Stechiometria analiza elementarna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Stechiometria analiza elementarna"

Transkrypt

1 ZADAIA Z CHEII Stechioetria aaliza eleetara Stechioetria jest to etoda aalizy, w której wykorzystuje się reakcje cheicze, a w obliczeiach aalizy ilościowej rówaie reakcji cheiczej. Aaliza eleetara jest to etoda aalizy ilościowej, w której określa się skład % pierwiastków w związku cheiczy. ajogóliej etody aalizy ilościowej podzielić oża a dwie grupy: I. etody aalizy stechioetryczej, w których wykorzystuje się reakcje cheicze, a w obliczeiach rówaia reakcji cheiczych. Istotą tych etod jest ozaczeie liczby oli () jedego z reagetów reakcji, w której uczesticzy badaa substacja. W zależości od sposobu ozaczaia liczby oli reagetów etody te dzielą się a: - Aalizę wagową ( =, gdzie: asa reageta, - asa olowa reageta) - Aalizę objętościową ( = V r cr, gdzie: V r objętość roztworu w d 3, c r stężeie roztworu wyrażoe w ol/d 3 ). II. etody aalizy iestechioetryczej, w których ie wykorzystuje się reakcji cheiczych. Istotą tych etod jest odwołaie się do wzorca. Ilość badaej substacji ozacza się ierząc wybraą wielkość fizykocheiczą, p.: absorbację (A) w etodach spektroskopowych, współczyik załaaia światła () w refraktoetrii, kąt skręcaia płaszczyzy światła spolaryzowaego (α) w polaryetrii, itp. ajczęściej wykorzystywae we współczesych laboratoriach aalityczych to etody: chroatograficze, spektroskopowe i elektrocheicze. Opis tych etod oża zaleźć w wielu podręczikach. W większości współczesych etod aalityczych stosuje się owoczesą aparaturę poiarową. etody takie określa się terie aaliza istruetala. ależy podkreślić, że aalizą istruetalą azwa się z oczywistych powodów wszystkie etody iestechioetrycze, ale rówież iektóre etody stechioetrycze. a przykład aalizą istruetalą są elektrocheicze etody aalizy objętościowej: iareczkowaie potecjoetrycze, w który wykorzystyway jest potecjoetr i iareczkowaie koduktoetrycze, w który wykorzystyway jest koduktoetr.

2 Ustalaie wzoru rzeczywistego substacji cheiczej Ostateczy cele idetyfikacji substacji cheiczej jest podaie jej wzoru cheiczego. Wzór cheiczy związku cheiczego iforuje as o: - Składzie jakościowy, tz. jakie pierwiastki tworzą te związek, - Stosukach ilościowych pierwiastków wchodzących w skład tego związku, - Strukturze cząsteczki tego związku. W przypadku, gdy aalizowaą substacją jest pierwiastek cheiczy ograicza się to do podaia sybolu tego pierwiastka. Jeśli pierwiastek występuje w rożych odiaach alotropowych, to przeprowadzając dodatkowe badaia fizykocheicze, p. ozaczając teperaturę topieia oża określić, jaka odiaa alotropowa pierwiastka była przediote przeprowadzoej idetyfikacji. W przypadku, gdy idetyfikowaa substacja jest związkie cheiczy, do określeia jej wzoru cheiczego ależy dodatkowo: - Przeprowadzić aalizę eleetarą, tz. określić % skład pierwiastkowy aalizowaej substacji, - Wyzaczyć asę olową aalizowaego związku cheiczego, - Przeprowadzić badaia fizykocheicze, ajczęściej spektroskopowe, pozwalające ustalić wzór strukturaly cząsteczki związku cheiczego. Stosuje się astępujące pojęcia: - Wzór epiryczy związku cheiczego, - Wzór rzeczywisty (suaryczy) związku cheiczego, - Wzór strukturaly cząsteczki związku cheiczego. Wzór epiryczy związku cheiczego a forę: A a B b, gdzie A i B, to sybole pierwiastków cheiczych, a współczyiki: a i b ozaczają ajiejszy stosuek olowy tych pierwiastków wchodzących w skład tego związku cheiczego. Wzór epiryczy związku cheiczego ustala się a podstawie wyików aalizy eleetarej. a przykład aaliza eleetara pewego związku cheiczego wykazała, że zawiera o: 48,5% C, 5,1% H i 14,2%. Poieważ sua procetowego składu podaych pierwiastków jest iejsza od 100, to ozacza to, że w skład tego związku cheiczego wchodzi rówież tle. Procetową zawartość tleu (%O) w ty związku oblicza się w astępujący sposób: %O = Σ (% pierwiastek) = ,8 = 32,8. Skład % pierwiastków w związku cheiczy jest iforacją o stosuku asowy pierwiastków w ty związku. Stosuek asowy pierwiastków w związku cheiczy jest stały, iezależy od ilości tego związku i sposobu jego otrzyaia (prawo stałości składu J. L. Prousta). Do ustaleia wzoru epiryczego wystarczy, więc przeliczyć stosuek asowy pierwiastków w związku a stosuek olowy.

3 Przeliczaie stosuku asowego pierwiastków w związku a stosuek olowy Wzór epiryczy przykładowego związku cheiczego a postać: C x H y O z k, w który współczyiki stechioetrycze: x, y, z, k ozaczają ajiejszy stosuek olowy pierwiastków w ty związku. Liczbę oli () substacji oblicza się z zależości: Gdzie: - asa substacji w g, a - asa olowa substacji w g ol 1. = Wykorzystując powyższą zależość oża obliczyć liczbę oli poszczególych pierwiastków zawartą w 100 g aalizowaego związku cheiczego: 48, 5 x = = 404, 12 51, y = = 510, 1 32, 2 k = = 201, 16 14, 2 z = = 101, 14 Poieważ stosuek olowy pierwiastków w związku cheiczy usi być wyrażoy jako stosuek liczb całkowitych (prawo stosuków olowych Daltoa), to dzieliy otrzyae liczby przez ajiejszą z ich i po zaokrągleiu otrzyujey: x : y : z : k = 4 : 5 : 1 : 2. Wzór epiryczy tego związku a postać: C 4 H 5 O. Wzór rzeczywisty (suaryczy) związku cheiczego - to taki, w który współczyiki stechioetrycze iforują as o liczbie oli pierwiastków w 1 olu tego związku lub o liczbie atoów pierwiastków w 1 cząsteczce tego związku. Dla określeia wzoru rzeczywistego związku cheiczego ależy po ustaleiu wzoru epiryczego ozaczyć asę olową związku. Wzór rzeczywisty związku cheiczego jest albo idetyczy z wzore epiryczy, albo jego współczyiki stechioetrycze są całkowitą wielokrotością współczyików wzoru epiryczego. a przykład wzór epiryczy pewego węglowodoru a postać: CH 2. Taki sa wzór epiryczy a wiele węglowodorów, p.: ete (C 2 H 6 ), prope (C 3 H 6 ), bute (C 4 H 8 ), itp. Dopiero po ozaczeiu asy olowej oża jedozaczie odpowiedzieć a pytaie, który z tych związków jest badaą substacją. W iektórych przypadkach te sa wzór rzeczywisty (suaryczy) oże być przypisay do różych związków cheiczych (zjawisko izoerii). Aby odpowiedzieć a pytaie, który z izoerów jest aalizowaą substacją, ależy ustalić wzór strukturaly cząsteczek tej substacji. Do tego celu wykorzystuje się etody aalizy fizykocheiczej, ajczęściej etody spektroskopowe.

4 Zadaie 1. Ile procet cyy powio zajdować się w jej stopie z iedzią, aby a każdy ato cyy przypadało sześć atoów iedzi? Dae: = 6 = 63,5 g/ol = 118,7 g/ol ależy obliczyć: % =? Rozwiązaie: % = 100 [1] + Przedstawiając asy pierwiastków, jako fukcję liczby oli pierwiastków, otrzyuje się: =, = Wzór [1] przekształca się do postaci: % = 100 [2] + Dzieląc liczik i iaowik rówaia [2] przez, otrzyuje się: % = 100 [3] + Zgodie z prawe Avogadro: = [4] 118,7 A zate: % = 100 = 100 = 23,75% 118, ,5 +

5 Zadaia do saodzielego rozwiązaia: 1. Aaliza wykazała, że w 3,26 g tleku chrou zajduje się 2,24 g chrou. Jaki jest wzór cheiczy tego tleku? 2. W 2,3 g tleku azotu zajduje się 0,7 g azotu. Podaj wzór tleku. 3. Jaki wzór a tleek siarki, którego 100 g zawiera 40 g siarki? 4. Tleek żelaza zawiera 27,6 % tleu. Jaki jest wzór cheiczy tego tleku? 5. Fluorowcopochoda bezeu zawiera 48,3 % chloru. Podaj wzór suaryczy tego związku. Odp. C 6 H 4 Cl 2 6. W 23,0 g tleku azotu zajduje się 7,0 g azotu. Podaj wzór cheiczy tleku. Odp. O 2 7. Jaki wzór cheiczy a tleek siarki, którego 10,0 g zawiera 6,0 g tleu? Odp. SO 3 8. Krystaliczy siarcza agezu zawiera 51,17 % wody krystalizacyjej. Oblicz ile cząsteczek wody przypada a jedą cząsteczkę gso 4. Odp Pewie tleek żelaza zawiera 27,6 % tleu. Jaki jest wzór cheiczy tego tleku? Odp. Fe 3 O Pewie pierwiastek tworzy dwuprotoowy kwas tleowy o asie 98 g ol 1, w który stosuek asowy tleu do wodoru wyosi 32 : 1. Podaj wzór tego kwasu. Odp. H 2 SO Tleek ołowiu zawiera 86,6 % etalu, resztę staowi tle. Wyprowadź wzór cheiczy tego tleku. Odp. PbO Próbka pewego kwasu orgaiczego zawiera 26,67 % wagowych węgla i 71,11 % wagowych tleu. Podaj wzór rzeczywisty tego związku, jeśli wiadoo, że jego asa olowa wyosi 90 g ol 1. Odp. H 2 C 2 O Pewie pierwiastek tworzy dwuprotoowy kwas tleowy o asie 62 g/ol, w który stosuek asowy tleu do wodoru wyosi 24:1. Podaj wzór tego kwasu. 14. Podaj wzór epiryczy substacji o składzie procetowy: 28,25 % potasu, 25,64 % chloru, 46,11 % tleu.

Chemiczne metody analizy ilościowej (laboratorium)

Chemiczne metody analizy ilościowej (laboratorium) Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay

Bardziej szczegółowo

Analiza stechiometryczna Redoksometria

Analiza stechiometryczna Redoksometria ZADANIA Z CHEII Aaliza stehioetryza Redoksoetria tehioetria jest to etoda aalizy, w której wykorzystuje się reakje heize, a w oblizeiah aalizy ilośiowej rówaie reakji heizej. Redoksoetria etoda ilośiowej

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W. imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W. imię i nazwisko,nazwa szkoły, miasto iię i azwisko,azwa szkoły, iasto Zadaia I etapu Kokursu heiczego Trzech Wydziałów PŁ II edycja Zadaie 1. ( pkt) Nadtleek litu (Li ) jest ciałe stały, występujący w teperaturze pokojowej w postaci białych

Bardziej szczegółowo

MASA ATOMOWA STECHIOMETRIA

MASA ATOMOWA STECHIOMETRIA MASA ATOMOWA wzorce: J. Dalton wodór J.J. Berzelius tlen od 1961 r. skala oparta na węglu 12 { 12 98,89%; 13 1,11%} 12 6 ato 6n + 6p + 6e Jednostka asy atoowej jest to 1 / 12 asy atou węgla 12 j..a. 1

Bardziej szczegółowo

Ligandy wielodonorowe - chelaty

Ligandy wielodonorowe - chelaty Ligady wielodoorowe - chelaty Etyleodiaia H CH CH H Koplekso I HOOC HOOC CH CH CH COOH Koplekso II HOOC HOOC CH CH COOH COOH Koplekso III a HOOC OOC CH CH COOH COO a Kolba iarowa AALIZA OBJĘTOŚCIOWA Kopleksoetria

Bardziej szczegółowo

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi: Stechiometria Każdą reakcję chemiczną można zapisać równaniem, które jest jakościową i ilościową charakterystyką tej reakcji. Określa ono bowiem, jakie pierwiastki lub związki biorą udział w danej reakcji

Bardziej szczegółowo

1. Podstawowe prawa i pojęcia chemiczne

1. Podstawowe prawa i pojęcia chemiczne 1. PODSTAWOWE PRAWA I POJĘCIA CHEMICZNE 5 1. Podstawowe prawa i pojęcia chemiczne 1.1. Wyraź w gramach masę: a. jednego atomu żelaza, b. jednej cząsteczki kwasu siarkowego. Odp. 9,3 10 23 g; 1,6 10 22

Bardziej szczegółowo

Czas zajęć: 1 godzina z 2 przeznaczonych na temat w rozkładzie materiału;

Czas zajęć: 1 godzina z 2 przeznaczonych na temat w rozkładzie materiału; Anna Chielewska Krzysztofik Nauczyciel cheii Zespół Szkół Mechanicznych w Lublinie Lublin, dn. 11.01.2005 Scenariusz zajęć edukacyjnych z cheii opracowany dla klasy 1At Techniku Mechanicznego na podstawie

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333)) 46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

STECHIOMETRIA REAKCJI CHEMICZNYCH OBLICZENIA CHEMICZNE

STECHIOMETRIA REAKCJI CHEMICZNYCH OBLICZENIA CHEMICZNE STECHIOMETRIA REAKCJI CHEMICZNYCH OBLICZENIA CHEMICZNE Jak wygląda Olipiada? Zawody Olipiady są czterostopniowe: Etap Wstępny - polega na saodzielny rozwiązywaniu zadań zaieszczonych w Inforatorze Olipiady,

Bardziej szczegółowo

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi www.ehedukaja.pl Zbiór zadań CKE Roztwory i reakje zahodząe w roztworah wodyh - odpowiedzi Zadaie Probówka I: AgNO + NaCl AgCl + NaNO Probówka II: AgNO + AgCl + Al(NO ) Zadaie Przykłady poprawyh odpowiedzi

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru

1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru 1. Stechiometria 1.1. Obliczenia składu substancji na podstawie wzoru Wzór związku chemicznego podaje jakościowy jego skład z jakich pierwiastków jest zbudowany oraz liczbę atomów poszczególnych pierwiastków

Bardziej szczegółowo

ANALIZA OBJĘTOŚCIOWA

ANALIZA OBJĘTOŚCIOWA Kolba iarowa H C Nazyko wagowe ANALZA BJĘTŚCWA ubstaja podstawowa: (H C H ), = 6,06 g ol.. Redoksoetria. Kopleksoetria. Alkayetria. Argetoetria H C H C H H C H ETAPY ANALZY BJĘTŚCWEJ. Przygotowaie roztworu

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Chemia Grudzień Styczeń

Chemia Grudzień Styczeń Chemia Grudzień Styczeń Klasa VII IV. Łączenie się atomów. Równania reakcji chemicznych 1. Wiązania kowalencyjne 2. Wiązania jonowe 3. Wpływ rodzaju wiązania na właściwości substancji 4. Elektroujemność

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

WYKŁAD Z CHEMII OGÓLNEJ

WYKŁAD Z CHEMII OGÓLNEJ WYKŁD Z HEII OGÓLEJ dr Sylwester. Stępniak Katedra heii, SGGW Zakład heii Żywności http://sylwester_stepniak.users.sggw.pl PROGR WYKŁDÓW W_1. heia nauka opisująca właściwości Rzeczywistości W_2. Przeiany

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

VII Podkarpacki Konkurs Chemiczny 2014/15. ETAP II r. Godz Zadanie 1 (11 pkt)

VII Podkarpacki Konkurs Chemiczny 2014/15. ETAP II r. Godz Zadanie 1 (11 pkt) VII Podkarpacki Konkurs heiczny 2014/15 KPKh ETAP II 20.12.2014 r. Godz. 10.302.30...... Nazwisko, iię Szkoła, iejscowość Rec. I Rec. II Tabela wyników Zad.1 Zad.2 Zad.3 Sua Wynik końcowy Uwaga! Masy olowe

Bardziej szczegółowo

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE

PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE PODSTAWOWE POJĘCIA I PRAWA CHEMICZNE Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Jaka jest średnia masa atomowa miedzi stanowiącej mieszaninę izotopów,

Bardziej szczegółowo

opracowała: mgr inż. Ewelina Nowak

opracowała: mgr inż. Ewelina Nowak Materiały dydaktycze a zajęcia wyrówawcze z chemii dla studetów pierwszego roku kieruku zamawiaego żyieria Środowiska w ramach projektu Era iżyiera pewa lokata a przyszłość opracowała: mgr iż. Ewelia Nowak

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

1. Podstawowe własności fizyczne płynów.

1. Podstawowe własności fizyczne płynów. .. Masa, gęstość, ciśieie.. Podstawowe własości fizycze płyów. Masa jest właściwością płyu charakteryzującą jego ilość. W układzie SI jedostką podstawową asy jest l kg. Oprócz jedostki podstawowej używa

Bardziej szczegółowo

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny

Ćwiczenia nr 5. TEMATYKA: Regresja liniowa dla prostej i płaszczyzny TEMATYKA: Regresja liiowa dla prostej i płaszczyzy Ćwiczeia r 5 DEFINICJE: Regresja: metoda statystycza pozwalająca a badaie związku pomiędzy wielkościami daych i przewidywaie a tej podstawie iezaych wartości

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej).

Moda (Mo, D) wartość cechy występującej najczęściej (najliczniej). Cetrale miary położeia Średia; Moda (domiata) Mediaa Kwatyle (kwartyle, decyle, cetyle) Moda (Mo, D) wartość cechy występującej ajczęściej (ajlicziej). Mediaa (Me, M) dzieli uporządkoway szereg liczbowy

Bardziej szczegółowo

Opracował: dr inż. Tadeusz Lemek

Opracował: dr inż. Tadeusz Lemek Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Opracował:

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

PODSTAWY BIOSTATYSTYKI ĆWICZENIA

PODSTAWY BIOSTATYSTYKI ĆWICZENIA PODSTAWY BIOSTATYSTYKI ĆWICZENIA FILIP RACIBORSKI FILIP.RACIBORSKI@WUM.EDU.PL ZAKŁAD PROFILAKTYKI ZAGROŻEŃ ŚRODOWISKOWYCH I ALERGOLOGII WUM ZADANIE 1 Z populacji wyborców pobrao próbkę 1000 osób i okazało

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x

, gdzie b 4c 0 oraz n, m ( 2). 2 2 b b b b b c b x bx c x x c x x Meody aeaycze w echologii aeriałów Uwaga: Proszę paięać, że a zajęciach obowiązuje akże zajoość oówioych w aeriałach przykładów!!! CAŁKOWANIE FUNKCJI WYMIERNYCH Fukcją wyierą azyway fukcję posaci P ( )

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu. Informacja do zadań 1 i 2 Chlorek glinu otrzymuje się w reakcji glinu z chlorowodorem lub działając chlorem na glin. Związek ten tworzy kryształy, rozpuszczalne w wodzie zakwaszonej kwasem solnym. Z roztworów

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt

Bardziej szczegółowo

Lista 6. Estymacja punktowa

Lista 6. Estymacja punktowa Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH 1 OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH Np.: WYZNACZANIE ILOŚCI SUBSTRATÓW KONIECZNYCH DLA OTRZYMANIA OKREŚLONYCH ILOŚCI PRODUKTU PODSTAWY OBLICZEŃ CHEMICZNYCH

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII KOD UCZNIA... WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII Termin 20.01.2010 r. godz. 9 00 Czas pracy: 90 minut ETAP II Ilość punktów za rozwiązanie zadań Część I Część II Ilość punktów za zadanie Ilość punktów

Bardziej szczegółowo

Cz. I Stechiometria - Zadania do samodzielnego wykonania

Cz. I Stechiometria - Zadania do samodzielnego wykonania Cz. I Stechiometria - Zadania do samodzielnego wykonania A. Ustalenie wzoru rzeczywistego związku chemicznego na podstawie składu procentowego. Zadanie i metoda rozwiązania Ustal wzór rzeczywisty związku

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Chemia nieorganiczna Zadanie Poziom: podstawowy

Chemia nieorganiczna Zadanie Poziom: podstawowy Zadanie 1 2 3 4 5 6 7 8 9 10 (Nazwisko i imię) Punkty Razem pkt % Chemia nieorganiczna Zadanie 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Poziom: podstawowy Punkty Zadanie 1. (1 pkt.) W podanym

Bardziej szczegółowo

Nazwy pierwiastków: ...

Nazwy pierwiastków: ... Zadanie 1. [ 3 pkt.] Na podstawie podanych informacji ustal nazwy pierwiastków X, Y, Z i zapisz je we wskazanych miejscach. I. Atom pierwiastka X w reakcjach chemicznych może tworzyć jon zawierający 20

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Liczba cząsteczek w 1 molu. Liczba atomów w 1 molu. Masa molowa M

Liczba cząsteczek w 1 molu. Liczba atomów w 1 molu. Masa molowa M Materiał powtórzeniowy do sprawdzianu - liczba Avogadro, mol, masa molowa, molowa objętość gazów, obliczenia stechiometryczne + zadania z rozwiązaniami I. Podstawowe definicje 1. Masa atomowa - masa atomu

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy przydziału Istrukcja do ćwiczeń laboratoryjych z przediotu: Badaia operacyje Teat ćwiczeia: Probley przydziału Zachodiopoorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki Szczeci 20 Opracował:

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu? 1. Oblicz, ilu moli HCl należy użyć, aby poniższe związki przeprowadzić w sole: a) 0,2 mola KOH b) 3 mole NH 3 H 2O c) 0,2 mola Ca(OH) 2 d) 0,5 mola Al(OH) 3 2. Podczas spalania 2 objętości pewnego gazu

Bardziej szczegółowo

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna

Bardziej szczegółowo

Zjawiska zachodzące w roztworach. Równowagi jonowe w wodnych roztworach elektrolitów. Rozpuszczanie. Rozpuszczanie w wyniku reakcji chemicznej

Zjawiska zachodzące w roztworach. Równowagi jonowe w wodnych roztworach elektrolitów. Rozpuszczanie. Rozpuszczanie w wyniku reakcji chemicznej Zjawiska zachodzące w roztworach rozpuszczaie dyfuzja osoza dysocjacja hydratacja hydroliza Rówowagi joowe w wodych roztworach elektrolitów dysocjacja elektrolitów stała i stopień dysocjacji prawo rozcieńczeń

Bardziej szczegółowo

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów. 2 Zadanie 1. [1 pkt] Pewien pierwiastek X tworzy cząsteczki X 2. Stwierdzono, że cząsteczki te mogą mieć różne masy cząsteczkowe. Wyjaśnij, dlaczego cząsteczki o tym samym wzorze mogą mieć różne masy cząsteczkowe.

Bardziej szczegółowo

Zapisz za pomocą symboli i wzorów następujące ilości substancji :

Zapisz za pomocą symboli i wzorów następujące ilości substancji : ZESTAW I Zadanie 1. Zapisz za pomocą symboli i wzorów następujące ilości substancji : a) dwa atomy wapnia... b) cztery cząsteczki wodoru... c) trzy cząsteczki siarczku żelaza... d) atom magnezu... e) dwie

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.)

Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Budowa atomu Poziom: rozszerzony Zadanie 1. (2 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Okres połowiczego rozpadu pewnego radionuklidu wynosi 16 godzin. a) Określ, ile procent atomów tego izotopu rozpadnie

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9

Rentgenowska analiza fazowa jakościowa i ilościowa Wykład 9 Retgeowska aaliza fazowa jakościowa i ilościowa Wykład 9 1. Retgeowska aaliza fazowa jakościowa i ilościowa. 2. Metody aalizy fazowej ilościowej. 3. Dobór wzorca w aalizie ilościowej. 4. Przeprowadzeie

Bardziej szczegółowo

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab CZĄSTECZKA I RÓWNANIE REKCJI CHEMICZNEJ potrafi powiedzieć co to jest: wiązanie chemiczne, wiązanie jonowe, wiązanie

Bardziej szczegółowo

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY

MATEMATYKA FINANSOWA - PROCENT SKŁADANY 2. PROCENT SKŁADANY 2. PROCENT SŁADANY Zasada procetu składaego polega a tym, iż liczymy odsetki za day okres i doliczamy do kapitału podstawowego. Odsetki za astępy okres liczymy od powiększoej w te sposób podstawy. Czyli

Bardziej szczegółowo

Numeryczny opis zjawiska zaniku

Numeryczny opis zjawiska zaniku FOTON 8, iosa 05 7 Numeryczy opis zjawiska zaiku Jerzy Giter ydział Fizyki U Postawieie problemu wielu zagadieiach z różych działów fizyki spotykamy się z astępującym problemem: zmiay w czasie t pewej

Bardziej szczegółowo

VI Podkarpacki Konkurs Chemiczny 2013/14. ETAP II r. Godz Zadanie 1 (14 pkt)

VI Podkarpacki Konkurs Chemiczny 2013/14. ETAP II r. Godz Zadanie 1 (14 pkt) VI Podkarpacki Konkurs Cheiczny 01/14 KOPKCh ETAP II 0.1.01 r. Godz. 1.00-15.00...... Nazwisko, iię Szkoła, iejscowość Rec. I Rec. II Tabela wyników Zad.1 Zad. Zad. Sua Wynik końcowy Uwaga! Masy olowe

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe)

Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Konkurs przedmiotowy z chemii dla uczniów gimnazjów 16 stycznia 2015 r. zawody II stopnia (rejonowe) Kod ucznia Suma punktów Witamy Cię na drugim etapie konkursu chemicznego. Podczas konkursu możesz korzystać

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

PODSTAWY STECHIOMETRII

PODSTAWY STECHIOMETRII PODSTAWY STECHIOMETRII 1. Obliczyć bezwzględne masy atomów, których względne masy atomowe wynoszą: a) 7, b) 35. 2. Obliczyć masę próbki wody zawierającej 3,01 10 24 cząsteczek. 3. Która z wymienionych

Bardziej szczegółowo

Przejmowanie ciepła przy kondensacji pary

Przejmowanie ciepła przy kondensacji pary d iż. Michał Stzeszewski 004-01 Pzejowaie ciepła pzy kodesacji pay Zadaia do saodzielego ozwiązaia v. 0.9 1. powadzeie Jeżeli paa (asycoa lub pzegzaa) kotaktuje się z powiezchią o tepeatuze T s iższej

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Cheia Pozio podstawowy Listopad 2011 W ni niej szy sche a cie oce nia nia za dań otwar tych są pre zen to wa ne przy kła do we po praw ne od po wie

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015 PRZYKŁADOWE ROZWIĄZANIA WRAZ Z PUNKTACJĄ Maksymalna liczba punktów możliwa do uzyskania po

Bardziej szczegółowo

Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej

Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej Materiały pomocnicze do przedmiotu Chemia I dla studentów studiów I stopnia Inżynierii Materiałowej Opracowali: Jarosław Chojnacki i Łukasz Ponikiewski, Wydział Chemiczny, Politechnika Gdaoska, Gdaosk

Bardziej szczegółowo