WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy
|
|
- Elżbieta Zakrzewska
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYBRANE TECHNIKI SPEKTROSKOPII LASEROWEJ ROZDZIELCZEJ W CZASIE 1
2 Ze względu na rozdzielczość czasową metody, zależną od długości trwania impulsu, spektroskopię dzielimy na: nanosekundową (10-9 s) pikosekundową (10-12 s) femtosekundową (10-15 s) 2
3 Do najczęściej stosowanych metod spektroskopowych rozdzielczych w czasie należą: Techniki badające zanik fluorescencji Techniki typu wiązka pompująca-wiązka sondująca (pump-probe) Metody nieliniowej wymuszonej spektroskopii Ramana Echo fotonowe Dudnienia kwantowe (quantum beats) 3
4 Techniki spektroskopii laserowej rozdzielczej w czasie dostarczają informacji o dynamice różnych procesów takich jak: Relaksacja reorientacyjna Solwatacja nadmiarowego elektronu Dynamika różnych reakcjinp. Izomeryzacja cis- trans; przeniesienie protonu w stanie wzbudzonym, przeniesienie elektronu, zmiany konformacyjne Rozfazowanie wibracyjne T 2 w podstawowym stanie elektronowym Releksacja wibracyjna T 1 w podstawowym i wzbudzonym stanie elektronowym Wibracyjna predysocjacja 4
5 Rodzaje emisji energii cząsteczki znajdującej się na wzbudzonym poziomie elektronowym: Promieniste oddanie enrgii i powrót czasteczki do singletowego stanu podstawowego S 0 czyli FLUORESCENCJA Bezpromieniste oddanie energii i powrót cząsteczki do singletowego stanu podstawowego S 0 Bezpromieniste oddanie energii i przejście do stanu trypletowego T 1 Promieniste oddanie energii cząsteczki znajdującej się w stanie trypletowymm T 1 czyli fosforescencja połaczone z powrotem czasteczki do singletowego stanu podstawowego S 0 5
6 Fluorescencyjny czas życia τ cząsteczki na poziomie wzbudzonym zależy od jej otoczenia. Pomiar czasu τ dostarcza ważnych informacji na temat: Struktury Rodzaju oddziaływań Szybkości ruchów molekularnych w otoczeniu cząsteczki Źródła światła stosowane w metodzie zaniku fluorescencji: Lasery impulsowe Impulsowe lampy błyskowe z filtrem Lasery pracujące w reżimie synchronizacji modów 6
7 Techniki detekcyjne pozwalające mierzyć fluorescencyjny czas życia τ: 1) a) Metody korelowanego w czasie liczenia pojedynczych impulsów b) Metody bramkowania optycznego (light-gating techniques) c) Metoda nadkonwersji (up-conversion method) d) Uśrednianie za pomocą integratora boxcar (mierzą bezpośrednio zanik fluorescencji w czasie) 2) Metody modulacyjno-fazowe (phase-modulation methods) (mierzą opóźnienie fazowe i modulację amplitudy emisji fluorescencji względem okresowo modulowanego światła padającego na próbkę.) 7
8 t Impuls o czasie trwania t padający na próbkę w czasie t 0 t 0 sygnał fluorescencji t 0 exp( ( t t0)/τ ) τ >> t Metoda korelowanego w czasie liczenia pojedynczych impulsów 8
9 modulowane światło padające modulowana emisja fluorescencji Metoda modulacyjno-fazowo 9
10 ultrakrótki impuls powodujący efekt Kerra polaryzator fluorescencja polaryzator α CS 2 detektor Schemat ilustrujący metodę bramkowania optycznego 10
11 impuls laserowy Komórka Pockelsa fotopowielacz analizator sygnału detektor opóźnienie czasowe Metoda bramkowania optycznego z wykorzystaniem komórki Pockelsa 11
12 laser BS Schemat aparatury do pomiaru fluorescencyjnego czasu życia metodą korelowanego w czasie liczenia pojedynczych fotonów detektor analizator wielokanałowy próbka monochromator detektor przetwornik czasowo-amplitudowy 12
13 laser BS Schemat aparatury do fluorescencyjnej obserwacji zaniku produktów przejściowych reakcji chemicznej detektor filtr analizator wielokanałowy próbka monochromator detektor przetwornik czasowo-amplitudowy 13
14 Schemat ilustrujący metodę wiązki pompującej sondującej laser wiązka pompująca próbka wiązka sondująca detektor t = x c t-opóźnienie wiązki sondującej względem pompującej x-różnica dróg optycznych c=-prędkość światła 14
15 Częstość wiązki pompującej lub sondującej można zmieniać w szerokich granicach za pomocą przestrajalnych źródeł światła, takich jak: Generatory parametryczne (OPG) Oscylatory parametryczne (OPO) Wzmacniacze parametryczne (OPA) Źródła białego kontinuum (WC-emitujące niemonochromatyczne promieniowanie w szerokim zakresie) laser wiązka pompująca próbka OPO wiązka sondująca detektor 15
16 Schemat różnych układów eksperymentalnych CARS rejestrator detektor monochromator laser 1 laser 2 ω L ω S filtr ω L próbka 16
17 laser pompujący ω S ω L1 ω L2 konwertory częstości OD opóźnienie czasowe kontrola polaryzacji próbka filtr i analizator polaryzacji detekcja 17
18 r k AS = r 2k L r k S ω AS = ω L + ω vib = ω L + (ω L ω S ) = 2ω L ω S Jeżeli padające wiązki spełniają warunek dopasowania fazowego r r r k = 2k k AS L w kierunku k r AS obserwujemy intensywne, wymuszone rozpraszanie antystokesowskie S k r AS k r L k r L Kierunek propagacji w technice CARS 18
19 Aceton ν=783cm -1 T 2 /2=510±30 fs Sygnał CARS ν=2925cm -1 T 2 /2=305±10 fs Opóźnienie czasowe t D (ps) 19
20 Metody pozwalające na dostrojenie różnicy wiązek pompujących do częstości rezonansowej modu wibracyjnego : światło lasera pompującego pada na laser przestrajalny, np. laser barwnikowy lub przestrajany laser na ciele stałym wykorzystanie efektów nieliniowych w kryształach do generacji drugiej, trzeciej harmonicznej lub białego kontinuum wykorzystanie efektów nieliniowych w generatorach parametrycznych 20
21 ECHO FOTONOWE drugi impuls próbka pierwszy impuls impuls echa fotonowego pierwszy impuls drugi impuls impuls echa fotonowego 21
22 Procesy relaksacji wibracyjnej Relaksacja energii wibracyjnej (dyssypacja energii) Rezonansowe przeniesienie energii Defazowanie wibracyjne T 1 * 2 = 1 2T T 2 22
23 DUDNIENIA KWANTOWE b> a> E k> p> 23
24 I(t) 1,0 0,8 exp(-γt) 0,6 0,4 0,2 0,0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 t Sygnał zaniku fluorescencji modulowany dudnieniami kwantowymi I ( t) µ ap 2 µ ka 2 γ e at + µ bp 2 µ kb 2 γ e bt + 2 µ apµ bpµ kaµ kb ( γa + γb ) / 2 e cos( E b h E a ) t 24
Laboratorium Laserowej Spektroskopii Molekularnej PŁ
Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρόσ mikros - "mały" i ςκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych
Laboratorium Laserowej Spektroskopii Molekularnej PŁ
Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρός mikros - "mały" i σκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych
Metody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( L) i( n 1)( L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może wywołać
Laboratorium Laserowej Spektroskopii Molekularnej PŁ
Laboratorium Laserowej Spektroskopii Molekularnej PŁ Mikroskop (gr. μικρός mikros - "mały" i σκοπέω skopeo - "patrzę, obserwuję") jest urządzeniem służącym do obserwacji małych obiektów, zwykle niewidocznych
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita
Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość
2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora
. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada
Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa
Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK
LASERY NA CIELE STAŁYM BERNARD ZIĘTEK TEK Lasery na ciele stałym lasery, których ośrodek czynny jest: -kryształem i ciałem amorficznym (również proszkiem), - dielektrykiem i półprzewodnikiem. 2 Podział
OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH
OTRZYMYWANIE KRÓTKICH IMPULSÓW LASEROWYCH Impulsowe lasery na ciele stałym są najbardziej ważnymi i szeroko rozpowszechnionymi systemami laserowymi. Np laser Nd:YAG jest najczęściej stosowany do znakowania,
ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA
ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)
w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)
Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
WSTĘP DO SPEKTROSKOPII LASEROWEJ
WSTĘP DO SPEKTROSKOPII LASEROWEJ HALINA ABRAMCZYK 2 Pamięci Moich Rodziców poświęcam SPIS TREŚCI WSTĘP...6 1. PODSTAWY FIZYKI LASERÓW...8 1.1. Przejścia spontaniczne i wymuszone. Współczynniki Einsteina.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 22, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład, 18.05.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 1 - przypomnienie oddziaływanie
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet
Optyka liniowa i nieliniowa
1 Prof. Dr Halina Abramczyk Technical University of Lodz, Faculty of Chemistry Institute of Applied Radiation Chemistry Poland, 93-590 Lodz, Wroblewskiego 15 Phone:(+ 48 42) 631-31-88; fax:(+ 48 42) 684
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
G ówne dzia y spektroskopii laserowej
G ówne dzia y spektroskopii laserowej! absorpcyjna i fluorescencyjna spektroskopia laserowa o zdolno ci rozdzielczej wyznaczonej przez dopplerowsk szeroko linii, " metody absorpcyjne du ej czu o ci, "
Kształtowanie wiązki laserowej przez układy optyczne
Kształtowanie wiązki laserowej przez układy optyczne W przestrzeni przyosiowej, dla układu bezaberracyjnego i nie przycinającego wiązki gaussowskiej płaszczyzna przewężenia n = 1 n = 1 w w F F w w π π
VI. Elementy techniki, lasery
Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,
Wstęp do optyki i fizyki materii skondensowanej. O: Wojciech Wasilewski FMS: Mateusz Goryca
Wstęp do optyki i fizyki materii skondensowanej O: Wojciech Wasilewski FMS: Mateusz Goryca 1 Zasady części O Wykład przeglądowy Ćwiczenia rozszerzające lub ilustrujące Sprawdzane prace domowe psi.fuw.edu.pl/main/wdoifms
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji
PODSTAWY FIZYKI LASERÓW Wstęp
PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Analiza wpływu domieszkowania na właściwości cieplne wybranych monokryształów wykorzystywanych w optyce
Politechnika Śląska w Gliwicach Instytut Fizyki, Zakład Fizyki Stosowanej Analiza wpływu domieszkowania na właściwości cieplne wybranych monokryształów wykorzystywanych w optyce Anna Kaźmierczak-Bałata
Właściwości światła laserowego
Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność
Metody optyczne w medycynie
Metody optyczne w medycynie Podstawy oddziaływania światła z materią E i E t E t = E i e κ ( ω L) i( n 1)( ω L) c e c zmiana amplitudy (absorpcja) zmiana fazy (dyspersja) Tylko światło pochłonięte może
ZASADA DZIAŁANIA LASERA
ZASADA DZIAŁANIA LASERA Rozkład promieniowania lasera w kierunku podłużnym Dwa podstawowe zjawiska: emisja wymuszona i rezonans optyczny. Jeżeli wiązkę promieniowania o długości fali λ wprowadzimy miedzy
Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów
Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) VII OSKNF 8 XI 2008 Plan Po co nam optyka kwantowa? Czerwony + Czerwony = Niebieski?
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Pomiary widm fotoluminescencji
Fotoluminescencja (PL photoluminescence) jako technika eksperymentalna, oznacza badanie zależności spektralnej rekombinacji promienistej, pochodzącej od nośników wzbudzonych optycznie. Schemat układu do
Laser barwnikowy strojony wyznaczanie średniego czasu gaśnięcia fluorescencji
Zad. 36 Laser barwnikowy strojony wyznaczanie średniego czasu gaśnięcia fluorescencji Celem tego zadania jest zapoznanie się z nowoczesną czasowo-rozdzielczą spektroskopią laserową oraz takimi typowymi
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Podsumowanie W9. Wojciech Gawlik - Wstęp do Fizyki Atomowej, 2003/04. wykład 12 1
Podsumowanie W9 Obserwacja przejść rezonansowych wymuszonych przez pole EM jest moŝliwa tylko, gdy istnieje róŝnica populacji. Tymczasem w zakresie fal radiowych poziomy są prawie jednakowo obsadzone.
Ekscyton w morzu dziur
Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie
Piotr Targowski i Bernard Ziętek GENERACJA II HARMONICZNEJ ŚWIATŁA
Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki GENERACJA II HARMONICZNEJ ŚWIATŁA Zadanie VI Zakład Optoelektroniki Toruń 004 I. Cel zadania Celem
Magnetyczny Rezonans Jądrowy (NMR)
Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie
Metody badań spektroskopowych
Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania
jednoeksponencjalny (homogeniczny) wieloeksponencjalny (heterogeniczny) Schemat aparatury do zliczania pojedynczych fotonów skorelowanych czasowo.
Pomiar krzywych zaniku fluorescencji metod zliczania pojedynczych fotonów skorelowanych czasowo (metoda TCSPC - time correlated single photon counting) Zanik (homogeniczny) jednoeksponencjalny Zanik (heterogeniczny)
2. Metody, których podstawą są widma atomowe 32
Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:
Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA
SPEKTROMETRIA CIEKŁOSCYNTYLACYJNA Metoda detekcji promieniowania jądrowego (α, β, γ) Konwersja energii promieniowania jądrowego na promieniowanie w zakresie widzialnym. Zalety metody: Geometria 4π Duża
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Rodzicom dedykuję tę pracę
Rodzicom dedykuję tę pracę Zobaczyć i nie zrozumieć to dokładnie to samo, co wymyślić A.iB.Strugaccy,Ślimaknazboczu Spis treści 1 Wstęp 7 2 Rozwój optycznych metod badania dynamiki cząsteczek chemicznych
Laboratorium Optyki Nieliniowej
Spis treści 1. Wprowadzenie... 1. Dyspersja prędkości grupowej... 5 A. Wydłużenie impulsu... 6 3. Pomiar czasu trwania impulsu... 1 B. Autokorelator interferometryczny... 13 C. Autokorelator natężeniowy...
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Ośrodki dielektryczne optycznie nieliniowe
Ośrodki dielektryczne optycznie nieliniowe Równania Maxwella roth rot D t B t = = przy czym tym razem wektor indukcji elektrycznej D ε + = ( ) Wektor polaryzacji jest nieliniową funkcją natężenia pola
Pracownia Jądrowa. dr Urszula Majewska. Spektrometria scyntylacyjna promieniowania γ.
Ćwiczenie nr 1 Spektrometria scyntylacyjna promieniowania γ. 3. Oddziaływanie promieniowania γ z materią: Z elektronami: zjawisko fotoelektryczne, rozpraszanie Rayleigha, zjawisko Comptona, rozpraszanie
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY
Β2 - DETEKTOR SCYNTYLACYJNY POZYCYJNIE CZUŁY I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadą działania detektorów pozycyjnie czułych poprzez pomiar prędkości światła w materiale scyntylatora
LASER BARWNIKOWY. Indywidualna Pracownia dla Zaawansowanych. Michał Dąbrowski
LASER BARWNIKOWY Indywidualna Pracownia dla Zaawansowanych Michał Dąbrowski Streszczenie Zbadano charakterystyki lasera azotowego: zmierzono czas trwania impulsu, zależność amplitudy impulsu w funkcji
Laser z podwojeniem częstotliwości
Ćwiczenie 87 Laser z podwojeniem częstotliwości Cel ćwiczenia Badanie właściwości zielonego lasera wykorzystującego metodę pompowania optycznego i podwojenie częstotliwości przy użyciu kryształu optycznie
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
527 nm YLF. Tsunami 800 nm
WZMOCNINI pompowanie powodujące inwersje obsadzeń 527 nm YLF Kryształ Ti +3 :Al 2 O 3 absorpcja emisja Tsunami 800 nm Kryształ Ti +3 :Al 2 O 3 550nm 800nm Jeżeli impuls przechodzi przez ośrodek nieliniowy,
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski
Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie
Badanie schematu rozpadu jodu 128 J
J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Rozdział 11 Elektro-optyczny i optyczno-optyczny efekt Kerra
Rozdział 11 Elektro-optyczny i optyczno-optyczny efekt Kerra Kamil Polok 11.1. Część teoretyczna 11.1.1. Wstęp Efekt Kerra, jest to proces nieliniowy 3 rzędu, polegający na zmianie współczynnika załamania
Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa
Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna
PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
SPEKTROSKOPIA LASEROWA
SPEKTROSKOPIA LASEROWA Spektroskopia laserowa dostarcza wiedzy o naturze zjawisk zachodz cych na poziomie atomów i cz steczek oraz oddzia ywaniu promieniowania z materi i nale y do jednej z najwa niejszych
Wyznaczanie wydajności kwantowej luminescencji oraz czasu zaniku luminescencji związku koordynacyjnego
Instrukcja do ćwiczeń Wyznaczanie wydajności kwantowej luminescencji oraz czasu zaniku luminescencji związku koordynacyjnego I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodyką pomiarów
Laboratorium techniki laserowej. Ćwiczenie 1. Modulator akustooptyczny
Laboratorium techniki laserowej Ćwiczenie 1. Modulator akustooptyczny Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Ogromne zapotrzebowanie na informację
Technika laserowa. dr inż. Sebastian Bielski. Wydział Fizyki Technicznej i Matematyki Stosowanej PG
Technika laserowa dr inż. Sebastian Bielski Wydział Fizyki Technicznej i Matematyki Stosowanej PG Technika laserowa Zakres materiału (wstępnie przewidywany) 1. Bezpieczeństwo pracy z laserem 2. Własności
ROZDZIAŁ Zjawiska nieliniowe. 4. Zjawiska nieliniowe
ROZDZIAŁ 4 4. Zjawiska nieliniowe 4.. Zjawiska nieliniowe drugiego rzędu 4.. Zjawiska nieliniowe trzeciego rzędu 4.3. Wymuszone rozpraszanie Ramana 4.4. Rozpraszanie Brillouina 4.5. Mieszanie czterofalowe
Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego
Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej
Badanie schematu rozpadu jodu 128 I
J8 Badanie schematu rozpadu jodu 128 I Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 I Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią [1,3] a) efekt fotoelektryczny b) efekt Comptona
TELEKOMUNIKACJA ŚWIATŁOWODOWA
TELEKOMUNIKACJA ŚWIATŁOWODOWA ETAPY ROZWOJU TS etap I (1975): światłowody pierwszej generacji: wielomodowe, źródło diody elektroluminescencyjne 0.87μm l etap II (1978): zastosowano światłowody jednomodowe
FIZYKA LASERÓW. AKCJA LASEROWA (dynamika) TEK, IFAiIS UMK, Toruń
FIZYKA LASERÓW AKCJA LASEROWA (dynamika) BERNARD ZIĘTEK, TEK, IFAiIS UMK, Toruń 1. Oscylacje relaksacyjne Równania wyjściowe Dynamika laserów Załóżmy, że Zaniedbujemy wyrazy wyższego niż II rząd Bernard
Cząsteczki i światło. Jacek Waluk. Instytut Chemii Fizycznej PAN Kasprzaka 44/52, Warszawa
Cząsteczki i światło Jacek Waluk Instytut Chemii Fizycznej PAN Kasprzaka 44/52, 01-224 Warszawa 10 19 m (1000 lat świetlnych) 10-5 m (10 mikronów) 10 11 gwiazd w naszej galaktyce 10 22 gwiazd we Wszechświecie
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru
1) REŻIM SYNCHRONIZACJI MODÓW 2) PRZEŁĄCZANIE DOBROCI (ANG.1)MODELOCKING, 2) Q-SWITCHING)
Prof. Dr Halina Abramczyk Technical University of Lodz, Faculty of Chemistry Institute of Applied Radiation Chemistry Poland, 93-590 Lodz, Wroblewskiego 15 Phone:(+ 48 42) 631-31-88; fax:(+ 48 42) 684
Licznik scyntylacyjny
Detektory promieniowania jonizującego. Licznik scyntylacyjny Instrukcję przygotował: dr, inż. Zbigniew Górski Poznań, grudzień, 004. s.1/8 ` Politechnika Poznańska, Instytut Chemii i Elektrochemii Technicznej,
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Wyznaczanie bezwzględnej aktywności źródła 60 Co. Tomasz Winiarski
Wyznaczanie bezwzględnej aktywności źródła 60 Co metoda koincydencyjna. Tomasz Winiarski 24 kwietnia 2001 WSTEP TEORETYCZNY Rozpad promieniotwórczy i czas połowicznego zaniku. Rozpad promieniotwórczy polega
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]
SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną
4 1. Układ chłodzenia wodnego 2. Pompy kriogeniczne 3. Kompresor 4. Pneumatyczne przesłony komórek (Cd i Te).
nazwa urządzenia ilość Instytut Fizyki PAN, Komora wysokopróżniowa, 2, Działo elektronowe, 3, Przesłona, 4, Detektor grubości napylonej warstwy metalicznej 4. Układ chłodzenia wodnego 2. Pompy kriogeniczne
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH
IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie
- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k
Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne
Podsumowanie W11. Nierównowagowe rozkłady populacji pompowanie optyczne (zachowanie krętu atom-pole EM)
Podsumowanie W Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. ymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. En. I det ħ m=+/ m=-/ B B A B h 8 3 Nierównowagowe
Optyka instrumentalna
Optyka instrumentalna wykład 12 25 maja 2017 Wykład 11 Wiązki przyosiowe Wyższego rzędu TEM mn (Gaussa-Hermite a) Elementy optyczne w działaniu na wiązki Prawo ABCD dla wiązek gaussowskich Ogniskowanie
Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman
Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?
Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.
1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz