1 godz. tygodniowo. etyka. rozkład materiału. Tomasz Kalbarczyk. rok szkolny 2010/2011. numer programu nauczania DKO/BR /92.

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 godz. tygodniowo. etyka. rozkład materiału. Tomasz Kalbarczyk. rok szkolny 2010/2011. numer programu nauczania DKO/BR /92."

Transkrypt

1 Rozkłd zjęć - etyk II LO etyk rozkłd mteriłu Tomsz Klbrczyk rok szkolny 2010/2011 numer rogrmu nuczni DKO/BR /92 1 godz. tygodniowo Kls II LO rogrmowe (odstw Zgdnienie / hsło rogrmow) Temt lekcji/ nzw dziłu Numer lekcji / Liczb godzin Kryteri ocenini 1 / 8

2 Rozkłd zjęć - etyk II LO (uczeń otrfi...) Poziom wymgń Formy ocenini z wgmi Morlne sekty rcy i Jednostk różnych dziedzin czy wsólnot? życi Publicznego. 1 Umiejętności życi z innymi i dl inn - osługiwć się ojęciem wsólnoty - wskzywć i rozwżć rgumenty z szczególną rolą wsólnoty (Arystoteles, komunitrinizm) P P, P+ Ogólnofilozoficzne złożeni Co to etyki. jest indywidulizm? Kwestie metetyczne. 2 Morlne sekty rcy i różnych dziedz - osługiwć się ojęciem indywidulizmu - wskzywć i rozwżć konsekwencje etyczne rzyznni szczególnej roli jednostce (liberlizm), P+ Umiejętności życi z innymi O rywlizcji i dl innych. Etyczn nliz ktywności ludzkiej. H. Diduszko, R. Piłt, Myśli n odium. Filozoficzne dociekni z dziećmi i młodzieżą 3 - rozróżnić rywlizcję zdrową, od wyniszczjącej - zbrć głos w dyskusji n temt rywlizcji + Umiejętności życi z innymi Uczestnictwo i dl innych. i dilog. 4 Postw zngżowni w życie sołeczne - znleźć rgumenty dl ktywnej ostwy obywtelskiej - zbrć głos w dyskusji n temt bierności i ktywności jko ostw etycznych - wskzć zleżności między ostwą uczestnictw i dilogu, jkością życi sołecznego i d, P, + 2 / 8

3 Rozkłd zjęć - etyk II LO + Ogólnofilozoficzne złożeni Ucieczk etyki. od Kwestie wolności metetyczne. 5 - Wyjśnić ojęcie i mechnizm ucieczki od wolności w sensie ndnym rzez Fromm - Zbrć głos w dyskusji o utorytryzmie + Ogólnofilozoficzne złożeni Wolność etyki. i jej Kwestie ogrniczeni metetyczne. Berlin, Fromm, Dworkin J. Żkowski, Cztery fronty wolności [w:] Niezbęd 6 - Posługiwć się ojęciem wolności negtywnej i ozytywnej - zbrć głos w dyskusji n temt grnic wolności + Etyczny wymir życi szkolnego. Umiejętności życi z innymi i dl innych. Wrtości szczególnie cenione w życiu szkolnym Ile wolności owinien mieć szesnstoltek? A. Niezgod Ciuch szkolny nie dowolny, Polityk, 8 kwietni Krt rw i wolności młodzieży, rojekt Towrzystw Humnistycznego 7 3 / 8

4 Rozkłd zjęć - etyk II LO - zbrć głos w dyskusji n temt grnic wolności, + Wyrcownie 8 w - ok Ogólnofilozoficzne złożeni Co to etyki. jest srwiedliwość? Kwestie metetyczne. 9 - orównywć różne koncecje srwiedliwości (srwiedliwość liberln i srwiedliwość eglit, + Ogólnofilozoficzne złożeni Wolność etyki. i równość, Kwestie metetyczne. czy 10 muszą się wykluczć? - osługiwć się ojęcimi demokrcji, wolności równości w ich różnych sensch (instytucjonln - zbrć głos w dyskusji n temt wzjemnych relcji równości i wolności jko wrtości + Człowiek jko osob i jego Równość, dziłnie. czy Etyczn wolność? nliz Dyskusj ktywności o systemie ludzkiej. odtkowym K. Dunin, Poz rynkiem i konserwą, Gzet Wyborcz W. Gdomski, Rynek jest cieły 11 - orównć rzedstwione stnowisk odnośnie olityki odtkowej - zbrć głos w dyskusji n temt redystrybucji dochodu nrodowego, + Konflikt wrtości. Wrtości Równość, wybierne czy i relizowne. wolność lub 4 / 8

5 Rozkłd zjęć - etyk II LO Problemy etyczne codzienności - rezentcje rojektów uczniowskich wykonć smodzielnie lub w zesole i rzedstwić n forum klsy rezentcję wybrnego rob, Morlne sekty rcy i Jk różnych wlczyć dziedzin z nędzą? życi ublicznego. Umiejętności życi z innymi i dl inn P. Singer, Milirderzy odzielcie się!, 30 grudni Gzet 2006 Wyborcz P. Singer, Etyk rktyczn 15 - rozumieć sens filozoficznej tezy, że kżde życie jest tyle smo wrte i jej logiczne konsekwencje - zbrć głos w dyskusji n temt rzeciwdziłni nędzy, + Morlne sekty rcy i Dobrobyt- różnych dziedzin cel dl życi wszystkich, ublicznego 16 czy tylko dl niektórych - zbrć głos w dyskusji n temt zleżności między dobrobytem szczęściem, między być i, + Ogólnofilozoficzne złożeni etyki. Kwestie metetyczne. Morlne sekty rcy i różnych dziedzin życi ublicznego. Co to jest rworządność? 17 - osługiwć się ojęciem rworządności - zbrć głos w dyskusji n temt czy morlność możn orzeć n rwch P + Ogólnofilozoficzne złożeni etyki. Kwestie metetyczne. 5 / 8

6 Rozkłd zjęć - etyk II LO Morlne sekty rcy i. różnych dziedzin życi Umiejętności ublicznegożyci z innymi i dl innych. Co to jest nieosłuszeństwo 18 obywtelskie? - osługiwć się ojęciem obywtelskiego nieosłuszeństw - zbrć głos w dyskusji n temt kiedy douszczlne jest nieosłuszeństwo obywtelskie i, + Morlne sekty rcy i Co różnych to znczy dziedzin być życi triotą? ublicznego 19 Co to znczy być obywtelem? - osługiwć się ojęcimi triot, obywtel - chrkteryzowć wrtości związne z tymi ojęcimi Wyrcownie 20 w-2 Umiejętności życi Kulturow tożsmość z innymi Gender i dl i innych. łeć łci odręcznik dl trenerów AI 21 - osługiwć się ojęcimi łci i gender - dostrzec, że gender jest konstrukcją sołeczną - rzerowdzić refleksję nd rocesem ksztłtowni się gender + Etyk ozostłe dyscyliny Medycyn filozoficzne i etyk. i nuki Czy nleży szczegółowe zkzć Morlne bdń sekty nd klonowniem? rcy i różnych dz - znleźć rzykłdy zgrożeń ostęu nukowego dl bezieczeństw ludzkości - zbrć głos w dyskusji n temt odowiedzilności w nuce 6 / 8

7 Rozkłd zjęć - etyk II LO - zbrć głos w dyskusji n temt konfliktów wrtości związnych z medycyną, + + Morlny wymir stosunku Czy człowiek mmy obowiązki do świt rzyrody. wobec 24 środowisk nturlnego? - zbrć głos w dyskusji n temt obowiązków człowiek wobec rzyrody, + Morlny wymir stosunku Jkie człowiek mmy do obowiązki świt rzyrody. wobec 25 rzyszłych okoleń - znleźć rzykłdy dziłń człowiek, których konsekwencje będą onosiły rzyszłe okoleni - zbrć głos w dyskusji n temt odowiedzilności wobec rzyszłych okoleń, + Morlny wymir stosunku Szlchetnie człowiek do znowć świt rzyrody. 26 nd rzyrodą - zbrć głos w dyskusji n temt relcji człowiek i dzikiej rzyrody, ze szczególnym uwzględnie, + Morlny wymir stosunku Szlchetnie człowiek do znowć świt rzyrody. nd rzyrodą lub Problemy etyczne codzienności - rezentcje rojektów uczniowskich wykonć smodzielnie lub w zesole i rzedstwić n forum klsy rezentcję wybrnego rob, + -2 Morlny wymir stosunku Czy człowiek zwierzęt do mją świt rw? rzyrody zbrć głos w dyskusji n temt rw zwierząt, + Morlny wymir stosunku Dolin, człowiek czy obwodnic?32 do świt rzyrody. - zbrć głos w dyskusji n temt relcji człowiek i dzikiej rzyrody n rzykłdzie soru o ob 7 / 8

8 Rozkłd zjęć - etyk II LO, + POBIERZ PLIK W FORMACIE.DOC 8 / 8

1 godz. tygodniowo. etyka. rozkład materiału. Tomasz Kalbarczyk. rok szkolny 2010/2011. numer programu nauczania DKW /00. Klasa II Gimnazjum

1 godz. tygodniowo. etyka. rozkład materiału. Tomasz Kalbarczyk. rok szkolny 2010/2011. numer programu nauczania DKW /00. Klasa II Gimnazjum Rozłd zjęć - ety II Gimnzjum ety rozłd mteriłu Tomsz Klbrczy ro szolny 2010/2011 numer progrmu nuczni DKW 4014-63/00 1 godz. tygodniowo Kls II Gimnzjum progrmowe (podstw Zgdnienie / hsło progrmow) Temt

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012

PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zawsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 PROGRAM NAPRAWCZY DO PROGRAMU PROFILAKTYKI Zwsze bezpieczny, codziennie grzeczny SZKOŁY PODSTAWOWEJ NR 24 W OPOLU NA LATA 2010-2012 ZAŁOŻENIA PROGRAMU: progrm m być spójny z progrmem wychowwczym szkoły,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

2. Kod modułu zajęć/przedmiotu 10-ET-a1-s,10-ET-a1-n

2. Kod modułu zajęć/przedmiotu 10-ET-a1-s,10-ET-a1-n OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) I. Informcje ogólne 1. Nzw modułu zjęć/przedmiotu Etyk 2. Kod modułu zjęć/przedmiotu 10-ET-1-s,10-ET-1-n 3. Rodzj modułu zjęć/przedmiotu (obowiązkowy lub fkulttywny)

Bardziej szczegółowo

SZKOLNY PROGRAM PROFILAKTYKI NA ROK 2015/2016

SZKOLNY PROGRAM PROFILAKTYKI NA ROK 2015/2016 SZKOLNY PROGRAM PROFILAKTYKI NA ROK 205/206 7 ogrm ofilkti jest dostosowny do potrzeb rozwojowych dzieci w wieku 6-3 lt. Czs relizcji ogrmu: rok szkolny 205/206 I Obszry dziłń profilktycznych szkoły: bezpieczeństwo

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on:

Pakiet aplikacyjny. Niniejszy pakiet zawiera informacje, które musisz posiadać zgłaszając swoją kandydaturę. Zawiera on: Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. interwencji ekologicznych CON/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do kndydtów

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne?

KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI. Temat: Do czego służą wyrażenia algebraiczne? KONSPEKT ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI Temt: Do czego służą wyrżeni lgebriczne? Prowdzący: Agnieszk Smborowicz Liczb jednostek lekcyjnych: 1 2 (w zleżności od zespołu) Cele ogólne Utrwlenie widomości

Bardziej szczegółowo

ANKIETA potrzeb doskonalenia zawodowego na rok szkolny 2013/2014

ANKIETA potrzeb doskonalenia zawodowego na rok szkolny 2013/2014 06-500 Młw, ul. Reymont 4 tel. (023) 654-32-47 ANKIETA potrzeb doskonleni zwodowego n rok szkolny 2013/2014 Zespół dordców metodycznych ośrodk przystąpił do uktulnieni oferty szkoleniowej n rok szkolny

Bardziej szczegółowo

Specjalność: Filozofia komunikacji społecznej

Specjalność: Filozofia komunikacji społecznej PROGRAM STUDIÓW STOPNIA NA KIERUNKU f i l o z o f i W UNIWERSYTECIE RZESZOWSKIM (studi stcjonrne) Specjlność: Filozofi komunikcji społecznej I. INFORMACJE OGÓLNE Studi drugiego stopni n kierunku filozofi

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

2-letnie studia dzienne magisterskie

2-letnie studia dzienne magisterskie Uniwersytet Wrocłwski Wydził Nuk Historycznych i Pedgogicznych Instytut Archeologii 2-letnie studi dzienne mgisterskie n kierunku ARCHEOLOGIA Progrm studiów Wrocłw 2011 I. CHARAKTERYSTYKA STUDIÓW Studi

Bardziej szczegółowo

OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dla przedmiotu Sporządzanie umów na kierunku Zarządzanie i prawo w biznesie

OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dla przedmiotu Sporządzanie umów na kierunku Zarządzanie i prawo w biznesie Ktedr Prw Cywilnego, Hndlowego i Ubezpieczeniowego Poznń, dni 15 pździernik 2018 r. OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dl przedmiotu Sporządznie umów n kierunku Zrządznie i prwo w biznesie I. Informcje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Nazwa studiów podyplomowych: Studia Podyplomowe Samorządu Terytorialnego i Gospodarki Lokalnej

Nazwa studiów podyplomowych: Studia Podyplomowe Samorządu Terytorialnego i Gospodarki Lokalnej Wrocłw, dni 8 czerwc 205 r. Wydził Prw, Administrcji i Ekonomii Uniwersytetu Wrocłwskiego ogłsz zpisy n Studi Podyplomowe Smorządu Terytorilnego i Gospodrki Loklnej w roku kdemickim 205/206 Nzw studiów

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 3 Krt oceny merytorycznej wniosku o dofinnsownie konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA WNIOSEK:. NUMER KONKURSU 2/POKL/8.1.1/2010 TYTUŁ PROJEKTU:... SUMA KONTROLNA

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5.

1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5. PL Instrukcj DROGA DO PORTALU KLIENTA TOLL COLLECT Spis treści 1. Wrunki 2. Zkłdnie kont 3. Logownie 4. Korzystnie z portlu klient 5. Subkont 5.1Zkłdnie subkont 5.2 Edycj subkont 5.3 Usuwnie subkont 1

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są

Bardziej szczegółowo

Tytuł podręcznika, autor, wydawnictwo. Meine Welttour cz.1, 2 podręcznik + ćwiczenia, Sylwia Mróz- Dwornikowska, Nowa Era

Tytuł podręcznika, autor, wydawnictwo. Meine Welttour cz.1, 2 podręcznik + ćwiczenia, Sylwia Mróz- Dwornikowska, Nowa Era Szkolny zestw podręczników przedmiotowych do nuki języków obcych dl uczniów ZSPS i VIII LO w roku szkolnym 2019/2020 dl kls II i III liceum orz kls 2tf i 4tb technikum Lp. Przedmiot, zkres ksztłceni, klsy

Bardziej szczegółowo

Redukcja układów sił działających na bryły sztywne

Redukcja układów sił działających na bryły sztywne 1 Redukcj ukłdów sił dziłjących n bryły sztywne W zdnich tego rozdziłu wykorzystuje się zsdy redukcji ukłdów sił wykłdne w rmch mechniki ogólnej i powtórzone w tomie 1 podręcznik. Zdnie 1 Zredukowć ukłd

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Program Profilaktyki

Program Profilaktyki Progrm Profilktyki w Ośrodku dl Dzieci z Wdmi Słuchu i Mowy w Żrch im. Kornel Mkuszyńskiego 1. WSTĘP Progrm Profilktyki przeznczony jest dl uczniów kls Ośrodk dl Dzieci z Wdmi Słuchu i Mowy w Żrch Progrm

Bardziej szczegółowo

4.3. Przekształcenia automatów skończonych

4.3. Przekształcenia automatów skończonych 4.3. Przeksztłceni utomtów skończonych Konstrukcj utomtu skończonego (niedeterministycznego) n podstwie wyrżeni regulrnego (lgorytm Thompson). Wejście: wyrżenie regulrne r nd lfetem T Wyjście : utomt skończony

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Niepubliczna Poradnia Psychologiczno-Pedagogiczna

Niepubliczna Poradnia Psychologiczno-Pedagogiczna Niepubliczn Pordni Psychologiczno-Pedgogiczn Hlin Chorążewicz 12-100 Szczytno ul.lidzbrsk 6 tel.89-623-27-33; 516-611-119 http://szczytno.mnifo.com/ dres e-mil:.niepubliczn@gmil.com Ofert pomocy psychologiczno-pedgogicznej

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego

Zaoszczędź przestrzeń dzięki zastosowaniu sprężyn falistych TRUWAVE z drutu płaskiego Sprężyny fliste Zoszczędź przestrzeń dzięki zstosowniu sprężyn flistych TRUWAVE z drutu płskiego Sprężyny TruWve z drutu płskiego umożliwiją zoszczędzenie do 50% przestrzeni w kierunku osiowym w twoim

Bardziej szczegółowo

MASS MEDIA. opis zjawiska i głowne funkcje

MASS MEDIA. opis zjawiska i głowne funkcje MASS MEDIA opis zjwisk i głowne funkcje Autor: Krzysztof Trobisz Mss medi, środki msowego przekzu, środki komunikowni msowego - to według encyklopedycznej definicji instytucje i posidne przez nich urządzeni

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych

ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. w sprawie ramowych planów nauczania w szkołach publicznych Dz.U.2012.204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych (Dz. U. z dni 22 lutego 2012 r.) N podstwie rt. 22 ust. 2 pkt 1 ustwy

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Przedsiębiorczość małych i średnich przedsiębiorstw w Polsce ujęcie regionalne

Przedsiębiorczość małych i średnich przedsiębiorstw w Polsce ujęcie regionalne Dnut Andrzejzyk Przedsięiorzość młyh i średnih przedsięiorstw w Polse ujęie regionlne Streszzenie: Młe i średnie przedsięiorstw odgrywją szzególną rolę w rozwoju gospodrki loklnej wykzują dużą łtwość dostosowni

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły.

Opracowanie zbiorcze wyników ankiet przeprowadzonych wśród rodziców na temat koncepcji pracy szkoły szkoły. Oprcownie ziorcze wyników nkiet przeprowdzonych wśród rodziców n temt koncepcji prcy szkoły szkoły. Termin i miejsce dń Zernie Rodziców dn. 22.09.2014r. Ankiet zostł oprcown w celu poznni opinii nuczycieli

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 4 Wzór Krty oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL.09.05.00-12-

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy MATeMAtyk 2. Propozycj przedmiotowego systemu ocenini. ZP Wyróżnione zostły

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW

DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW DZIAŁANIE III.6 ROZWÓJ MIKRO- I MAŁYCH PRZEDSIĘBIORSTW 1 Nzw progrmu opercyjnego Regionlny Progrm Opercyjny Województw Łódzkiego n lt 2007-2013. 2 Numer i nzw osi priorytetowej Oś priorytetow III: Gospodrk,

Bardziej szczegółowo

MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATeMAtyka 2 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATeMAtyk 2 Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Kls 2 Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe (P), rozszerzjące (R), dopełnijące

Bardziej szczegółowo

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r.

Warszawa, dnia 22 lutego 2012 r. Pozycja 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dnia 7 lutego 2012 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Wrszw, dni 22 lutego 2012 r. Pozycj 204 ROZPORZĄDZENIE MINISTRA EDUKACJI NARODOWEJ 1) z dni 7 lutego 2012 r. w sprwie rmowych plnów nuczni w szkołch publicznych

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych.

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Dorot Ponczek, Krolin Wej MATeMAtyk 2 Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

ELIPTYCZNE FUNKCJE TRYGONOMETRYCZNE

ELIPTYCZNE FUNKCJE TRYGONOMETRYCZNE PRACE WYDZIAŁU NAWIGACYJNEGO nr 19 AKADEMII MORSKIEJ W GDYNI 006 ANDRZEJ BANACHOWICZ Akdemi Morsk w Gdyni Ktedr Nwigcji ELIPTYCZNE FUNKCJE TRYGONOMETRYCZNE W rtykule rzedstwiono uogólnienie funkcji trygonometrycznych

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W I LICEUM OGÓLNOKSZTAŁCĄCYM IM. WOJCIECHA KĘTRZYŃSKIEGO W GIŻYCKU Oprcowny n podstwie: 1. Rozporządzeni ministr edukcji nrodowej z dni 10.06.2015 roku w sprwie

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01

Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01 Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

GENERATOR MYŚLI HUMANISTYCZNEJ

GENERATOR MYŚLI HUMANISTYCZNEJ Autorka: Małgorzata Kacprzykowska ETYKA W GIMNAZJUM Temat (1): Czym jest etyka? Cele lekcji: - zapoznanie z przesłankami etycznego opisu rzeczywistości, - pobudzenie do refleksji etycznej. Normy wymagań

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 5.4 - Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL ` Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

Stow arzy szenie Osiedle Smulsko

Stow arzy szenie Osiedle Smulsko Stow rzy szenie 94-33 Łódź Łódź, dni 0 grudni 0r. Przedstwiciel Stowrzyszeni Hlin Husmn-Cieślk Pn Andrzej Owczrek Przewodniczący Rdy Miejskiej w Konstntynowie Łódzkim 9-00 Konstntynów Łódzki ul. Zgiersk

Bardziej szczegółowo

Warszawa, czerwiec 2014 r.

Warszawa, czerwiec 2014 r. SPRAWOZDANIE Z WDRAŻANIA PROGRAMU OPERACYJNEGO KAPITAŁ LUDZKI 2007-2013 w 2013 ROKU Wrszw, czerwiec 2014 r. SPIS TREŚCI 1. Informcje wstępne... 4 2. Przegląd relizcji progrmu opercyjnego w okresie objętym

Bardziej szczegółowo

Zbiory wyznaczone przez funkcje zdaniowe

Zbiory wyznaczone przez funkcje zdaniowe pojęci zbioru i elementu RCHUNEK ZIORÓW zbiór zwier element element nleży do zbioru jest elementem zbioru ( X zbiór wszystkich przedmiotów indywidulnych, których dotyczy dn nuk zbiór pełny (uniwerslny

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU

PORÓWNANIE WYBRANYCH RÓWNAŃ KONSTYTUTYWNYCH STOPÓW Z PAMIĘCIĄ KSZTAŁTU ODELOWNIE INŻYNIERKIE INN 1896-771X 3,. 37-44, Gliwice 6 PORÓWNNIE WYBRNYCH RÓWNŃ KONTYTUTYWNYCH TOPÓW Z PIĘCIĄ KZTŁTU KRZYZTOF BIEREG Ktedr Wyokich Npięć i prtów Elekt., Politechnik Gdńk trezczenie. W

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dla przedmiotu Prawo odszkodowawcze i ubezpieczeniowe na kierunku Zarządzanie i Prawo w Biznesie

OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dla przedmiotu Prawo odszkodowawcze i ubezpieczeniowe na kierunku Zarządzanie i Prawo w Biznesie Ktedr Prw Cywilnego, Hndlowego i Ubezpieczeniowego Poznń, dni 30 pździernik 2018 r. OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dl przedmiotu Prwo odszkodowwcze i ubezpieczeniowe n kierunku Zrządznie i Prwo

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Roczny plan dydaktyczny przedmiotu język polski dla klasy IV szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy programowej

Roczny plan dydaktyczny przedmiotu język polski dla klasy IV szkoły podstawowej, uwzględniający kształcone umiejętności i treści podstawy programowej Roczny pln dydktyczny przedmiotu język polski dl klsy IV szkoły podstwowej, uwzględnijący ksztłcone i treści podstwy progrmowej Zespół nszego wydwnictw przekzuje Pństwu przewodnik przeznczony dl nuczycieli

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Analiza wyników próbnego egzaminu maturalnego OPERON 2018

Analiza wyników próbnego egzaminu maturalnego OPERON 2018 Przedmiot: WOS Anliz wyników próbnego egzminu mturlnego OPERON Poziom: Rozszerzony Egzmin pisemny Poziom Liczb uczniów zdjących I Liceum Ogólnoksztłcące Zdło egzmin [dl R min %] % zdwlności, Wynik mksymlny

Bardziej szczegółowo

PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH. Efektywność procesów logistycznych AUTOR: ADAM KOLIŃSKI, PAWEŁ FAJFER

PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH. Efektywność procesów logistycznych AUTOR: ADAM KOLIŃSKI, PAWEŁ FAJFER 1 PROJEKTOWANIE SYSTEMÓW I PROCESÓW LOGISTYCZNYCH Efektywność procesów logistycznych AUTOR: EFEKTYWNOŚĆ PROCESÓW PRODUKCYJNYCH 2 Efektywność jest pojęciem dość trudnym do jednozncznego zdefiniowni. Szczególnie

Bardziej szczegółowo

LUDNOŚĆ. (stan na dzień 31 marca, na godz. 24:00) Data urodzenia. żonaty/zamężna. wdowiec/wdowa. rozwodnik/rozwódka

LUDNOŚĆ. (stan na dzień 31 marca, na godz. 24:00) Data urodzenia. żonaty/zamężna. wdowiec/wdowa. rozwodnik/rozwódka R E P U B L I K A C H O R W A C J I GŁÓWNY URZĄD STATYSTYCZNY LUDNOŚĆ (stn n dzień 31 mrc, n godz. 24:00) Formulrz P-1 Wszystkie dne zwrte w niniejszym formulrzu stnowią tjemnicę służbową i zostną wykorzystne

Bardziej szczegółowo

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2017/18

PRZEDMIOTOWY PLAN PRACY ROK SZKOLNY 2017/18 Przedmiot: Mtemtyk Kls: 2 Nuczyciel: Justyn Pwlikowsk Tygodniowy wymir godzin: 4 Progrm nuczni: 378/2/2013/2015 Poziom: podstwowy Zkres mteriłu wrz z przybliżonym rozkłdem terminów prc klsowych, sprwdzinów

Bardziej szczegółowo

Karta Oceny Merytorycznej Biznesplanu DEKLARACJA POUFNOŚCI I BEZSTRONNOŚCI

Karta Oceny Merytorycznej Biznesplanu DEKLARACJA POUFNOŚCI I BEZSTRONNOŚCI Nr identyfikcyjny (tożsmy z numerem ndnym n formulrzu rekrutcyjnym) Imię i Nzwisko Ocenijącego: Krt Oceny Merytorycznej Biznesplnu DEKLARACJA POUFNOŚCI I BEZSTRONNOŚCI Niniejszym oświdczm, że zpoznłem/m

Bardziej szczegółowo

WYKAZ INNOWACJI ZGŁOSZONYCH PRZEZ SZKOŁY PODSTAWOWE NA ROK SZKOLNY 2011/2012

WYKAZ INNOWACJI ZGŁOSZONYCH PRZEZ SZKOŁY PODSTAWOWE NA ROK SZKOLNY 2011/2012 WYKAZ INNOWACJI ZGŁOSZONYCH PRZEZ SZKOŁY PODSTAWOWE NA ROK SZKOLNY 2011/2012 Lp. Nzw szkoły Typ szkoły Nzw 1. 2. 3. Podstwow im. Henryk Sienkiewicz w Choroszczy Podstwow nr 12 im. Zygmunt Gloger w Biłymstoku

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą

Wymagania edukacyjne z matematyki FUNKCJE dopuszczającą dostateczną dobrą bardzo dobrą Wymgni edukcyjne z mtemtyki Kls IIC. Rok szkolny 013/014 Poziom podstwowy FUNKCJE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje przyporządkowni będące funkcjmi określ funkcję różnymi

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Złącznik 5.4 - Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską

a Komisją Zakładową NSZZ Solidarność Uniwersytetu im. Adama Mickiewicza w Poznaniu, reprezentowaną przez: mgr Krystynę Andrzejewską POROZUMIENIE zwrte w dniu 11 czerwc 2015 roku w sprwie zsd zwiększeni wyngrodzeń prcowników Uniwersytetu im. Adm Mickiewicz w Poznniu od 1 styczni 2015 roku pomiędzy: Uniwersytetem im. Adm Mickiewicz w

Bardziej szczegółowo

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie

1 klasyfikacja trójkątów twierdzenie o sumie miar kątów w trójkącie Funkcj kwdrtow - powtórzenie z klsy pierwszej (5godzin) PLANIMETRIA Moduł - dził - temt Miry kątów w trójkącie Lp Zkres treści 1 klsyfikcj trójkątów twierdzenie o sumie mir kątów w trójkącie Trójkąty przystjące

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

P l a n s t u d i ó w

P l a n s t u d i ó w Złącznik nr 3 do uchwły Nr 5 Sentu UMK z dni 5 lutego 2019 r. P l n s t u d i ó w Wydził prowdzący studi: Wydził Humnistyczny Kierunek n którym są prowdzone studi: (nzw musi być dekwtn do zwrtości progrmu

Bardziej szczegółowo