowiednika wśród grup liczbowych, jest grupa czwórkowa Kleina (K 4, ),gdziek 4 = {a, b, c, d} oraz działanie zdefiniowane 3
4 4 jest następująco: a b c d a a b c d b b a d c c c d a b d d c b a (17) Grupy przekształceń. Niech X, niech S(X) ={f : X X : f jest bijekcją}. (S(X), ) jest grupą, która na ogół nie jest przemienna, przy czym oznacza tu działanie składania funkcji. Jeśli X = {1, 2,...,n}, togrupęs(x) oznaczamy przez S(n) inazywamygrupą symetryczną stopnia n albo grupą permutacji stopnia n. Dlagrupsymetrycznychprzyjmujemy następującą notację: jeśli σ S(n) i σ(1) = i 1,...,σ(n) =i n,topiszemy σ = ( ) n. i 1 i 2... i n Na przykład dla n =3elementy grupy S(3) to następujące funkcje: id 3 : s 1 : ( ) ( ) o 1 : s 2 : ( ) ( ) o 2 : s 3 : ( ) ( ) Tym samym tabelka działań w grupie S(3) wygląda następująco: id 3 o 1 o 2 s 1 s 2 s 3 id 3 id 3 o 1 o 2 s 1 s 2 s 3 o 1 o 1 o 2 id 3 s 2 s 3 s 1 o 2 o 2 id 3 o 1 s 3 s 1 s 2 s 1 s 1 s 3 s 2 id 3 o 2 o 1 s 2 s 2 s 1 s 3 o 1 id 3 o 2 s 3 s 3 s 2 s 1 o 2 o 1 id 3.Widzimy,żejesttoprzykładgrupynieprzemiennej:s 1 o 1 = s 2,aleo 1 s 1 = s 3. (18) Grupy izometrii własnych n-kąta foremnego. Dla n 3, n N, oznaczmyprzezd(n) zbiór izometrii własnych n-kąta foremnego. (D(n), ) jest grupą. Na przykład grupa D(3) składa się z
5 5 następujących izometrii trójkąta równobocznego: ID 3 : O 1 : O 2 : identyczność obrót o 120 obrót o 240 S 1 : S 2 : S 3 : symetria względem symetralnej przechodzącej przez wierzchołek 1 symetria względem symetralnej przechodzącej przez wierzchołek 2 Tabelka działań w grupie D(3) wygląda zatem następująco: symetria względem symetralnej przechodzącej przez wierzchołek 3 ID 3 O 1 O 2 S 1 S 2 S 3 ID 3 ID 3 O 1 O 2 S 1 S 2 S 3 O 1 O 1 O 2 ID 3 S 2 S 3 S 1 O 2 O 2 ID 3 O 1 S 3 S 1 S 2 S 1 S 1 S 3 S 2 ID 3 O 2 O 1 S 2 S 2 S 1 S 3 O 1 ID 3 O 2 S 3 S 3 S 2 S 1 O 2 O 1 ID 3. (19) Skończony produkt grup. Niech (G 1, 1 ),...,(G n, n ) będą grupami. W produkcie kartezjańskim G = G 1... G n definiujemy działanie po współrzędnych : (a 1,...,a n ) (b 1,...,b n )=(a 1 1 b 1,...,a n n b n ). (G, ) jest grupą. Jako przykład rozważmy grupy (Z 2, 2 ) i (Z 2, 2 ).Wówczas itablelkadziałańwyglądanastępująco: Z 2 Z 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} (0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (1, 1) (0, 1) (0, 1) (0, 0) (1, 1) (1, 0) (1, 0) (1, 0) (1, 1) (0, 0) (0, 1) (1, 1) (1, 1) (1, 0) (0, 1) (0, 0) Definicja 1.4. Niech (G 1, 1 ) i (G 2, 2 ) będą grupami. Funkcję f : G 1 G 2 nazywamy izomorfizmem grup, jeżelijestbijekcjąispełnionyjestwarunek x, y G 1 [f(x 1 y)=f(x) 2 f(y)]. Jeżeli istnieje izomorfizm f : G 1 G 2,togrupyG 1 i G 2 nazywamy izomorficznymi, co oznaczamy przez G 1 = G2.
6 6 (20) Grupy S(3) i D(3) są izomorficzne. Istotnie, rozważmy funkcję f : S(3) D(3), którą, dla wygody oznaczeń, zdefiniujemy tabelką jako: σ id 3 o 1 o 2 s 1 s 2 s 3 f(σ) ID 3 O 1 O 2 S 1 S 2 S 3 Oczywiście jest to bijekcja. Porównując tabelki działan w S(3) i D(3) widzimy, że jest to też izomorfizm grup. (21) Grupy K 4 i Z 2 Z 2 są izomorficzne. Istotnie, izomorfizm ustala funkcja f : K 4 Z 2 Z 2 dana tabelką x a b c d f(x) (0, 0) (0, 1) (1, 0) (1, 1) Wdowolnejgrupie(G, ) wprowadzamy oznaczenie n x i = x 1... x n. i=1 Wszczególności n i=1 x = xn.tradycyjnieużywamywteoriigrupdwóchrównoległychterminologii, addytywnej i multyplikatywnej, według następującego schematu: Definicja Notacja addytywna Notacja multyplikatywna + działanie dodawanie mnożenie suma iloczyn 0 1 element neutralny zero jedynka nx x potęga element odwrotny wielokrotność x element przeciwny Twierdzenie 1.1. Niech (G, ) będzie grupą. Wówczas: potęga x 1 element odwrotny (1) element neutralny e jest wyznaczony jednoznacznie; (2) m i=1 x i m+n j=m+1 x j = m+n k=1 x k,dlax 1,...,x m+n G; (3) x m+n = x m x n,dlax G; (4) (x m ) n = x mn,dlax G; (5) element odwrotny jest wyznaczony jednoznacznie; (6) (x n x n k k ) 1 = x n k k... x n 1 1,dlax 1,...,x k G; (7) (x 1 ) 1 = x, dlax G; (8) (x 1 y x) n = x 1 y n x, dlax, y G; (9) jeżeli x y = x z, toy = z oraz jeżeli y x = z x, toy = z (prawo skracania). Dowód. Udowodnimy dla przykładu część (1): jeśli e i e są dwoma elementami neutralnymi, to wówczas e = e e = e.
7 1.2. Podgrupy, podgrupy generowane przez zbiór. Definicja 1.5. Niech (G, ) będzie grupą. Podzbiór H zbioru G nazywamy podgrupą grupy G (piszemy H<G), gdy (H, H H ) jest grupą. (1) Z < R zdodawaniem; (2) R < C zmnożeniem; (3) SL(n, F ) <SL(n, F ) zmnożeniemmacierzy; (4) Z n nie jest podgrupą grupy Z. Twierdzenie 1.2. Niech = H G iniech(g, ) będzie grupą. Następujące warunki są równoważne: (1) H<G; (2) H ma następujące własności: 1 G H, x, y H(xy H), x H(x 1 H); (3) H ma następującą własność: x, y H(xy 1 H). Dowód. Równoważność (1) (2) jest oczywista. Dla dowodu implikacji (2) (3) ustalmy x, y H. Mamy, że y 1 H, więcxy 1 H. Pozostajeudowodnićimplikację(3) (1). PonieważH, więc istnieje x H. Stąd 1 G = xx 1 H. Dalej: Ustalmy x, y H. Wówczasy 1 H, azatem: x 1 =1 G x 1 H. xy = x(y 1 ) 1 H. (5) Zauważmy, że µ n (C) ={z C : z n =1} < C.Istotnie,ustalmyz 1,z 2 µ n (C), azatemniech z1 n =1i zn 2 =1.Wówczas(z 1z2 1 )n =( z 1 z 2 ) n = zn 1 = 1 =1,czyliz z2 n 1 1z2 1 µ n (C). (6) Zauważmy, że {0, 2, 4} < Z 6 zdodawaniem.istotnie,0 {0, 2, 4}, dodawanienakażdejparzenie wychodzi poza zbiór {0, 2, 4} oraz 0 jest elementem symetrycznym dla 0, 2 dla 4 i 4 dla 2. (7) Zauważmy, że 2Z = {2k : k Z} < Z zdodawaniem.istotnie,ustalmyx, y 2Z, azatemniech x =2k i y =2l. Wówczasx y =2k 2l =2(k l), czylix y 2Z. (8) Zauważmy, że jeśli G jest dowolną grupą, to {1 G } <Goraz G<G. Podgrupy te nazywamy podgrupami niewłaściwymi, wszystkie pozostałe podgrupami właściwymi. Twierdzenie 1.3. Niech R = {H i : i I} będzie rodziną podgrup grupy G; (1) i I H i jest podgrupą grupy G, (2) i I H i jest podgrupą grupy G, oiler jest łańcuchem. 7
8 8 Dowód. azatem (1) Oznaczmy F = i I H i.ustalmyx, y F.Wtedy i I(x, y H i ), i I(xy 1 H i ), czyli xy 1 F. (2) Oznaczmy F = i I H i.ustalmyx, y F.Wtedy azatem czyli xy 1 F. i 0 I(x, y H i0 ), i 0 I(xy 1 H i0 ), Definicja 1.6. Niech (G, ) będzie grupą oraz A G pewnym zbiorem. Najmniejszą w sensie inkluzji podgrupę grupy G zawierającą zbiór A (tj. przekrój wszystkich podgrup grupy G zawierających A) nazywamy podgrupą generowaną przez A ioznaczamy A. Uwaga 1.2. Podgrupa grupy G generowana przez zbiór A ma następujące własności: (1) A <G, (2) A A, (3) jeśli H<Goraz A H, towtedy A <H. Definicja 1.7. Każdy zbiór A otejwłasności,że A = G nazywamy zbiorem generatorów grupy G. Jeśli A = {a 1,...,a n } to oznaczamy a 1,...,a n = A. Mówimy, że grupa jest skończenie generowana, gdyistniejąelementyg 1,...,g n G takie, że G = g 1,...,g n. Uwaga 1.3. Wszczególnościgrupaskończeniegenerowananiemusibyćskończona, na przykład Z = 1. Twierdzenie 1.4 (o postaci elementów podgrupy generowanej przez zbiór). Niech (G, ) będzie grupą, niech A G. Wówczas A = {a k 1 1 a k a kn n : n N,k i Z,a i A}. Dowód. Oznaczmy A 1 = {a k 1 1 ak akn n : n N,k i Z,a i A}. Pokażemy, że A 1 <G. Zauważmy, że 1 G A 1 :istotnie,weźmya 1 A. Wtedyzdefinicjipotęgia 0 1 =1 G A 1.Zauważmy dalej, że dla x, y A 1 zachodzi xy A 1 :istotnie,ustalmyx = a k 1 1 a k a kn n, y = b l 1 1 b l b lm m, n, m N, k i,l i Z, a i,b i A. Mamy: xy = a k 1 1 a k a kn n b l 1 1 b l b lm m A 1. Na koniec zauważmy, że dla x A 1 zachodzi x 1 A 1 :istotnie,ustalmyx = a k 1 1 a k a kn n, n N, k i Z, a i A. Mamy: x 1 =(a k 1 1 a k a kn n ) 1 = a kn n a k n 1 n 1...a k 1 1 A 1.
9 Pozostaje pokazać, że A 1 = A. Inkluzja( ) jest oczywista, pozostaje wykazać inkluzję ( ). Dowód prowadzimy przez indukcję względem n. Dlan =1ustalmy a 1 A. Zdefinicjipodgrupy,a k 1 1 należy do wszystkich podgrup zawierających a 1,awięcizbiórA, zatemzdefinicjia k 1 1 A. Załóżmy, że twierdzenie zachodzi dla pewnej ustalonej liczby n>1, awięcżedlaa 1,a 2,...,a n A, k 1,...,k n Z zachodzi a k akn n A. Wówczas dla dla a 1,a 2,...,a n,a n+1 A, k 1,...,k n,k n+1 Z zachodzi Wniosek 1.1. a k a kn n }{{} A a k n+1 n+1 }{{} A A. (1) Niech G będzie grupą oraz niech a G. Wówczas a = {a k : k Z}. (2) Niech (G, ) będzie grupą abelową oraz niech {a 1,...,a n } G. Wówczas a 1,...,a n = {a k a kn n : k i Z}. (9) 1 = Z; (10) 1 = Z n, n N; (11) 2, 3 = {2k +3l : k, l Z} < Z; (12) 4, 5 = {4 n 5 m : n, m Z} < R ; (13) W grupie D(3) = {ID 3,O 1,O 2,S 1,S 2,S 3 } mamy: ID 3 = {ID 3 }, O 1 = {ID 3,O 1,O 2 }, O 2 = {ID 3,O 1,O 2 }, S 1 = {ID 3,S 1 }, S 2 = {ID 3,S 2 }, S 3 = {ID 3,S 3 }, O 1,S 1 = D(3); (14) Q = {±p k p kn n : n N,k i Z,p i P}, gdziep oznacza zbiór liczb pierwszych; (15) W grupie GL(n, F ) rozważmy macierze postaci a T ij (a) = i oraz O i (a) = a j i i j i 9
10 10 zwane, odpowiednio, transwekcjami oraz dylatacjami. Wówczas GL(n, F )= {T ij (a),o i (b) :a, b F, i, j {1,...,n}}.
Definicja1.2.Niech Abędzieniepustymzbiorem,a i działaniamiwa. (1)Mówimy,że jestłączne,jeżeli. x,y,z A[x (y z) = (x y) z].
1. Wykład 1: Grupy i izomorfizmy grup. Definicja 1.1. Niech A będzie niepustym zbiorem. Działaniem wewnętrznym(lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym
Grupy, pierścienie i ciała
Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Zadania z algebry liniowej - sem. I Struktury algebraiczne
Zadania z algebry liniowej - sem. I Struktury algebraiczne Definicja 1. Działaniem dwuargumentowym w niepustym zbiorze A nazywamy każdą funkcję : A A A, tzn. taką funkcję, że zachodzi a,b A (a, b) ((a,
Algebra. Jakub Maksymiuk. lato 2018/19
Algebra Jakub Maksymiuk lato 2018/19 Algebra W1/0 Zbiory z działaniami Podstawowe własności Potęgi Tabelka działania Przykłady Grupa symetryczna Algebra W1/1 Podstawowe własności Definicja: Działaniem
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Zestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Podstawowe struktury algebraiczne
Rozdział 1 Podstawowe struktury algebraiczne 1.1. Działania wewnętrzne Niech X będzie zbiorem niepustym. Dowolną funkcję h : X X X nazywamy działaniem wewnętrznym w zbiorze X. Działanie wewnętrzne, jak
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/
Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.
5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G.
Działania Definicja: Działaniem wewnętrznym w niepustym zbiorze G nazywamy funkcję działającą ze zbioru GxG w zbiór G. Przykłady działań wewnętrznych 1. Dodawanie i mnożenie są działaniami wewnętrznymi
Ćwiczenia 1 - Pojęcie grupy i rzędu elementu
Algebra 1 Ćwiczenia 1 - Pojęcie grupy i rzędu elementu Definicje i podstawowe własności Definicja 1. Niech X będzie niepustym zbiorem. Działaniem w zbiorze X nazywamy dowolne odwzorowanie (funkcję) działające
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Pojęcie pierścienia.
Pojęcie pierścienia. Definicja: Niech R będzie zbiorem niepustym. 1. Algebrę pr, `, q nazywamy pierścieniem, gdy pr, `q jest grupą abelową, działanie jest łaczne oraz rozdzielne względem działania `, to
1. Określenie pierścienia
1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.
DEF. DZIAŁANIE DWUARGUMENTOWE Działaniem dwuargumentowym w niepsutym zbiorze nazywamy każde odwzorowanie iloczynu kartezjańskiego :. Inaczej mówiąc, w zbiorze jest określone działanie dwuargumentowe, jeśli:
Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:
1. Wykład 1: Produkty grup. Produkty i koprodukty grup abelowych. Przypomnijmy konstrukcje słabych iloczynów (sum) prostych i iloczynów (sum) prostych grup znane z kursowego wykładu algebry. Ze względu
1 Grupy. 1.1 Grupy. 1.2 Podgrupy. 1.3 Dzielniki normalne. 1.4 Homomorfizmy
1 Grupy 1.1 Grupy 1.1.1. Niech G będzie taką grupa, że (ab) 2 = a 2 b 2 dla dowolnych a, b G. Udowodnić, że grupa G jest abelowa. 1.1.2. Niech G będzie taką grupa, że (ab) 1 = a 1 b 1 dla dowolnych a,
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Algebra konspekt wykladu 2009/10 1. du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra konspekt wykladu 2009/10 1 3 Podgrupy Niech S g mówimy, że podzbiór S jest zamknie ty ze wzgle du na dzialanie na zbioze G, jeśli dla dowolnych elementów x, y S, x y S. S jest zamkniety ze wzgle
Algebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Matematyka dyskretna
Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Relacje binarne. Def. Relację ϱ w zbiorze X nazywamy. antysymetryczną, gdy x, y X (xϱy yϱx x = y) spójną, gdy x, y X (xϱy yϱx x = y)
Relacje binarne Niech X będzie niepustym zbiorem. Jeśli ϱ X X to mówimy, że ϱ jest relacją w zbiorze X. Zamiast pisać (x, y) ϱ będziemy stosować zapis xϱy. Def. Relację ϱ w zbiorze X nazywamy zwrotną,
Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2
Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.
Wyk lad 2 Podgrupa grupy
Wyk lad 2 Podgrupa grupy Definicja 2.1. Pod grupy (G,, e) nazywamy taki podzbiór H G, że e H, h 1 H dla każdego h H oraz h 1 h 2 H dla dowolnych h 1, h 2 H. Jeśli H jest grupy G, to bedziemy pisali H G.
Uniwersytet w Białymstoku. Wykład monograficzny
Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr
Algorytm Euklidesa. ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90),
Algorytm Euklidesa ZADANIE 1. Oblicz korzystając z algorytmu Euklidesa: (a) NWD(120, 195), (b) NWD(80, 208), (c) NWD(36, 60, 90), (d) NWD(120, 168, 280), (e) NWD(30, 42, 70, 105), (f) NWW[120, 195], (g)
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Przestrzenie liniowe
Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.
Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a
Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +
1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)
Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla
(6) Homomorfizm φ : P R nazywamy epimorfizmem kategoryjnym, jeśli dla każdego pierścienia. jeśli φ ψ 1 = φ ψ 2, to ψ 1 = ψ 2 ;
10. Wykład 10: Homomorfizmy pierścieni, ideały pierścieni. Ideały generowane przez zbiory. 10.1. Homomorfizmy pierścieni, ideały pierścieni. Definicja 10.1. Niech P, R będą pierścieniami. (1) Odwzorowanie
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
Paweł Gładki. Algebra B. ~ pgladki/
Paweł Gładki Algebra B http://www.math.us.edu.pl/ ~ pgladki/ Konsultacje: Środa, 14:00-15:00, p. 527, Bankowa 14 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Algebra liniowa z geometrią. wykład I
Algebra liniowa z geometrią wykład I 1 Oznaczenia N zbiór liczb naturalnych, tutaj zaczynających się od 1 Z zbiór liczb całkowitych Q zbiór liczb wymiernych R zbiór liczb rzeczywistych C zbiór liczb zespolonych
Projekt matematyczny
Projekt matematyczny Tomasz Kochanek Uniwersytet Śląski Instytut Matematyki Katowice VI Święto Liczby π 15 marca 2012 r. Tomasz Kochanek (Uniwersytet Śląski) Projekt matematyczny 1 / 32 Wielkie twierdzenie
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.
Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element
Zadania egzaminacyjne
Rozdział 13 Zadania egzaminacyjne Egzamin z algebry liniowej AiR termin I 03022011 Zadanie 1 Wyznacz sumę rozwiązań równania: (8z + 1 i 2 2 7 iz 4 = 0 Zadanie 2 Niech u 0 = (1, 2, 1 Rozważmy odwzorowanie
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u
Wykład 4 Udowodnimy teraz, że jeśli U, W są podprzetrzeniami skończenie wymiarowej przestrzeni V to zachodzi wzór: dim(u + W ) = dim U + dim W dim(u W ) Rzeczywiście U W jest podprzetrzenią przestrzeni
2 Kongruencje 5. 4 Grupy 9. 5 Grupy permutacji Homomorfizmy grup Pierścienie 16
DB Algebra dla informatyków 1 semestr letni 2018 1 Spis treści 1 Podzielność w Z, algorytm Euklidesa 2 2 Kongruencje 5 3 Twierdzenia: Fermata, Eulera i Wilsona 7 4 Grupy 9 5 Grupy permutacji 12 6 Homomorfizmy
Teoria ciała stałego Cz. I
Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
14. Przestrzenie liniowe
14. 14.1 Sformułować definicję przestrzeni liniowej. Podać przykłady. Przestrzenią liniową nad ciałem F nazywamy czwórkę uporządkowaną (V, F,+, ), gdzie V jest zbiorem niepustym, F jest ciałem, + jest
Funkcje analityczne. Wykład 2. Płaszczyzna zespolona. Paweł Mleczko. Funkcje analityczne (rok akademicki 2017/2018)
Funkcje analityczne Wykład 2. Płaszczyzna zespolona Paweł Mleczko Funkcje analityczne (rok akademicki 2017/2018) Plan wykładu W czasie wykładu omawiać będziemy różne reprezentacje płaszczyzny zespolonej
9 Przekształcenia liniowe
9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2
Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe
Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia
ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY
ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1
Zadania z Algebry Studia Doktoranckie Instytutu Matematyki Uniwersytetu Śląskiego 1 1. (a) Udowodnić, że jeśli grupa ilorazowa G/Z(G) jest cykliczna, to grupa G jest abelowa (Z(G) oznacza centrum grupy
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Funkcje. Oznaczenia i pojęcia wstępne. Elementy Logiki i Teorii Mnogości 2015/2016
Funkcje Elementy Logiki i Teorii Mnogości 2015/2016 Oznaczenia i pojęcia wstępne Niech f X Y będzie relacją. Relację f nazywamy funkcją, o ile dla dowolnego x X istnieje y Y taki, że (x, y) f oraz dla
3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B
1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =
cx cx 1,cx 2,cx 3,...,cx n. Przykład 4, 5
Matematyka ZLic - 07 Wektory i macierze Wektorem rzeczywistym n-wymiarowym x x 1, x 2,,x n nazwiemy ciąg n liczb rzeczywistych (tzn odwzorowanie 1, 2,,n R) Zbiór wszystkich rzeczywistych n-wymiarowych
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera
Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu
Przestrzenie wektorowe
Rozdział 4 Przestrzenie wektorowe Rozważania dotyczące przestrzeni wektorowych rozpoczniemy od kilku prostych przykładów. Przykład 4.1. W przestrzeni R 3 = {(x, y, z) : x, y, z R} wprowadzamy dwa działania:
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
DB Algebra liniowa 1 semestr letni 2018
DB Algebra liniowa 1 semestr letni 2018 Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo Naukowo-Techniczne,
1 Elementy logiki i teorii mnogości
1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz
Zadania z Algebry liniowej 4 Semestr letni 2009
Zadania z Algebry liniowej 4 Semestr letni 2009 Ostatnie zmiany 23.05.2009 r. 1. Niech F będzie podciałem ciała K i niech n N. Pokazać, że niepusty liniowo niezależny podzbiór S przestrzeni F n jest także
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
1 Działania na zbiorach
Algebra liniowa z geometrią /4 Działania na zbiorach Zadanie Czy działanie : R R R określone wzorem (x x ) (y y ) := (x y x y x y + x y ) jest przemienne? Zadanie W dowolnym zbiorze X określamy działanie
Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,
Lista Algebra z Geometrią Analityczną Układy równań. Zadanie 1 Wyjaśnij na czym polega metoda elininacji Gaussa rozwiązując układ równań: { x + 2y = 5 x y = 9 Zadanie 2 Rozwiąż układ równań metodą eliminacji
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych.
5. Wykład 5: Grupy proste. Definicja 5.1. Grupę (G, ) nazywamy grupą prostą, gdy G nie zawiera właściwych podgrup normalnych. Przeprowadzimy obecnie skróconą klasyfikację skończonych grup prostych. 5.1.
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.
FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga
R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },
nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
= b i M i [x], gdy charf = p, to a i jest pierwiastkiem wielomianu x n i
15. Wykład 15: Rozszerzenia pierwiastnikowe. Elementy wyrażające się przez pierwiastniki. Rozwiązalność równań przez pierwiastniki. Równania o dowolnych współczynnikach. 15.1. Rozszerzenia pierwiastnikowe.
Robert Kowalczyk. Zbiór zadań z teorii miary i całki
Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące
Algebra Abstrakcyjna i Kodowanie Lista zadań
Algebra Abstrakcyjna i Kodowanie Lista zadań Jacek Cichoń, WPPT PWr, Wrocław 2016/17 1 Grupy Zadanie 1 Pokaż, że jeśli grupy G i H są abelowe, to grupa G H też jest abelowa. Zadanie 2 Niech X będzie niepustym
Wykład 5. Ker(f) = {v V ; f(v) = 0}
Wykład 5 Niech f : V W będzie przekształceniem liniowym przestrzeni wektorowych Wtedy jądrem przekształcenia nazywamy zbiór tych elementów z V, których obrazem jest wektor zerowy w przestrzeni W Jądro
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji
Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie
Działanie grupy na zbiorze
Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5