Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.
|
|
- Teodor Laskowski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Tel.: , Fax: Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, Białystok vstef@uwb.edu.pl Praca magisterska Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej. W. Stefanowicz Promotor prof. dr hab. A. Maziewski
2 Plan Wstęp obiekty badań Część teoretyczna : Symulacje rozkładów namagnesowania, procesów magnesowania, Model struktury domenowej w pobliżu reorientacji spinowej Teoretyczne obliczenia parametrów magnetooptycznych wielowarstw Część eksperymentalna: Magnetooptyczna mili-magnetometria Magnetooptyczna mikro-magnetometria Podsumowanie
3 Obiekt badań Ultracienka warstwa kobaltu ( płaska ) 8nm Ultracienka warstwa kobaltu ( klin ) 8nm Au d nm Au 2nm Co 2nm Co 2nm Au 2nm Au 2nm 1mm szafir Mo 1mm 1mm szafir Mo 1mm Podobne warstwy badano: M. Kisielewski, A. Maziewski, M. Tekielak, A. Wawro, T. Baczewski, Phys. Rev. Lett. 89 (22)
4 MBE z Instytutu Fizyki PAN w Warszawie Molecular Beam Epitaxy MBE (Riber EVA 32) Badane w pracy próbki wytworzono w IFPAN z Warszawy i w Orsay
5 Wpływ grubości Co oraz struktury warstw sąsiadujących na właściwości magnetyczne Energia anizotropii magnetycznej: θ M S E a = K 1eff sin 2 θ+k 2 sin 4 θ oś łatwego magnesowania Co Reorientacja spinowa M -2πM S 2 + K 1V + (K 1Sg + K 1Sd ) / d anizotropia objętościowa anizotropia powierzchniowa M d grubość warstwy łatwa oś K 1eff > mała grubość d 2nm duża grubość K 1eff < łatwa płaszczyzna
6 Symulacje numeryczne rozkładu namagnesowania w zerowym polu magnetycznym w pobliżu reorientacji spinowej z uwzględnieniem pierwszej stałej anizotropii Geometria badanej próbki M M m = M M S m 1 a) H= Oe d=1.72nm 1 a) H= Oe d=1.79nm,5 m -, x [nm ] -1 x [nm ] 1 a) H= Oe d=1.86nm a) H= Oe d=1.9nm m 3 m 3-1 x [nm ] -.5 x [nm] W symulacjach wykorzystano program OOMF W.Stefanowicz, M.Kisielewski, A. Maziewski. Molecular Phys. Rep (24) Prezentacja w postaci posteru na School on NANOSTRUCTURED SYSTEMS Będlewo 24
7 1 1 a) H= Oe 1 d=1.79nm b) H=1 Oe <m > m 3 m 3-1 x [nm] -1 x [nm] 1 d) H=9 Oe m x [nm] 1 c) H=4 Oe m H [Oe] Zależność wartości średniej składowej namagnesowania <m > od pola zewnętrznego, dla próbki d=1.79nm. Wstawki a)-d) pokazują rozkład namagnesowania m (x) dla różnych pól. -1 x [nm]
8 Model sinusoidalny uporządkowania magnetycznego w pobliżu reorientacji spinowej ( dθ sin ( ( )) K sin ( ( x)) sin( ( )) cos( ( )) y θ θ θ θ S S D p /2 )2 2 4 E = L d A + K x + M H x + M H x dx + E 1 2 // dx z M θ y m(x) = Θ sin(2πx/p) p x p = 2 π (8(1 1 Θ ) + Θ d l ex 2 l Θ 2 d 2 ex Minimalny period struktury domenowej wynosi 8πl ex przy d = 2l ex. p l ex * = 8πl d ex + 2π d l ex Rozwinięcie modelu z pracy M. Kisielewski et al. Phys.Rev. B (24)
9 Zależność periodu struktury domenowej i podatności magnetycznej od grubości próbki d 1 d* * podatność otrzymana w wyniku symulacji numerycznych rozkładów namagnesowania period obliczony, używając model sinusoidalny podatność otrzymana w wyniku symulacji numerycznych rozkładów namagnesowania podatność obliczona, dla struktury monodomenowej
10 Opis efektu Kerra z wykorzystaniem formalizmu Yeh a* rozwiązanie równań Maxwell a lub równań falowych dla każdej warstwy, uwzględnienie warunków brzegowych na granicach międzywarstwowych, wyliczenie współczynników odbiciowych i stałych magneto-optycznych. * Składam serdeczne podziękowania Dr. K. Postava (realizującego projekt NANOMAG-LAB za okazaną pomoc w opanowaniu tego modelu teoretycznego
11 Opis efektu Kerra z wykorzystaniem formalizmu Yeh a
12 Opis efektu Kerra z wykorzystaniem formalizmu Yeh a
13 Opis efektu Kerra z wykorzystaniem formalizmu Yeh a
14 Opis efektu Kerra z wykorzystaniem formalizmu Yeh a Wynik uzyskany przy pomocy programu przygotowanego w środowisku Mathematica dla następującej struktury Szafir\Mo(2nm)\Au(2nm)\Co(dnm)\Au(8nm) przy długości fali padającej λ=64 nm i kącie padania wiązki światła ϕ =5 o Zależność parametrów magnetooptycznych od grubości próbki d dla wektora magnetyzacji: (i) prostopadłego do powierzchni próbki (rys. z lewej) i (ii) w płaszczyźnie próbki w płaszczyźnie padania światła (rys. z prawej)
15 Magnetooptyczny mili-magnetometr. Schemat układu pomiarowego
16 Magnetooptyczna mili-magnetometria. Pomiar krzywych histerez. d=1.6nm d=1.67m d=1.74nm d=1.86nm d=2nm d=2.2nm Kąt skręcenie Kerra w funkcji amplitudy pola magnetycznego, przyłożonego prostopadłe do płaszczyzny próbki Co o grubości d.
17 Magnetooptyczna mili-magnetometria. Analiza krzywych histerez. θ Ks Mr Hc
18 Magnetooptyczna mili-magnetometria. Obliczenia stałych anizotropii H 1 i H 2. z doświadczenia: φ cos( θ ) = φ kerr max z analizy teoretycznej: K H = M S 2 K1 H = EA( θ) = K1 sin ( θ) + K2 sin ( θ) H MS cos( θ) M S d=2,1 nm krzywa teoretyczna dopasowana przy H 1 =21 Oe i H 2 =12 Oe d 1 d* punkty doświadczalne
19 Magnetooptyczny mikro-magnetometr. interfejs CCD Kamera polaryzatory lampa halogenowa Rejestracja obrazu Obraz A : zrobiony w stanie pozostałościowym po nasyceniu próbki polem -H IBM PC beam-splitter obiektyw H H Zasilacz pola H I + (i,j) cewka H próbka Obraz B : zrobiony w stanie pozostałościowym po nasyceniu próbki polem +H H czas I - (i,j) Obróbka obrazów: I + (i,j) - I - (i,j) I (i,j) = Φ I + (i,j) + I - (i,j) MAX m r Obraz B - A : różnica pomiędzy obrazem B oraz obrazem A
20 Wstępne obserwacje struktury domenowej podczas procesu magnesowania próbki Au/Coklin/Au H =165Oe H =168Oe H =171Oe H =173Oe H =175Oe,5 mm
21 Podsumowanie Co zostało zrealizowane 1. Wykonano symulacje rozkładu namagnesowania oraz procesów namagnesowania w pobliżu reorientacji spinowej 2. Rozwinięto model teoretyczny sinusoidalnej struktury domenowej w pobliżu reorientacji spinowej (uwzględniono drugą stałą anizotropii) 3. Opracowano program komputerowy do wyliczenia parametrów magnetooptycznych z wykorzystaniem formalizmu Yeh a 4. Wykonano wstępne pomiary magnetooptycznym milimagnetometrem klina ultracienkiego kobaltu (wyznaczono zależność stałych anizotropii od grubości 5. Wykonano wstępne wizualizacje struktury domenowej w ultracienkiej warstwie kobaltu (zarejestrowano w pobliżu reorientacji spinowej) Co jest planowane 1. Analiza obrazów struktury domenowej w pobliżu reorientacji spinowej 2. Przeanalizowanie rozkładów magnetyzacji w pobliżu reorientacji z uwzględnieniem stałej anizotropii K 2 3. Porównanie wyników doświadczalnych z teorią, symulacjami
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk
Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie
Replikacja domen magnetycznych w warstwach wielokrotnych
Replikacja domen magnetycznych w warstwach wielokrotnych Maciej Urbaniak, IFM PAN 16.03.2007 Poznań Replikacja domen magnetycznych w warstwach wielokrotnych Wprowadzenie Replikacja w układach z anizotropią
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO
IM21 SPEKTROSKOPIA ODBICIOWA ŚWIATŁA BIAŁEGO Cel ćwiczenia: Zapoznanie się z metodą pomiaru grubości cienkich warstw za pomocą interferometrii odbiciowej światła białego, zbadanie zjawiska pęcznienia warstw
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym
Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym A. Kozioł-Rachwał Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
UMO-2011/01/B/ST7/06234
Załącznik nr 7 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych
SEMINARIUM SPRAWOZDAWCZE z prac naukowych prowadzonych w IFM PAN w 2014 roku projekt badawczy: Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych Umowa nr UMO-2013/08/M/ST3/00960
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Prof. dr hab. Tomasz Stobiecki Kraków, Recenzja. pracy doktorskiej mgr inż. Kingi Aleksandry Lasek
Prof. dr hab. Tomasz Stobiecki Kraków, 24. 04. 2018 Wydział Fizyki i Informatyki Stosowanej AGH Katedra Fizyki Ciała Stałego e-mail:stobieck@agh.edu.pl Recenzja pracy doktorskiej mgr inż. Kingi Aleksandry
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
α k = σ max /σ nom (1)
Badanie koncentracji naprężeń - doświadczalne wyznaczanie współczynnika kształtu oprac. dr inż. Ludomir J. Jankowski 1. Wstęp Występowaniu skokowych zmian kształtu obciążonego elementu, obecności otworów,
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia
Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] - częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych
Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem
Czy warto jeszcze badad efekt magnetokaloryczny? O nowym kierunku prac nad magnetycznym chłodzeniem Piotr Konieczny Zakład Materiałów Magnetycznych i Nanostruktur NZ34 Kraków 22.06.2017 Efekt magnetokaloryczny
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych
Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola
Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.
Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Maciej Czapkiewicz. Magnetic domain imaging
Maciej Czapkiewicz Magnetic domain imaging Phase diagram of the domain walls Kerr geometry MOKE (Kerr) Magnetometer MOKE signal hysteresis loops [Pt/ Co] 3 [Pt/Co] 3 /Pt(0.1 nm)/irmn 10 2 5 1 Rotation
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU
BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,
Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1)
Badanie pętli histerezy magnetycznej ferromagnetyków, przy użyciu oscyloskopu (E1) 1. Wymagane zagadnienia - klasyfikacja rodzajów magnetyzmu - własności magnetyczne ciał stałych, wpływ temperatury - atomistyczna
BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA
ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Badanie właściwości optycznych roztworów.
ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria
Wyznaczenie długości fali świetlnej metodą pierścieni Newtona
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego
Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji
Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Dynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur.
Dynamika namagnesowania warstwowych struktur magnetycznych i nanostruktur. Hubert Głowiński, IFM PAN promotor: prof. Janusz Dubowik 09.06.2015 1 Praca była częściowo finansowana z grantu Polsko-Szwajcarskiego
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład dwudziesty piąty 6 czerwca 2017 Z poprzedniego wykładu Prawo Curie i Curie-Weissa Model paramagnetyzmu
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Wyznaczanie współczynnika załamania światła
Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
Wprowadzenie do WK1 Stan naprężenia
Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)
Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
SZACOWANIE STOPNIA ZANIECZYSZCZENIA GLEB NA PODSTAWIE POMIARÓW ICH PODATNOŚCI MAGNETYCZNEJ
OTWARTE SEMINARIA IETU SZACOWANIE STOPNIA ZANIECZYSZCZENIA GLEB NA PODSTAWIE POMIARÓW ICH PODATNOŚCI MAGNETYCZNEJ Maciej Soja Instytut Ekologii Terenów Uprzemysłowionych Katowice, 21.09.2017 PODATNOŚĆ
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI
ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA
OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity
PL B1. UNIWERSYTET W BIAŁYMSTOKU, Białystok, PL BUP 23/14
PL 220183 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220183 (13) B1 (21) Numer zgłoszenia: 403760 (51) Int.Cl. G01N 1/42 (2006.01) G01N 1/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Podstawy Mikroelektroniki
Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ
Polaryzatory/analizatory
Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
UMO-2011/01/B/ST7/06234
Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne
r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
UMO-2011/01/B/ST7/06234
Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej
Mikroskopia skaningowa tunelowa i siłowa
Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Instytut Fizyki Doświadczalnej Lipowa 41, 15-424 Białystok Tel: (85) 7457228 http://physics.uwb.edu.pl/zfmag Mikroskopia skaningowa tunelowa i siłowa
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
KOOF Szczecin: www.of.szc.pl
3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne
Ćwiczenie Nr 455 Temat: Efekt Faradaya I. Literatura. Ćwiczenia laboratoryjne z fizyki Część II Irena Kruk, Janusz Typek, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin. Ćwiczenia laboratoryjne
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.
0.X.203 ĆWICZENIE NR 8 ( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. I. Zestaw przyrządów:. Mikroskop. 2. Płytki szklane płaskorównoległe.
ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU.
Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU. Mateusz Zelent, Paweł Gruszecki, Michał Mruczkiewicz, Maciej Krawczyk Wydział Fizyki, Zakład Fizyki Nanomateriałów Fale
Ć w i c z e n i e K 3
Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
BADANIE INTERFEROMETRU YOUNGA
Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości
Pracownia Optyki Nieliniowej
Skład osobowy: www.if.pw.edu.pl/~nlo Kierownik pracowni: Prof. dr hab. inż. Mirosław Karpierz Kierownik laboratorium Dr inż. Urszula Laudyn Dr inż. Michał Kwaśny Dr inż. Filip Sala Dr inż. Paweł Jung Doktoranci:
LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia
LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,
Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego
Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej
LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach
Rentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Wyznaczanie stosunku e/m elektronu
Ćwiczenie 27 Wyznaczanie stosunku e/m elektronu 27.1. Zasada ćwiczenia Elektrony przyspieszane w polu elektrycznym wpadają w pole magnetyczne, skierowane prostopadle do kierunku ich ruchu. Wyznacza się
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 3 Badanie przemiany fazowej w materiałach magnetycznych Cel ćwiczenia: Celem ćwiczenia jest badanie charakteru przemiany fazowej w tlenkowych
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5. Janusz Typek Instytut Fizyki
Spektroskopowe badania właściwości magnetycznych warstwowych związków RBa2Cu3O6+x i R2Cu2O5 Janusz Typek Instytut Fizyki Plan prezentacji Jakie materiały badałem? (Krótka prezentacja badanych materiałów)
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Odgłosy z jaskini (11) Siatka odbiciowa
64 FOTON 103, Zima 2008 Odgłosy z jaskini (11) Siatka odbiciowa Adam Smólski Tym razem będą to raczej odblaski z jaskini. Przed opuszczeniem lwiątkowej piwniczki na Bednarskiej postanowiłem przebadać jeszcze
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania