SZEŚCIENNIE ZBIEŻNA METODA ROZWIĄZYWANIA UKŁADU NIELINIOWYCH RÓWNAŃ CUBICALLY CONVERGENT METHOD FOR NONLINEAR EQUATION SYSTEMS

Wielkość: px
Rozpocząć pokaz od strony:

Download "SZEŚCIENNIE ZBIEŻNA METODA ROZWIĄZYWANIA UKŁADU NIELINIOWYCH RÓWNAŃ CUBICALLY CONVERGENT METHOD FOR NONLINEAR EQUATION SYSTEMS"

Transkrypt

1 RAFAŁ PALEJ SZEŚCIENNIE ZIEŻNA MEODA ROZWIĄZYWANIA UKŁADU NIELINIOWYC RÓWNAŃ CUICALLY CONVERGEN MEOD FOR NONLINEAR EQUAION SYSEMS S t r e s z c z e e A b s t r a c t W artyule przedstawoo metodę rozwązywaa uładu elowyc rówań algebraczyc. Zaprezetowaa metoda jest uogóleem jedej z wersj metody alleya. Metoda ta carateryzuje sę zbeżoścą sześceą wymaga zajomośc pocodyc perwszego drugego rzędu, ezbędyc do wyzaczea macerzy Jacobego essego. Słowa luczowe: uład elowyc rówań algebraczyc, uogóloa metoda alleya, zbeżość sześcea e paper deals wt te metod or solvg systems o olear algebrac equatos. e metod preseted ts paper s geeralzato about oe o alley s metods. s metod s cubcally coverget ad t eeds rst ad secod dervatves order to determe Jacoba ad essas. Keywords: system o olear algebrac equatos, geeralzed alley s metod, cubc covergece Dr ab. ż. Raał Palej, pro. PK, Istytut Iormaty Stosowaej, Wydzał Mecaczy, Polteca Kraowsa.

2 40. Wstęp Koeczość rozwązywaa uładów elowyc rówań algebraczyc pojawa sę często podczas symulacj uładów zyczyc. Waga problemu spowodowała duże zateresowae tą problematyą osób zajmującyc sę metodam umeryczym. Cocaż stora rozwoju metod rozwązywaa rówań uładów rówań elowyc sęga czasów Newtoa, to w lu ostatc deadac moża było odotować dużo artyułów moogra pośwęcoyc tej tematyce. Zdecydowaa węszość metod opera sę a aprosymacj pocodyc [4], cocaż steje pogląd, że operowae aaltyczym postacam pocodyc ma swoje zalety [3]. Pommo wadratowej zbeżośc metody Newtoa, reomedowaej ze względu a swą prostotę [], pojawło sę wele metod cecującyc sę wyższym stopem zbeżośc [5]. Podobe wygląda sytuacja w odeseu do uładu rówań. Cocaż ajprostszą zarazem ajpopularejszą metodą rozwązywaa uładów rówań elowyc jest metoda Newtoa-Rapsoa, carateryzująca sę róweż zbeżoścą wadratową, to pojawają sę owe metody cecujące sę wyższym rzędem zbeżośc []. W artyule przestawoo metodę operającą sę a aaltyczyc wzorac opsującyc pocode perwszego drugego rzędu, ezbęde do wyzaczea macerzy Jacobego essego. Uwzględee we wzorze aylora sładów zawerającyc pocode drugego rzędu spowodowało, że przedstawoa w artyule metoda cecuje sę zbeżoścą sześceą.. Sormułowae problemu Weźmy pod uwagę uład elowyc rówań algebraczyc ze względu a ewadomyc, zapsay w postac: 0, gdze: wetor ewadomyc wetor lewyc stro rówań. Zwąze pomędzy wartoścą -tej ucj w puce, a wartoścam tejże ucj jej pocodyc w puce ozaczającym perwsze przyblżee, dostarcza wzór aylora:, gdze, zaś gradet esja -tej ucj mają astępującą budowę: 3

3 4 4 Relację moża zapsać dla wszystc ucj rówocześe w orme: J 5 gdze: J macerz Jacobego. Poszuując wetora, dla tórego 0, otrzymamy elowy uład rówań a współrzęde wetora w postac: 0 J 6 Zajomość wetora pozwol oreślć wartość drugego przyblżea, a w o- sewecj wyprowadzć wzór teracyjy. 3. Sposób rozwązaa Dla rówae 6 przestawa rówae wadratowe występujące w podejścu alleya podczas rozwązywaa jedego rówaa elowego. Aby uąć wyrażea perwastowego pojawającego sę w ścsłym rozwązau tego rówaa, moża wyo- rzystać rozwązae Newtoa, otrzymując róże odmay metody alleya. Podejśce to zostae zastosowae przy wyprowadzau wzoru teracyjego służącego do wyzaczaa przyblżoego rozwązae uładu rówań. W metodze Newtoa-Rapsoa, operającej sę a wzorze aylora uwzględającym pocode perwszego rzędu, wetor oreśloy jest wzorem: J 7 Podstawając wyrażee 7 do trzecego słada rówaa 6, otrzymamy: J r 0 8

4 4 gdze wetor r ma astępującą budowę: r J J J J J J 9 Rozwązując rówae 8 ze względu a otrzymamy: Druge przyblżee będze oreśloe wzorem: atomast wzór teracyjy przyjme postać: J r, 0 J r, J r,,, Pomjając we wzorze sład r, otrzymamy wzór teracyjy Newtoa-Rapsoa. Z ole dla otrzymamy ze wzoru jedą z odma metody alleya w postac []: 3 3 Moża wyazać, że powyższy wzór teracyjy cecuje sę zbeżoścą sześceą dla dostatecze blsego rozwązaa doładego. gdze: 4. Zbeżość metody Wzór teracyjy moża zapsać w postac: g 4 g J r 5 Wprowadzając pojęce odległośc -tego przyblżea od rozwązaa doładego * wzorem: rówae 4 przyjme postać: * 6 * g * 7

5 43 Rozwjając g w szereg aylora woół putu * z przyrostem, otrzymamy: A g g 8 gdze A * * ozaczają odpowedo macerz Jacobego macerze essego utwo- rzoe z pocodyc elemetów wetora g. Uwzględając zwąze 8 w rówau 7, otrzymamy: A g 9 Poeważ wetor * jest rozwązaem rówaa 0, jest róweż rozwązaem rówaa g, wobec czego rówae 9 oreśla zwąze zacodzący pomędzy odległoścam olejyc przyblżeń w postac: A 0 Wetor g, zdeoway wzorem 5, ma tę własość, że macerz Jacobego A * macerze essego * zerują sę. Ozacza to, że dla dostatecze blsego * cąg olejyc przyblżeń, oreśloy wzorem teracyjym, cecować sę będze zbeżoś- cą sześceą, uwdaczającą sę potrajaem lczby cyr zaczącyc w olejyc te- racjac. 5. Przyład oblczeowy Przedstawoa w artyule metoda zostae zlustrowaa a przyładze uładu, dla tórego wetor lewyc stro rówań ma postać: 0 9 s 5 Rozpatryway uład rówań ma 3 perwast, tóryc loalzację przestawa rys..

6 44 Rys.. Loalzacja perwastów rozpatrywaego uładu rówań Fg.. Locato o te roots o aalyzed set o equatos Dla [ ] otrzymamy astępujący cąg przyblżeń jedego z rozwązań. a b e l a Cyry zaczące w olejyc przyblżeac ewadomej a b e l a Cyry zaczące w olejyc przyblżeac ewadomej Aby zaobserwować rząd zbeżośc, oblczea przeprowadzoo z precyzją 85 cyr. Iteresujące z pozawczego putu wdzea są obszary zbeżośc do poszczególyc perwastów uładu rówań. Oazuje sę, że awet odległe puty startowe mogą prowadzć do wyzaczea przyblżea poszuwaego perwasta. Na rysuu przedstawoo obszary zbeżośc omawaej metody do perwasta * [ ]. Rys.. Obszary zbeżośc do perwasta * [ ] Fg.. Regos o covergece to te root * [ ]

7 45 Obszar zbeżośc słada sę z obszaru główego zawerającego poszuway perwaste oraz szeregu podobszarów o zróżcowayc rozmarac. Pozostałe perwast mają obszary zbeżośc podobe w caraterze do obszaru przedstawoego a rys.. 5. Wos Przedstawoa w artyule metoda carateryzuje sę prostym wzorem teracyjym. Zarówo macerz Jacobego, ja macerze essego moża w łatwy sposób wyzaczyć, orzystając z dowolego programu oblczeń symbolczyc. Z uwag a złożoą budowę słada r metoda ta może być stosowaa do uładu rówań o ewelc rozmarac. Oblczea umerycze poazały, że obszar zbeżośc zaprezetowaej w artyule metody ewele róż sę od obszaru zbeżośc metody Newtoa-Rapsoa, cecującej sę zbeżoścą wadratową. L t e r a t u r a [] D a l q u s t G., j ö r c Å., Numercal Metods Scetc Computg, Vol. I, SIAM, Pladelpa 008. [] o m e e r, A moded Newto metod wt cubc covergece: te multvarate case, Joural o Computatoal ad Appled Matematcs, Vol. 69, 004. [3] K e l l e y C.., Solvg Nolear Equatos wt Newto s Metods, SIAM, Pladelpa 003. [4] O r t e g a J.M., R e b o l d t W.C., Iteratve Soluto o Nolear Equatos Several Varables, SIAM, Pladelpa 000. [5] W e L., o g C., A Ued Framewor or te Costructo o ger-order Metods or Nolear Equatos, e Ope Numercal Metods Joural,, 00.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ

MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ MATEMATYKA STOSOWANA W INŻYNIERII CHEMICZNEJ Wykład Układy rówań metody aaltycze Metody umerycze rozwązywaa rówań lczbowych Prof. Ato Kozoł, Wydzał Chemczy Poltechk Wrocławskej ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

Lista 6. Kamil Matuszewski 26 listopada 2015

Lista 6. Kamil Matuszewski 26 listopada 2015 Lsta 6 Kaml Matuszews 6 lstopada 5 4 5 6 7 8 9 4 5 X X X X X X X X X X X D X X N Gdze X-spsae, D-Delarowae, N-edelarowae. Zadae Zadae jest westą odpowedego pomalowaa. Weźmy sobe szachowcę x, poumerujmy

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Aradusz Atcza Poltecha Pozańsa Wydzał Budowy Maszy Zarządzaa N u m e r y c z e w e r y f o w a e r o z w ą - z a e r ó w a a r u c h u o j e d y m s t o p u s w o b o d y Autor: Aradusz Atcza Promotor:

Bardziej szczegółowo

wykład nr 2 Metody obliczeniowe metody rozwiązywania równań nieliniowych zadanie optymalizacji

wykład nr 2 Metody obliczeniowe metody rozwiązywania równań nieliniowych zadanie optymalizacji Metody oblczeowe - Budowctwo semestr 4 - wyład r Metody oblczeowe wyład r metody rozwązywaa rówań elowyc zadae optymalzacj Metody oblczeowe - Budowctwo semestr 4 - wyład r Postać rówaa elowego Rówae elowe

Bardziej szczegółowo

Zmiana bazy i macierz przejścia

Zmiana bazy i macierz przejścia Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce

Bardziej szczegółowo

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI

PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI Adrzej POWNUK *) PRZEDZIAŁOWE METODY ROZWIĄZYWANIA ALGEBRAICZNYCH RÓWNAŃ NIELINIOWYCH MECHANIKI KONSTRUKCJI. Wprowadzee Mechaka lowa staow jak dotąd podstawowy obszar zateresowań żyerskch. Isteje jedak

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

Projekt 2 2. Wielomiany interpolujące

Projekt 2 2. Wielomiany interpolujące Proekt Weloma terpoluące Rodzae welomaów terpoluącc uma edomaów Nec w przedzale a, b określoa będze fukca f: ec będze ustaloc m wartośc argumetu :,,, m, m L prz czm: < < L < < m m Pukt o tc odcztac azwa

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu

f f x f, f, f / / / METODA RÓŻNIC SKOŃCZONYCH niech N = 2 (2 równania różniczkowe zwyczajne liniowe I-rz.) lub jedno II-rzędu METODA RÓŻIC SKOŃCZOYCH (omówee a przykładze rówań lowych) ech ( rówaa różczkowe zwyczaje lowe I-rz.) lub jedo II-rzędu f / / p( x) f / + q( x) f + r( x) a x b, f ( a) α, f ( b) β dea: a satce argumetu

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Bajki kombinatoryczne

Bajki kombinatoryczne Artyuł powstał a podstawe odczytu pod tym samym tytułem, wygłoszoego podczas XXXVI Szoły Matematy Poglądowej Pomysł czy rachue? w Grzegorzewcach, styczeń 006. Baj ombatorycze Joaa JASZUŃSKA, Warszawa Ja

Bardziej szczegółowo

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz

Sterowanie optymalne statkiem w obszarze ze zmiennym prądem problem czasooptymalnej marszruty. Zenon Zwierzewicz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty Zeo Zwerzewcz Szczec Zeo Zwerzewcz Sterowae otymale statem w obszarze ze zmeym rądem roblem czasootymalej marszrty W artyle

Bardziej szczegółowo

Analiza spektralna stóp zwrotu z inwestycji w akcje

Analiza spektralna stóp zwrotu z inwestycji w akcje Nasz rye aptałowy, 003 r3, str. 38-43 Joaa Góra, Magdalea Osńsa Katedra Eoometr Statysty Uwersytet Mołaja Kopera w Toruu Aalza spetrala stóp zwrotu z westycj w acje. Wstęp Agregacja w eoom eoometr bywa

Bardziej szczegółowo

Regresja REGRESJA

Regresja REGRESJA Regresja 39. REGRESJA.. Regresja perwszego rodzaju Nech (, będze dwuwyarową zeą losową, dla które steje kowaracja. Nech E( y ozacza warukową wartość oczekwaą zdefowaą dla przypadku zeych losowych typu

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,,, ~ B, β ( β β ( ( Γ( β Γ + f ( Γ ( + ( + β + ( + β Γ + β Γ + Γ + β Γ + + β E Γ Γ β Γ Γ + + β Γ + Γ β + β β β Γ + β Γ + Γ + β Γ + + β E ( Γ Γ β Γ Γ + + β Γ + Γ β β + β Metoda mometów polega a przyrówau

Bardziej szczegółowo

FINANSE II. Model jednowskaźnikowy Sharpe a.

FINANSE II. Model jednowskaźnikowy Sharpe a. ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj.

Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj. III. INTERPOLACJA 3.. Ogóe zadae terpoac Nech Φ ozacza fucę zmee x zaeżą od + parametrów a 0, a, K, a, t. Defca 3.. Zadae terpoac poega a oreśeu parametrów a ta, żeby da + da- ych par ( x, f ( x ( 0,,...,

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny

KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA. Adrian Kapczyński Maciej Wolny KONCEPCJA WIELOKRYTERIALNEGO WSPOMAGANIA DOBORU WARTOŚCI PROGOWEJ W BIOMETRYCZNYM SYSTEMIE UWIERZYTELNIANIA Adra Kapczyńsk Macej Woly Wprowadzee Rozwój całego spektrum coraz doskoalszych środków formatyczych

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min

( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14)

INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY. Zakład Teletransmisji i Technik Optycznych (Z-14) INSTYTUT ŁĄCZNOŚCI PAŃSTWOWY INSTYTUT BADAWCZY Załad Teletrasmsj Tech Optyczych (Z-4) Aalza badaa efetów zachodzących w śwatłowodowym medum trasmsyjym degradujących jaość trasmsj w systemach DWDM o dużej

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

MODELE OBIEKTÓW W 3-D3 część

MODELE OBIEKTÓW W 3-D3 część WYKŁAD 5 MODELE OBIEKTÓW W -D część la wykładu: Kocepcja krzywej sklejaej Jedorode krzywe B-sklejae ejedorode krzywe B-sklejae owerzche Bezera, B-sklejae URBS 1. Kocepcja krzywej sklejaej Istotą z praktyczego

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Funkcja wiarogodności

Funkcja wiarogodności Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Współczynnik korelacji rangowej badanie zależności między preferencjami

Współczynnik korelacji rangowej badanie zależności między preferencjami Współczyk korelacj ragowej badae zależośc mędzy preferecjam Przemysław Grzegorzewsk Istytut Badań Systymowych PAN ul. Newelska 6 01-447 Warszawa E-mal: pgrzeg@bspa.waw.pl Pla referatu: Klasycze metody

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i.

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i. c 27 Rafał Kucharsk Rety Wartość beżącą cągu kaptałów: {R t R 2 t 2 R t } gdze R jest kwotą omalą płacoą w chwl t = oblczamy jako sumę zdyskotowaych płatośc: przy czym = + R j tj j= jest czykem dyskotującym

Bardziej szczegółowo

ć Ź Ę ź Ó ż ż Ś Ć Ś

ć Ź Ę ź Ó ż ż Ś Ć Ś Ż Ę Ę Ó Ę Ś ż ć Ź Ę ź Ó ż ż Ś Ć Ś Ż ć Ć ć Ś ć Ó Ń Ż ć Ć Ż Ą Ę Ż Ż Ż Ó Ż Ó Ó Ś Ż Ć Ę Ź ć ż Ó ÓĘ ż Ż Ó Ę Ż ż Ą Ą Ż Ś Ć ż Ź Ż ć ć Ś ć ż Ą Ś Ó ć Ź ć Ó Ó Ść ż Ó Ó Ć Ó Ó Ść ć Ś ć ż ć Ó Ó ć ć ć Ó ć Ó ć Ó ć Ó

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Równanie Schrödingera z potencjałem anharmonicznym. The Schrödinger Equation with Anharmonic Potential. Marcin Michalski

Równanie Schrödingera z potencjałem anharmonicznym. The Schrödinger Equation with Anharmonic Potential. Marcin Michalski Polteca Wrocławsa Wydzał Podstawowyc Problemów Tec Rówae Scrödgera z potecjałem aarmoczym Te Scrödger Equato wt Aarmoc Potetal arc cals PRACA DYPLOOWA INśYNIERSKA KIERUNEK: FIZYKA TECHNICZNA SPECJALNOŚĆ:

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Teora metoy optymalzacj Nelowe zaae optymalzacj bez ograczeń umerycze metoy teracyje optymalzacj m x R f = f x Algorytmy poszuwaa mmum loalego zaaa programowaa elowego: Bez ograczeń Z ograczeam Algorytmy

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

ć Ó Ó Ż

ć Ó Ó Ż Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó

Bardziej szczegółowo

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI

OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI MODELOWANIE INśYNIERSKIE ISSN 896-77X 36, s. 8-86, Glwce 2008 OPTYMALIZACJA ALGORYTMÓW WYZNACZANIA RUCHU CIECZY LEPKIEJ METODĄ DEKOMPOZYCJI POLA PRĘDKOŚCI ZBIGNIEW KOSMA, PRZEMYSŁAW MOTYL Istytut Mechak

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD

PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Modele wartości pieniądza w czasie

Modele wartości pieniądza w czasie Joaa Ceślak, Paula Bawej Modele wartośc peądza w czase Podstawowe pojęca ozaczea Kaptał (ag. prcpal), kaptał początkowy, wartośd początkowa westycj - peądze jake zostały wpłacoe a początku westycj (a początku

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

ć ć ź ć ć ć Ź ź Ź ź

ć ć ź ć ć ć Ź ź Ź ź ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo