Własności transportowe niejednorodnych nanodrutów półprzewodnikowych
|
|
- Jarosław Pawłowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Własności transportowe niejednorodnych nanodrutów półprzewodnikowych Maciej Wołoszyn współpraca: Janusz Adamowski Bartłomiej Spisak Paweł Wójcik Seminarium WFiIS AGH 13 stycznia 2017
2 Streszczenie nanodruty półprzewodnikowe zawierające warstwy różnych materiałów struktury tunelowo-rezonansowe układy kwaziperiodyczne w nanodrutach nanodruty o niejednorodnej geometrii przewężenia, pole magnetyczne i ich wpływ na transport ładunku i spinu elektronów Badania były finansowane przez Narodowe Centrum Nauki w ramach grantu DEC-2011/03/B/ST3/00240.
3 Nanodruty struktury o średnicach rzędu kilku-kilkunastu nanometrów stosunek długość/promień (aspect ratio) typowo rzędu inaczej druty kwantowe z powodu zasadniczego znaczenia zjawisk kwantowych przykładowe zastosowania: nanoelektronika i spintronika (np.. tranzystory, sensory, filtry spinowe) fotonika i fotowoltaika (LED, ogniwa) technologie pozwalające na magazynowanie energii
4 Tunelowanie rezonansowe przez układ dwóch barier w nanodrucie InAs/InP 1µm [ Björk et.al. Appl Phys Lett 81, 4458 (2002) ]
5 Przybliżenie adiabatyczne
6 Przybliżenie adiabatyczne & (jeśli można zaniedbać) QTBM
7 Oscylacje prądowe na skutek rezonansów Starka [J Appl Phys 114, (2013)]
8
9
10 Nanodruty z wieloma barierami b = 5 nm 25nm R= 20nm L= 3000nm, <zi+1 zi>=25nm
11 [ Carnevale et al., Nano Lett. 11, 866 (2011) ] Schematic (top) and TEM image of an InP superlattice nanowire. [ Yan et al., Nature Photonics 3, 569 (2009) ]
12 Układy kwaziperiodyczne tradycyjna klasyfikacja materii (w dużym uproszczeniu): materiały krystaliczne (uporządkowanie) materiały amorficzne (nieporządek) w kręgu zainteresowań matematyków, fizyków teoretyków również m. in. : ciągi aperiodyczne aperiodyczne pokrycia płaszczyzny (np. Parkietaż Penrose a)
13 Pierwszy znaleziony naturalnie występujący kwazikryształ (prawdopodobnie z meteorytu): Dan Shechtman, 1984 AGH 2013 Kwazikryształy Nobel Prize 2011 Press Conference Stop Al-Mn dający obraz dyfrakcyjny jak dla kryształów, ale z 5-krotną osią symetrii [wikipedia] Diffraction pattern taken from a single grain of the icosahedral phase. [Bindi et.al. Science 324, 1306 (2009)]
14 opór właściwy różnych typów materiałów (w temperaturze pokojowej) [ E.Maciá, Rep Prog Phys 69, 397 (2006) ]
15 Reguły podstawień generujące ciągi o własnościach aperiodycznych i samopodobnych [ E.Maciá, Rep Prog Phys 69, 397 (2006) ]
16 Binarny ciąg Fibonacciego ( Fibonacci word ) generowany przez: {0} {0,1} {1} {0} n-ty wyraz: f(n) = 2+ nφ - (n+1)φ długość = liczba Fibonacciego F(n) 8 F(n) = F(n-1) + F(n-2) 13 limn F(n+1)/F(n) = φ
17 Fibonacci word i fraktale konstrukcja fraktala dla każdego f(n) : - narysuj jednostkowy odcinek - jeśli f(n)=0 wykonaj zwrot o 90 : w prawo jeśli n jest parzyste w lewo jeśli n jest nieparzyste wymiar fraktalny Hausdorffa: 3 log(φ)/log(1+ 2) rozpraszanie elektronów w 1-wymiarowym układzie opartym na binarnym ciągu Fibonacciego Nomata et al.
18 [ Nava et al., J Phys Cond Mat 21, (2009)] [ Ghulinyan et al., Phys Rev B 71, (2005)]
19 Binarny ciąg Thue-Morse a ( Thue-Morse word ) generowany przez: {0} {0,1} {1} {1,0} konstrukcja fraktala dla każdego t(n) : - jeśli t(n)=0 : narysuj odcinek jednostkowy - jeśli t(n)=1 : wykonaj zwrot o 60 (przeciwnie do ruchu wskazówek zegara) wymiar fraktalny Hausdorffa: ln 4 / ln
20 Konduktancja
21 Współczynnik transmisji
22 Opis za pomocą funkcji Wignera
23 Funkcja Wignera ewolucja czasowa
24
25
26 Trajektorie w przestrzeni fazowej (<x>, <p>)
27 Parametr nieklasyczności
28 α = 1 dyfuzja 1 < α < 2 transport superdyfuzyjny α = 2 transport balistyczny
29 [ Eur Phys J B 85, 10 (2012) ]
30 [ Phys Rev B 80, (2009) ]
31 spektrum multifraktalne f(α) wymiar uogólniony D(q)
32 Nanodruty w zewnętrznym polu magnetycznym hamiltonian uwzględniający pola elektryczne F=(0,0,F) oraz magnetyczne B=(0,0,B) cechowanie symetryczne A = ( B x r ) / 2
33 Nanodrut InAs z przewężeniem magnetoopór L=200nm r0=20nm Lc=60nm rc=10nm p=6
34 G = di / dv [J Phys Cond Mat 26, (2014)]
35
36 Transport zależny od spinu elektronu w nanodrucie InSb [ Physica E 83, 127 (2016) ]
37
38
39 Nanodrut InAs 3 bramki typu all-around 2 sprzężone kropki kwantowe VG
40
41 5 bramek typu all-around
42 Podsumowanie oscylacje prądowe w nanodrutach tuneloworezonansowych transport elektronów w układach kwaziperiodycznych magnetoopór w drutach ze zmienną średnicą prądy zależne od spinu Dziękuję za uwagę!
43
Spintronika fotonika: analogie
: analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH
Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Rola oddziaływania spin-orbita w niskowymiarowych strukturach półprzewodnikowych. Paweł Wójcik
Rola oddziaływania spin-orbita w niskowymiarowych strukturach półprzewodnikowych Paweł Wójcik Współpraca: J. Adamowski, B.J. Spisak, M. Wołoszyn Wydział Fizyki i Informatyki Stosowanej, AGH M. Nowak, Akademickie
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å
Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa?
Szum w urzadzeniu półprzewodnikowym przeszkoda czy szansa? szczegółowe zastosowania kwantowego szumu śrutowego J. Tworzydło Instytut Fizyki Teoretycznej Uniwersytet Warszawski Sympozjum Instytutu Fizyki
Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych komputera kwantowego
Stanisław Bednarek Zespół Teorii Nanostruktur i Nanourządzeń Katedra Informatyki Stosowanej i Fizyki Komputerowej WFiIS AGH Operacje na spinie pojedynczego elektronu w zastosowaniu do budowy bramek logicznych
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej
Metody pomiarowe spinowego efektu Halla w nanourządzeniach elektroniki spinowej Monika Cecot, Witold Skowroński, Sławomir Ziętek, Tomasz Stobiecki Wisła, 13.09.2016 Plan prezentacji Spinowy efekt Halla
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki
XII. NANOSTRUKTURY PÓŁPRZEWODNIKOWE Janusz Adamowski
XII. NANOSTRUKTURY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Wstęp Na wykładzie tym zostaną omówione dwa typy nanostruktur półprzewodnikowych: (1) kropki kwantowe, (2) druty kwantowe (nanodruty). 2 Wprowadzenie
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Nanofizyka co wiemy, a czego jeszcze szukamy?
Nanofizyka co wiemy, a czego jeszcze szukamy? Maciej Maśka Zakład Fizyki Teoretycznej UŚ Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ...czyli dlaczego NANO
Henryk Szymczak Instytut Fizyki PAN
NNnnNowe kwazicząstki w magnetykach Henryk Szymczak Instytut Fizyki PAN Zjazd Fizyków 2015 1 Enrico Fermi: nigdy nie należy lekceważyć przyjemności, jaką każdy z nas odczuwa, słysząc coś, o czym już wie
Wpływ oddziaływania spin-orbita oraz efektów orbitalnych na własności niskowymiarowych struktur półprzewodnikowych i nadprzewodzących
Wpływ oddziaływania spin-orbita oraz efektów orbitalnych na własności niskowymiarowych struktur półprzewodnikowych i nadprzewodzących Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza
Poprawa charakterystyk promieniowania diod laserowych dużej mocy poprzez zastosowanie struktur periodycznych w płaszczyźnie złącza Grzegorz Sobczak, Elżbieta Dąbrowska, Marian Teodorczyk, Joanna Kalbarczyk,
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran
Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych (wybrane wyniki z rozprawy habilitacyjnej) Kraków 12.05.2006 Bartłomiej Szafran Półprzewodnikowe kropki kwantowe
Układ SI. Nazwa Symbol Uwagi. Odległość jaką pokonujeświatło w próżni w czasie 1/ s
Układ SI Wielkość Nazwa Symbol Uwagi Długość metr m Masa kilogram kg Czas sekunda s Odległość jaką pokonujeświatło w próżni w czasie 1/299 792 458 s Masa walca wykonanego ze stopu platyny z irydem przechowywanym
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi
Nagroda Nobla 2007 efekt GMR
Nagroda Nobla 2007 efekt GMR Wykład wygłoszony na AGH przez prof. Józefa Barnasia z Uniwersytetu im. A. Mickiewicza z Poznania w styczniu 2008. Prof. J. Barnaś jest współautorem wielu wspólnych publikacji
Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207
Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski
XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski 1 Rysunek 1: Elektrody (bramki) definiujące elektrostatyczną boczną kropkę kwantową. Fotografia otrzymana przy użyciu elektronowego mikroskopu
Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu
Badanie czujników pola magnetycznego wykorzystujących zjawisko gigantycznego magnetooporu Uczestnicy: Łukasz Grabowski Barbara Latacz Kamil Mrzygłód Michał Papaj Opiekunowie naukowi: prof. dr hab. Jan
Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie
Transport elektronowy w metalicznych materiałach nieuporządkowanych Antoni Paja Zakład Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie Plan wystąpienia.
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Stanisław Bednarek ZFTiK WFiIS AGH. Indukton, czyli. Soliton elektronowy w nanostrukturach półprzewodnikowych.
Stanisław Bednarek ZFTiK WFiIS AGH Indukton, czyli Soliton elektronowy w nanostrukturach półprzewodnikowych. Indukton, A: I do not believe that this paper has any scientific value. czyli Soliton elektronowy
Badanie pól elektrycznych w azotkach metodami optycznymi
Badanie pól elektrycznych w azotkach metodami optycznymi Krzysztof Zieleniewski Pod opieką dr. Anety Drabińskiej Proseminarium Fizyki Ciała Stałego, 8 kwietnia 2010 O czym będzie? Dlaczego azotki? Dlaczego
Dynamika w magnetycznych złączach tunelowych
Dynamika w magnetycznych złączach tunelowych Witold Skowroński Katedra Elektroniki Wydział Informatyki Elektroniki i Telekomunikacji Witold Skowroński, Kraków 17.01.2014 1/43 Motywacja Badania magnetycznych
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie
Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie Radosław Strzałka Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej AGH w Krakowie Seminarium Wydziałowe,
Wykład FIZYKA II. 5. Magnetyzm
Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
II.6 Atomy w zewnętrznym polu magnetycznym
II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu
TEORIA TRANZYSTORÓW MOS. Charakterystyki statyczne
TEORIA TRANZYSTORÓW MOS Charakterystyki statyczne n Aktywne podłoże, a napięcia polaryzacji złącz tranzystora wzbogacanego nmos Obszar odcięcia > t, = 0 < t Obszar liniowy (omowy) Kanał indukowany napięciem
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Organiczne ogniwa słonecznes. Ogniwa półprzewodnikowe. p przewodnikowe zasada ania. Charakterystyki fotoogniwa
j Elektronika plastikowa i organiczna Organiczne ogniwa słonecznes Ogniwa półprzewodnikowe p przewodnikowe zasada działania ania Charakterystyki fotoogniwa współczynnik wypełnienia, wydajność Moc w obwodzie
WŁASNOŚCI TRANSPORTOWE I LOKALIZACJA STANÓW JEDNOELEKTRONOWYCH W UKŁADACH O ZABURZONEJ SYMETRII TRANSLACYJNEJ
WŁASNOŚCI TRANSPORTOWE I LOKALIZACJA STANÓW JEDNOELEKTRONOWYCH W UKŁADACH O ZABURZONEJ SYMETRII TRANSLACYJNEJ Bartłomiej J. Spisak WŁASNOŚCI TRANSPORTOWE I LOKALIZACJA STANÓW JEDNOELEKTRONOWYCH W UKŁADACH
Oddziaływanie grafenu z metalami
Oddziaływanie grafenu z metalami Oddziaływanie grafenu z metalami prof. dr hab. Zbigniew Klusek Grafen dla czego intryguje? v E U V E d cm d cm v t s en Transport dyfuzyjny Transport kwantowy balistyczny
MATERIAŁY XXXVI ZJAZDU FIZYKÓW POLSKICH TORUŃ 2001 WYKŁADY PLENARNE. Spin w elektronice. Józef Barnaś
Spin w elektronice Józef Barnaś Wydział Fizyki, Uniwersytet im. Adama Mickiewicza, Poznań oraz Instytut Fizyki Molekularnej PAN, Poznań 1. Wstęp W konwencjonalnych układach elektronicznych aktywnym elementem
Modele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Lublin 24 sierpnia 2017 r.
Zakład Teorii Fazy Skondensowanej UMCS Condensed Matter Theory Department ul. Radziszewskiego 10 20 031 Lublin, POLAND http://kft.umcs.lublin.pl/ztfs fax: (+48 (0)81) 537 61 90 Prof. dr hab. Karol Izydor
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych
Nierównowagowe kondensaty polarytonów ekscytonowych z gigantycznym rozszczepieniem Zeemana w mikrownękach półprzewodnikowych B. Piętka, M. Król, R. Mirek, K. Lekenta, J. Szczytko J.-G. Rousset, M. Nawrocki,
RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU
X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne
OBLICZANIE CHARAKTERYSTYKI PRĄDOWO-NAPIĘCIOWEJ DIODY REZONANSOWO-TUNELOWEJ W OPARCIU O METODĘ MACIERZY TRANSFERU ORAZ FORMUŁĘ TSU-ESAKIEGO
TEMATY PROJEKTÓW PROJEKT 1. OBLICZANIE CHARAKTERYSTYKI PRĄDOWO-NAPIĘCIOWEJ DIODY REZONANSOWO-TUNELOWEJ W OPARCIU O METODĘ MACIERZY TRANSFERU ORAZ FORMUŁĘ TSU-ESAKIEGO Dioda rezonansowo-tunelowa (RTD) to
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
Model uogólniony jądra atomowego
Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)
Podstawy Mikroelektroniki
Akademia Górniczo-Hutnicza w Krakowie Wydział IEiT Katedra Elektroniki Podstawy Mikroelektroniki Temat ćwiczenia: Nr ćwiczenia 1 Pomiary charakterystyk magnetoelektrycznych elementów spintronicznych-wpływ
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Fizyka Materii Nieuporządkowanej
Janusz Toboła email: tobola@ftj.agh.edu.pl www: http://newton.ftj.agh.edu.pl/~tobola version 2015 Fizyka Materii Nieuporządkowanej Własności elektronowe materiałów funkcjonalnych I Wprowadzenie. Rodzaje
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl http://www.rk.kujawsko-pomorskie.pl/ Organizacja zajęć Kurs trwa 20 godzin lekcyjnych,
PL B1. INSTYTUT TECHNOLOGII ELEKTRONOWEJ, Warszawa, PL INSTYTUT FIZYKI POLSKIEJ AKADEMII NAUK, Warszawa, PL
PL 221135 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221135 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 399454 (22) Data zgłoszenia: 06.06.2012 (51) Int.Cl.
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów.
Badanie Gigantycznego Rezonansu Dipolowego wzbudzanego w zderzeniach ciężkich jonów. prof. dr hab. Marta Kicińska-Habior Wydział Fizyki UW Zakład Fizyki Jądra Atomowego e-mail: Marta.Kicinska-Habior@fuw.edu.pl
Własności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Wpływ efektów interferencyjnych i korelacji kulombowskich na transport elektronowy przez układy kropek kwantowych. Piotr Trocha
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Wpływ efektów interferencyjnych i korelacji kulombowskich na transport elektronowy przez układy kropek kwantowych Piotr Trocha Rozprawa doktorska Promotor:
Recenzja rozprawy doktorskiej mgr inż. Aliny Mreńcy-Kolasińskiej Symulacje transportu kwantowego w układach grafenowych ze złączami n-p
Recenzja rozprawy doktorskiej mgr inż. Aliny Mreńcy-Kolasińskiej Symulacje transportu kwantowego w układach grafenowych ze złączami n-p Przedstawiona do recenzji rozprawa doktorska pt. Symulacje transportu
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
W książce tej przedstawiono:
Elektronika jest jednym z ważniejszych i zarazem najtrudniejszych przedmiotów wykładanych na studiach technicznych. Co istotne, dogłębne zrozumienie jej prawideł, jak również opanowanie pewnej wiedzy praktycznej,
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Metody symulacji w nanotechnologii
Metody symulacji w nanotechnologii Jan Iwaniszewski A. Formalizm operatorowy Załóżmy, że nasz układ kwantowy posiada dyskretny zbiór funkcji własnych ϕ k, k =,,.... Tworzą one bazę w całej przestrzeni
SPEKTROSKOPIA NMR. No. 0
No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a
Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Materiały używane w elektronice
Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA
REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.
Podstawy Fizyki Półprzewodników
Podstawy Fizyki Półprzewodników Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski konsultacje: poniedziałek godz. 15:00-17:00, pok. 310 A-1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Spektroskopia magnetycznego rezonansu jądrowego (NMR)
Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z
Nanostruktury, spintronika, komputer kwantowy
Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.
Plan. 2. Fizyka heterozłącza a. proste modele kwantowe b. n-wymiarowy gaz elektronowy
Plan 1. Przegląd struktur niskowymiarowych a. studnie kwantowe, supersieci, wytwarzanie b. druty kwantowe, kropki kwantowe; wytwarzanie nanokryształy struktury samorosnące c. charakter widm optycznych
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Grafen. Poprzednio. Poprzednio
Elektronika plastikowa i organiczna Grafen Poprzednio Poprzednio Metody syntezy związków organicznych pozwalają na tworzenie półprzewodników organicznych o zadanych własnościach mechanicznych i elektrooptycznych
Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU.
Efektywne symulacje mikromagnetyczne układów magnonicznych przy wykorzystaniu GPGPU. Mateusz Zelent, Paweł Gruszecki, Michał Mruczkiewicz, Maciej Krawczyk Wydział Fizyki, Zakład Fizyki Nanomateriałów Fale
MAGNETYCZNY REZONANS JĄDROWY - podstawy
1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC
II prawo Kirchhoffa algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka jest równa zeru klucz zwarty w punkcie a - ładowanie kondensatora równanie ładowania Fizyka ogólna
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Generatory sinusoidalne LC
Ćw. 5 Generatory sinusoidalne LC. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter
Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych. Bartłomiej Szafran
Korelacje przestrzenne między nośnikami uwięzionymi w półprzewodnikowych kropkach kwantowych (wybrane wyniki z rozprawy habilitacyjnej) Kraków 12.05.2006 Bartłomiej Szafran Półprzewodnikowe kropki kwantowe