WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy"

Transkrypt

1 WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1

2 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową (10-12 s) femtosekundową (10-15 s) 2

3 Do najczęściej stosowanych metod spektroskopowych rozdzielczych w czasie należą: Techniki badające zanik fluorescencji Techniki typu wiązka pompująca-wiązka sondująca (pump-probe) Metody nieliniowej wymuszonej spektroskopii Ramana Echo fotonowe Dudnienia kwantowe (quantum beats) 3

4 Techniki spektroskopii laserowej rozdzielczej w czasie dostarczają informacji o dynamice różnych procesów takich jak: Relaksacja reorientacyjna Solwatacja nadmiarowego elektronu Dynamika różnych reakcjinp. Izomeryzacja cis- trans; przeniesienie protonu w stanie wzbudzonym, przeniesienie elektronu, zmiany konformacyjne Rozfazowanie wibracyjne T 2 w podstawowym stanie elektronowym Releksacja wibracyjna T 1 w podstawowym i wzbudzonym stanie elektronowym Wibracyjna predysocjacja 4

5 Rodzaje emisji energii cząsteczki znajdującej się na wzbudzonym poziomie elektronowym: Promieniste oddanie enrgii i powrót czasteczki do singletowego stanu podstawowego S 0 czyli FLUORESCENCJA Bezpromieniste oddanie energii i powrót cząsteczki do singletowego stanu podstawowego S 0 Bezpromieniste oddanie energii i przejście do stanu trypletowego T 1 Promieniste oddanie energii cząsteczki znajdującej się w stanie trypletowymm T 1 czyli fosforescencja połaczone z powrotem czasteczki do singletowego stanu podstawowego S 0 5

6 Fluorescencyjny czas życia τ cząsteczki na poziomie wzbudzonym zależy od jej otoczenia. Pomiar czasu τ dostarcza ważnych informacji na temat: Struktury Rodzaju oddziaływań Szybkości ruchów molekularnych w otoczeniu cząsteczki Źródła światła stosowane w metodzie zaniku fluorescencji: Lasery impulsowe Impulsowe lampy błyskowe z filtrem Lasery pracujące w reżimie synchronizacji modów 6

7 Techniki detekcyjne pozwalające mierzyć fluorescencyjny czas życia τ: 1) a) Metody korelowanego w czasie liczenia pojedynczych impulsów b) Metody bramkowania optycznego (light-gating techniques) c) Metoda nadkonwersji (up-conversion method) d) Uśrednianie za pomocą integratora boxcar (mierzą bezpośrednio zanik fluorescencji w czasie) 2) Metody modulacyjno-fazowe (phase-modulation methods) (mierzą opóźnienie fazowe i modulację amplitudy emisji fluorescencji względem okresowo modulowanego światła padającego na próbkę.) 7

8 t Impuls o czasie trwania t padający na próbkę w czasie t 0 t 0 sygnał fluorescencji t 0 exp( ( t t0)/τ ) τ >> t Metoda korelowanego w czasie liczenia pojedynczych impulsów 8

9 modulowane światło padające modulowana emisja fluorescencji Metoda modulacyjno-fazowo 9

10 ultrakrótki impuls powodujący efekt Kerra polaryzator fluorescencja polaryzator α CS 2 detektor Schemat ilustrujący metodę bramkowania optycznego 10

11 impuls laserowy Komórka Pockelsa fotopowielacz analizator sygnału detektor opóźnienie czasowe Metoda bramkowania optycznego z wykorzystaniem komórki Pockelsa 11

12 laser BS Schemat aparatury do pomiaru fluorescencyjnego czasu życia metodą korelowanego w czasie liczenia pojedynczych fotonów detektor analizator wielokanałowy próbka monochromator detektor przetwornik czasowo-amplitudowy 12

13 laser BS Schemat aparatury do fluorescencyjnej obserwacji zaniku produktów przejściowych reakcji chemicznej detektor filtr analizator wielokanałowy próbka monochromator detektor przetwornik czasowo-amplitudowy 13

14 Schemat ilustrujący metodę wiązki pompującej sondującej laser wiązka pompująca próbka wiązka sondująca detektor t = x c t-opóźnienie wiązki sondującej względem pompującej x-różnica dróg optycznych c=-prędkość światła 14

15 Częstość wiązki pompującej lub sondującej można zmieniać w szerokich granicach za pomocą przestrajalnych źródeł światła, takich jak: Generatory parametryczne (OPG) Oscylatory parametryczne (OPO) Wzmacniacze parametryczne (OPA) Źródła białego kontinuum (WC-emitujące niemonochromatyczne promieniowanie w szerokim zakresie) laser wiązka pompująca próbka OPO wiązka sondująca detektor 15

16 Schemat różnych układów eksperymentalnych CARS rejestrator detektor monochromator laser 1 laser 2 ω L ω S filtr ω L próbka 16

17 laser pompujący ω S ω L1 ω L2 konwertory częstości OD opóźnienie czasowe kontrola polaryzacji próbka filtr i analizator polaryzacji detekcja 17

18 r k AS = r 2k L r k S ω AS = ω L + ω vib = ω L + (ω L ω S ) = 2ω L ω S Jeżeli padające wiązki spełniają warunek dopasowania fazowego r r r k = 2k k AS L w kierunku k r AS obserwujemy intensywne, wymuszone rozpraszanie antystokesowskie S k r AS k r L k r L Kierunek propagacji w technice CARS 18

19 Aceton ν=783cm -1 T 2 /2=510±30 fs Sygnał CARS ν=2925cm -1 T 2 /2=305±10 fs Opóźnienie czasowe t D (ps) 19

20 Metody pozwalające na dostrojenie różnicy wiązek pompujących do częstości rezonansowej modu wibracyjnego : światło lasera pompującego pada na laser przestrajalny, np. laser barwnikowy lub przestrajany laser na ciele stałym wykorzystanie efektów nieliniowych w kryształach do generacji drugiej, trzeciej harmonicznej lub białego kontinuum wykorzystanie efektów nieliniowych w generatorach parametrycznych 20

21 ECHO FOTONOWE drugi impuls próbka pierwszy impuls impuls echa fotonowego pierwszy impuls drugi impuls impuls echa fotonowego 21

22 Procesy relaksacji wibracyjnej Relaksacja energii wibracyjnej (dyssypacja energii) Rezonansowe przeniesienie energii Defazowanie wibracyjne T 1 * 2 = 1 2T T 2 22

23 DUDNIENIA KWANTOWE b> a> E k> p> 23

24 I(t) 1,0 0,8 exp(-γt) 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 t Sygnał zaniku fluorescencji modulowany dudnieniami kwantowymi I ( t) µ ap 2 µ ka 2 γ e at + µ bp 2 µ kb 2 γ e bt + 2 µ apµ bpµ kaµ kb ( γa + γb ) / 2 e cos( E b h E a ) t 24

Laboratorium Laserowej Spektroskopii Molekularnej PŁ

Laboratorium Laserowej Spektroskopii Molekularnej PŁ Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρόσ mikros - "mały" i ςκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych

Bardziej szczegółowo

Laboratorium Laserowej Spektroskopii Molekularnej PŁ

Laboratorium Laserowej Spektroskopii Molekularnej PŁ Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρός mikros - "mały" i σκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych

Bardziej szczegółowo

Metody optyczne w medycynie

Metody optyczne w medycynie Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać

Bardziej szczegółowo

Laboratorium Laserowej Spektroskopii Molekularnej PŁ

Laboratorium Laserowej Spektroskopii Molekularnej PŁ Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρός mikros - "mały" i σκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora

2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora . Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK

LASERY NA CIELE STAŁYM BERNARD ZIĘTEK LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział

Bardziej szczegółowo

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH

OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH Impulsowe lasery na ciele stałym są najbardziej ważnymi i szeroko rozpowszechnionymi systemami laserowymi. Np laser Nd:YAG jest najczęściej stosowany do znakowania,

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)

Bardziej szczegółowo

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator) Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric

Bardziej szczegółowo

Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS

Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym

Bardziej szczegółowo

WSTĘP DO SPEKTROSKOPII LASEROWEJ

WSTĘP DO SPEKTROSKOPII LASEROWEJ WSTĘP DO SPEKTROSKOPII LASEROWEJ HALINA ABRAMCZYK 2 Pamięci Moich Rodziców poświęcam SPIS TREŚCI WSTĘP...6 1. PODSTAWY FIZYKI LASERÓW...8 1.1. Przejścia spontaniczne i wymuszone. Współczynniki Einsteina.

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład, 18.05.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie oddziaływanie

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Optyka liniowa i nieliniowa

Optyka liniowa i nieliniowa 1 Prof. Dr Halina Abramczyk Technical University of Lodz, Faculty of Chemistry Institute of Applied Radiation Chemistry Poland, 93-590 Lodz, Wroblewskiego 15 Phone:(+ 48 42) 631-31-88; fax:(+ 48 42) 684

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

G ówne dzia y spektroskopii laserowej

G ówne dzia y spektroskopii laserowej G ówne dzia y spektroskopii laserowej! absorpcyjna i fluorescencyjna spektroskopia laserowa o zdolno ci rozdzielczej wyznaczonej przez dopplerowsk szeroko linii, " metody absorpcyjne du ej czu o ci, "

Bardziej szczegółowo

Kształtowanie wiązki laserowej przez układy optyczne

Kształtowanie wiązki laserowej przez układy optyczne Kształtowanie wiązki laserowej przez układy optyczne W przestrzeni przyosiowej, dla układu bezaberracyjnego i nie przycinającego wiązki gaussowskiej płaszczyzna przewężenia n = 1 n = 1 w w F F w w π π

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca

Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Wprowadzenie do optyki nieliniowej

Wprowadzenie do optyki nieliniowej Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania

Bardziej szczegółowo

Analiza wpływu domieszkowania na właściwości cieplne wybranych monokryształów wykorzystywanych w optyce

Analiza wpływu domieszkowania na właściwości cieplne wybranych monokryształów wykorzystywanych w optyce Politechnika Śląska w Gliwicach Instytut Fizyki, Zakład Fizyki Stosowanej Analiza wpływu domieszkowania na właściwości cieplne wybranych monokryształów wykorzystywanych w optyce Anna Kaźmierczak-Bałata

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

Metody optyczne w medycynie

Metody optyczne w medycynie Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( ω L) i( n 1)( ω L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może

Bardziej szczegółowo

ZASADA DZIAŁANIA LASERA

ZASADA DZIAŁANIA LASERA ZASADA DZIAŁANIA LASERA Rozkład promieniowania lasera w kierunku podłużnym Dwa podstawowe zjawiska: emisja wymuszona i rezonans optyczny. Jeżeli wiązkę promieniowania o długości fali λ wprowadzimy miedzy

Bardziej szczegółowo

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) VII OSKNF 8 XI 2008 Plan Po co nam optyka kwantowa? Czerwony + Czerwony = Niebieski?

Bardziej szczegółowo

IV. Transmisja. /~bezet

IV. Transmisja.  /~bezet Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.

Bardziej szczegółowo

Pomiary widm fotoluminescencji

Pomiary widm fotoluminescencji Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do

Bardziej szczegółowo

Laser barwnikowy strojony wyznaczanie średniego czasu gaśnięcia fluorescencji

Laser barwnikowy strojony wyznaczanie średniego czasu gaśnięcia fluorescencji Zad. 36 Laser barwnikowy strojony wyznaczanie średniego czasu gaśnięcia fluorescencji Celem tego zadania jest zapoznanie się z nowoczesną czasowo-rozdzielczą spektroskopią laserową oraz takimi typowymi

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1

Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1 Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA

Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

jednoeksponencjalny (homogeniczny) wieloeksponencjalny (heterogeniczny) Schemat aparatury do zliczania pojedynczych fotonów skorelowanych czasowo.

jednoeksponencjalny (homogeniczny) wieloeksponencjalny (heterogeniczny) Schemat aparatury do zliczania pojedynczych fotonów skorelowanych czasowo. Pomiar krzywych zaniku fluorescencji metod zliczania pojedynczych fotonów skorelowanych czasowo (metoda TCSPC - time correlated single photon counting) Zanik (homogeniczny) jednoeksponencjalny Zanik (heterogeniczny)

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA

SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Rodzicom dedykuję tę pracę

Rodzicom dedykuję tę pracę Rodzicom dedykuję tę pracę Zobaczyć i nie zrozumieć to dokładnie to samo, co wymyślić A.iB.Strugaccy,Ślimaknazboczu Spis treści 1 Wstęp 7 2 Rozwój optycznych metod badania dynamiki cząsteczek chemicznych

Bardziej szczegółowo

Laboratorium Optyki Nieliniowej

Laboratorium Optyki Nieliniowej Spis treści 1. Wprowadzenie... 1. Dyspersja prędkości grupowej... 5 A. Wydłużenie impulsu... 6 3. Pomiar czasu trwania impulsu... 1 B. Autokorelator interferometryczny... 13 C. Autokorelator natężeniowy...

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Ośrodki dielektryczne optycznie nieliniowe

Ośrodki dielektryczne optycznie nieliniowe Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola

Bardziej szczegółowo

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.

Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ. Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie

Bardziej szczegółowo

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY

Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora

Bardziej szczegółowo

LASER BARWNIKOWY. Indywidualna Pracownia dla Zaawansowanych. Michał Dąbrowski

LASER BARWNIKOWY. Indywidualna Pracownia dla Zaawansowanych. Michał Dąbrowski LASER BARWNIKOWY Indywidualna Pracownia dla Zaawansowanych Michał Dąbrowski Streszczenie Zbadano charakterystyki lasera azotowego: zmierzono czas trwania impulsu, zależność amplitudy impulsu w funkcji

Bardziej szczegółowo

Laser z podwojeniem częstotliwości

Laser z podwojeniem częstotliwości Ćwiczenie 87 Laser z podwojeniem częstotliwości Cel ćwiczenia Badanie właściwości zielonego lasera wykorzystującego metodę pompowania optycznego i podwojenie częstotliwości przy użyciu kryształu optycznie

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

527 nm YLF. Tsunami 800 nm

527 nm YLF. Tsunami 800 nm WZMOCNINI pompowanie powodujące inwersje obsadzeń 527 nm YLF Kryształ Ti +3 :Al 2 O 3 absorpcja emisja Tsunami 800 nm Kryształ Ti +3 :Al 2 O 3 550nm 800nm Jeżeli impuls przechodzi przez ośrodek nieliniowy,

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Rozdział 11 Elektro-optyczny i optyczno-optyczny efekt Kerra

Rozdział 11 Elektro-optyczny i optyczno-optyczny efekt Kerra Rozdział 11 Elektro-optyczny i optyczno-optyczny efekt Kerra Kamil Polok 11.1. Część teoretyczna 11.1.1. Wstęp Efekt Kerra, jest to proces nieliniowy 3 rzędu, polegający na zmianie współczynnika załamania

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

SPEKTROSKOPIA LASEROWA

SPEKTROSKOPIA LASEROWA SPEKTROSKOPIA LASEROWA Spektroskopia laserowa dostarcza wiedzy o naturze zjawisk zachodz cych na poziomie atomów i cz steczek oraz oddzia ywaniu promieniowania z materi i nale y do jednej z najwa niejszych

Bardziej szczegółowo

Wyznaczanie wydajności kwantowej luminescencji oraz czasu zaniku luminescencji związku koordynacyjnego

Wyznaczanie wydajności kwantowej luminescencji oraz czasu zaniku luminescencji związku koordynacyjnego Instrukcja do ćwiczeń Wyznaczanie wydajności kwantowej luminescencji oraz czasu zaniku luminescencji związku koordynacyjnego I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodyką pomiarów

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny

Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację

Bardziej szczegółowo

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG

Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności

Bardziej szczegółowo

ROZDZIAŁ Zjawiska nieliniowe. 4. Zjawiska nieliniowe

ROZDZIAŁ Zjawiska nieliniowe. 4. Zjawiska nieliniowe ROZDZIAŁ 4 4. Zjawiska nieliniowe 4.. Zjawiska nieliniowe drugiego rzędu 4.. Zjawiska nieliniowe trzeciego rzędu 4.3. Wymuszone rozpraszanie Ramana 4.4. Rozpraszanie Brillouina 4.5. Mieszanie czterofalowe

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 I

Badanie schematu rozpadu jodu 128 I J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona

Bardziej szczegółowo

TELEKOMUNIKACJA ŚWIATŁOWODOWA

TELEKOMUNIKACJA ŚWIATŁOWODOWA TELEKOMUNIKACJA ŚWIATŁOWODOWA ETAPY ROZWOJU TS etap I (1975): światłowody pierwszej generacji: wielomodowe, źródło diody elektroluminescencyjne 0.87μm l etap II (1978): zastosowano światłowody jednomodowe

Bardziej szczegółowo

FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń

FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń FIZYKA LASERÓW AKCJA LASEROWA (dynamika) BERNARD ZIĘTEK, TEK, IFAiIS UMK, Toruń 1. Oscylacje relaksacyjne Równania wyjściowe Dynamika laserów Załóżmy, że Zaniedbujemy wyrazy wyższego niż II rząd Bernard

Bardziej szczegółowo

Cząsteczki i światło. Jacek Waluk. Instytut Chemii Fizycznej PAN Kasprzaka 44/52, Warszawa

Cząsteczki i światło. Jacek Waluk. Instytut Chemii Fizycznej PAN Kasprzaka 44/52, Warszawa Cząsteczki i światło Jacek Waluk Instytut Chemii Fizycznej PAN Kasprzaka 44/52, 01-224 Warszawa 10 19 m (1000 lat świetlnych) 10-5 m (10 mikronów) 10 11 gwiazd w naszej galaktyce 10 22 gwiazd we Wszechświecie

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru

Bardziej szczegółowo

1) REŻIM SYNCHRONIZACJI MODÓW 2) PRZEŁĄCZANIE DOBROCI (ANG.1)MODELOCKING, 2) Q-SWITCHING)

1) REŻIM SYNCHRONIZACJI MODÓW 2) PRZEŁĄCZANIE DOBROCI (ANG.1)MODELOCKING, 2) Q-SWITCHING) Prof. Dr Halina Abramczyk Technical University of Lodz, Faculty of Chemistry Institute of Applied Radiation Chemistry Poland, 93-590 Lodz, Wroblewskiego 15 Phone:(+ 48 42) 631-31-88; fax:(+ 48 42) 684

Bardziej szczegółowo

Licznik scyntylacyjny

Licznik scyntylacyjny Detektory promieniowania jonizującego. Licznik scyntylacyjny Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 004. s.1/8 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej,

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski

Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

4 1. Układ chłodzenia wodnego 2. Pompy kriogeniczne 3. Kompresor 4. Pneumatyczne przesłony komórek (Cd i Te).

4 1. Układ chłodzenia wodnego 2. Pompy kriogeniczne 3. Kompresor 4. Pneumatyczne przesłony komórek (Cd i Te). nazwa urządzenia ilość Instytut Fizyki PAN, Komora wysokopróżniowa, 2, Działo elektronowe, 3, Przesłona, 4, Detektor grubości napylonej warstwy metalicznej 4. Układ chłodzenia wodnego 2. Pompy kriogeniczne

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie

Bardziej szczegółowo

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k

- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne

Bardziej szczegółowo

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)

Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM) Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 12 25 maja 2017 Wykład 11 Wiązki przyosiowe Wyższego rzędu TEM mn (Gaussa-Hermite a) Elementy optyczne w działaniu na wiązki Prawo ABCD dla wiązek gaussowskich Ogniskowanie

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra

Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo