Wycena opcji azjatyckich metodą PDE

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wycena opcji azjatyckich metodą PDE"

Transkrypt

1 Raport i dokumentacja do projektu Wycena opcji azjatyckich metodą PDE Autor: Agnieszka Ulikowska

2 1. EOREYCZNY OPIS ZAGADNIENIA Wypłata z opcji azjatyckiej zależy od ceny instrumentu podstawowego w ustalonych momentach czasu. W ramach projektu rozpatrzone zostały następujące opcje azjatyckie o wypłatach: Opcja floating strike call X =max S S, Opcja floating strike put X =max S S, Opcja fixed strike call X =max S K, Opcja fixed strike put X =max K S, gdzie S = 1 S u du Cena V =V t, S t, A t opcji azjatyckiej zależy od trzech zmiennych. t - czas S t - proces cen akcji dany wzorem S t =S exp r 1 t W t t A t - całka z funkcji procesu S t, A t = f S u,u du Dla opcji azjatyckich fixed / floating strike f S t,t =S t, t A t = S u du. Wiedząc, że da t = f S t,t dt i korzystając ze wzoru Ito zastosowanego do funkcji V =V t, S t, A t otrzymujemy równanie różniczkowe dv t = dv dt dv S ds 1 S d V dv f S,t ds da dt S dv ds dw t Używając argumentów takich jak w przypadku równania Blacka-Scholesa dla europejskich opcji waniliowych dowodzimy, że dv dt dv rs ds 1 S d V dv f S, t rv = ds da Obecność składnika f S,t dv uniemożliwia transformację do równania dyfuzji. Rozwiązanie da powyższego równania różniczkowego zdefiniowane jest na 3-wymiarowej przestrzeni S, A, t, co prowadzi do znacznych kosztów przy numerycznym rozwiązywaniu. W konkretnych przypadkach można jednak zredukować wymiar równania (do równania dwuwymiarowego) przez odpowiednią zamianę zmiennych taka zamiana zmiennych jest możliwa przy wycenie opcji floating / fixed strike.

3 *OPCJA AZJAYCKA FLOAING SRIKE CALL Wypłata z opcji floating strike call wynosi X =max S S, =S max 1 1 S S u du. Definiujemy nową zmienną R t = 1 t S S u du. t Wypłatę można wtedy zapisać jako S max 1 1 R, =S function R,. Jest to motywacja do szukania rozwiązania V =V t, S t, A t w postaci S t H R t,t, gdzie H R,t jest pewną nieznaną funkcją. Po przekształceniach otrzymujemy następujące równanie różniczkowe z warunkami terminowobrzegowymi (pełne wyprowadzenie dostępne w ools for Computational Finance, Seydel rozdział 6): dh dt 1 R d H dh 1 rr dr dr = H = dla R dh dt dh =dla R= dr H R, =max 1 R, Rozwiązując to równanie numerycznie otrzymujemy wartości funkcji mamy obliczoną także cenę opcji. H R,t - w rzeczywistości *OPCJA AZJAYCKA FIXED SRIKE CALL Wypłata z opcji azjatyckiej fixed strike call wynosi: K 1 X =max S K, = min K S, =S min S S u du, Jak poprzednio, definiujemy nową zmienną K 1 S u du. Y t = S t t Wypłatę można zapisać jako X =S min Y, =S function Y,. Jest to motywacja do szukania rozwiązania V =V t, S t, A t w postaci S t H Y t,t dla pewnej funkcji H. Można pokazać (szczegóły w artykule B.Alziary et al. / Journal of Banking & Finance 1 (1997) ), że H jest rozwiązaniem równania różniczkowego:

4 dh dt 1 Y d H dy 1 dh ry dy = H Y, = min Y,.. NUMERYCZNE ROZWIĄZANIE Do rozwiązania równań użyłam schematów: schemat Laxa Wendroffa schemat VD Przy wyborze schematów numerycznych do rozwiązywania powyższych równań, należy zwrócić szczególną uwagę na sposób przybliżenia pierwszej pochodnej zmiennej przestrzennej. Jako modelowe równanie przyjmijmy du du a x dt dx =b x d u dx Stosując standardowy schemat drugiego rzędu FCS (Forward ime Centered Scheme), tzn. przybliżając pierwszą pochodną za pomocą różnic centralnych możemy narazić się na problemy ze stabilnością i oscylacje numerycznego rozwiązania, w szczególności przy niewielkiej wartości współczynnika b x. Przy zerowym współczynniku dyfuzji w ogóle nie należy stosować powyższego schematu. Przyczyną są warunki gwarantujące stabilność nakładające ograniczenia na wielkość kroku czasowego i przestrzennego:.5, a x b, gdzie = b t x. Przy wyborze = 1, ograniczenie na krok siatki przestrzennej przybiera formę x b a. Uwaga: Ze względu na istotność problemu przybliżania pierwszej pochodnej zmiennej przestrzennej, przy analizie schematów rozważane będą równania postaci: (.1 ) du dt d dx f x =. Druga pochodna zmiennej przestrzennej przybliżana jest w programie w sposób standardowy. Oznaczenia: u j,v oznacza numeryczne rozwiązanie w punkcie j,v. Jest to aproksymacja rzeczywistego rozwiązania u x j,t v.

5 *SCHEMA LAXA WENDROFF'A Schemat Laxa-Wendroff'a oparty jest na wzorze aylora i postaci równania.1. u j,v 1 =u j,v t du j, v dt O t =u j,v t df u j, v O t dt Wykorzystuje także wartości obliczane w punktach nie będących węzłami siatki czasowoprzestrzennej, tzn. w punktach j± 1, v± 1. Formalnie, schemat można zapisać jako: u = 1 j 1, v 1 u j, v u j 1, v t x f u j 1,v f u j,v w = 1 u u t j 1, v j,v x f u f u j, v j 1, v j 1,v 1 u j,v 1 =u j,v t x f u f u j 1,v 1 j 1, v 1 *MEODY VD Idea metod VD: schemat numeryczny musi gwarantować, że całkowita wariacja rozwiązania nie będzie zwiększać się w miarę upływu czasu. Numeryczne rozwiązanie musi zatem spełniać poniższy warunek: V u n 1 V u n, gdziev u n = j u j 1,v u j,v Metoda zaimplementowana w projekcie oparta jest na odpowiednim połączeniu schematów pierwszego i drugiego rzędu. Wyjściowe równanie.1 przedstawiamy jako: du i dt f 1 f 1 i i x =, gdzie f i 1 L = f 1 i i 1 f i 1 H L f 1 i ( f i 1 zdefiniowane jest analogicznie, z odpowiednio przesuniętym indeksem powyżej składniki f i± 1 to tzw. numerical fluxes, które powstają poprzez odpowiednie i ). Występujące połączenie flux'ów niższego i wyższego rzędu. Dla ustalenia uwagi przyjmijmy, że równanie ma du du postać a =, gdzie a. dt dx Najczęściej przyjmuje się, że: f L i 1 =au i oraz f H 1=a u u i 1 i i. Po podstawieniu otrzymujemy:

6 f i =au 1 i a u i 1 i 1 u i. Funkcja (flux limiter) powinna przyjmować wartości bliskie, gdy numeryczne rozwiązanie wykazuje duże skoki gradientu (wtedy schemat jest pierwszego rzędu) i wartości bliskie 1 w przeciwnym przypadku (wtedy schemat jest drugiego rzędu). W przypadku a można zdefiniować zależność 1= r i, gdzie r i = u u i i 1. Współczynnik ten jest ujemny w i u i 1 u i pobliżu lokalnych ekstremów, stosunkowo niewielki dla gładkich danych i zwiększa się, gdy numeryczne rozwiązanie wykazuje znaczne i gwałtowne zmiany wartości. Można stosować różne limitery, w programie zostały zaimplementowane cztery rodzaje: MinMod : a,b =S a,b min a, b Van Leer : a,b =S a,b ab a b MC : a,b =S a,b min.5 a b, a, b Superbee: a,b =S a,b max min a, b,min b, a, gdzie S a, b = 1 sign a sign b, 1, r = r. Zalety metody: 1. zapobiega powstawaniu oscylacji numerycznego rozwiązania. łączy w sobie zalety schematów pierwszego i drugiego rzędu 3. prosta idea

7 3.WYNIKI *WYCENA OPCJI FIXED SRIKE CALL cena spot S: Monte Carlo PDE metoda VD PDE Lax_Wendorff 85,71,7,59 9 5,19 5,1 4, ,55 8,9 8,7 1 1,6 1,7 11, ,7 16,81 16,6 11 1,78 1,63, ,59 6,5 5, ,45 31,41 3,33 Parametry: K =9 r=.5 =. =1 cena opcji fixed strike call wycena MC wycena pde cena spot S: Monte Carlo PDE metoda VD PDE Lax_Wendorff 85 8,44 8,44 8, ,8 11,5 1, ,9 14,4 13, ,43 17,37 16, ,6 1,, ,93 4,84 4, , 8,98 8,5 1 33,9 33, 3,19 Parametry: K =9 r=.5 =.5 =1

8 cena opcji fixed strike call wycena MC pde *WYCENA OPCJI FIXED SRIKE PU Parametry: K =9 r=.5 =. =1 PDE PDE cena S Monte Carlo metoda VD Lax_Wendorff 7, 17,43 17,5 17,47 75, 1,85 13, 1,91 8, 8,75 8,91 8,8 85, 5,41 5,47 5,6 9, 3,1,91, fixed strike put wycena MC wycena pde

9 cena S Monte Carlo PDE metoda VD PDE Lax_Wendorff 7,1,5, ,79 16,9 16, ,76 13,8 13, ,14 11,1 1,7 9 8,91 8,84 8,45 Parametry: K =9 r=.5 =.5 =1 5 fixed strike put wycena MC wycena PDE 4.LIERAURA * "High-resolution FEM-VD schemes base on a fully multidimensional flux limiter", D.Kuzmin & S.urek, Institute of Applied Mathematics, University of Dortmund, rozdzial : One dimensional VD schemes. * "Comparison of sinite difference methoda for the numerical simulation of reacting flow", K. Alhumaizi, Computers & Chemical engineering 8 (4), * ools for computational finance, R.U. Seydel 5.DOKUMENACJA DANE W PLIKU wejściowym: Dane w pliku powinny mieć następującą kolejność: -> rodzaj opcji -> rodzaj schematu -> stopa % -> zmienność -> cena spot -> strike -> liczba punktów siatki przestrzennej -> liczba punktów siatki czasowej -> _min =

10 -> termin zapadalności -> R_min = -> maksymalna wartość siatki przestrzennej. Jeśli, to zostaną ustawione wartości domyślne. -> wielkość epsilona (przy liczeni pochodnych) OZNACZENIA i DOSEPNE FUNKCJE: M - ilosc wezlow siatki przestrzennej N - ilosc wezlow siatki czasowej siatka_r - siatka przestrzenna siatka_r - siatka przerstrzenna pomocnicza siatka_t - siatka czasowa delta_r - odstep miedzy punktami siatki przestrzennej delta_t - odstep miedzy punktami siatki czasowej wsp_delta - wspolczynnik pomocniczy. wsp_delta = delta_t / delta_x wsp_delta - wspolczynnik pomocniczy. wsp_delta = delta_t / delta_x^ wsp_a - wspolczynnik rownania rozniczkowego wsp_a_halfstep - wspolczynnik rownania rozniczkowego wsp_b - wspolczynnik rownania rozniczkowego wsp_v - wspolczynnik rownania rozniczkowego gamma - wspolczynnik pomocniczy. gamma = wsp_a * wsp_delta lambda - wspolczynnik pomocniczy. lambda = wsp_b * wsp_delta beta - wspolczynnik pomocniczy. beta = delta_r * (wsp_a./wsp_b) Boundary_ - warunek koncowy lo_bc_ - warunek brzegowy hi_bc_r - warunek brzegowy Option - rodzaj opcji R_min - minimalna wartosc w siatce przestrzennej R_max - maksymalna wartosc w siatce przestrzennej _min - minimalna wartosc w siatce czasowej. _min = _max - maksymalna wartosc w siatce czasowej r - stopa procentowa sigma - zmiennosc S - cena spot K - strike scheme - rodzaj schematu function [y] = SynchSigns(a) #funkcja sprawdza czy liczby/wspolrzedne wektorow sa jednakowych znakow. Jesli jednakowych znakow i dodatnie zwraca 1, jesli jednakowych znakow i ujemne zwraca -1, w przeciwnym przypadku. #na wejsciu: macierz wymiaru M na. W kolumnach porownywane liczby/wektory #przykladowe wywolanie: > a = [,-1;,1]; > SynchSigns(a); function [y] = MinMod(a) #rodzaj LIMIERA #na wejsciu: macierz wymiaru M na. W kolumnach liczby/wektory #przykladowe wywolanie: > a = [,-1;,1]; > MinMod(a); function [y] = MC(a) #rodzaj LIMIERA #na wejsciu: macierz wymiaru M na. W kolumnach liczby/wektory #przykladowe wywolanie: > a = [,-1;,1]; > MC(a); function [y] = VanLeer(a) #rodzaj LIMIERA

11 #na wejsciu: macierz wymiaru M na. W kolumnach liczby/wektory #przykladowe wywolanie: > a = [,-1;,1]; > VanLeer(a); function [y] = superbee(a) #rodzaj LIMIERA #na wejsciu: macierz wymiaru M na. W kolumnach liczby/wektory #przykladowe wywolanie: > a = [,-1;,1]; superbee(a); function [R_max] = SetMaximalGridPoint(S, K, _max, Option) #wstawia odpowiednia siatke przestrzenna w zaleznosci od rodzaju opcji function [Boundary_, lo_bc_, hi_bc_r] = SetBoundaryConditions(M, N, r, K, _max, siatka_t, siatka_r, Option) #ustawia warunki poczatkowo-brzegowe w zaleznosci o rodzaju opcji function [wsp_a, wsp_a_halfstep, wsp_b, wsp_v, gamma, lambda, beta] = Coefficients(r, sigma, _max, siatka_r, siatka_r, wsp_delta, Option) #oblicza wspolczynniki rownania rozniczkowego *** function [V] = LaxWendroff(M, N, delta_t, wsp_a, wsp_a_halfstep, wsp_b, wsp_v, wsp_delta, lambda, Boundary_, hi_bc_r, lo_bc_, Option) #implementacja schematu Laxa-Wendroffa #opis schematu w dokumencie Ulikowska_opis_problemu_i_algorytmow.txt *** function [V] = Upwind(M, N, delta_t, wsp_a, wsp_v, wsp_delta, gamma, lambda, Boundary_, hi_bc_r, lo_bc_, Option) #implementacja schematu Upwind. Uproszczona wersja funkcji HighResolution [gdy theta jest rowne zero] #opis schematu w dokumencie Ulikowska_opis_problemu_i_algorytmow.txt *** function [V] = HighResolution(M, N, delta_t, wsp_a, wsp_v, wsp_delta, gamma, lambda, Boundary_, hi_bc_r, lo_bc_, scheme, Option) #implemetacja metod HighResolution #zmienna IsPositive: okresla znak wspolczynnika przy pochodnej przestrzennej #zmienna slope: okresla stosunek gradientow w trzech kolejnych punktach siatki przestrzennej. slope = [w(j,v) - w(j-1,t)]/[w(j+1,t) - w(j,t)] #zmienna slope_final_ones: zmienna pomocnicza #zmienna theta_r: w zaleznosci od stosunku gradientow zmienna przyjmuje wartosci: # -> bliskie w okolicach znacznego stosunku gradientow [gdy theta = schemat upwind] # -> bliskie 1 gdy numeryczne rozwiazanie jest dostatecznie gladkie [gdy theta = 1 schemat roznic centralnych] #theta zalezy takze od wyboru LIMIERA #zmienna FLUX: "numerical flux" #opis schematu w dokumencie Ulikowska_opis_problemu_i_algorytmow.txt *** function [floating_put] = FloatingPutPrice(floating_call, S, _max, r) #oblicza cene opcji floating strike PU jesli znana jest cena opcji call (floating_call) function [fixed_put] = FixedPutPrice(fixed_call, S, _max, r, K) #oblicza cene opcji fixed strike PU jesli znana jest cena opcji call

12 (fixed_call) *** function [price] = OptionPrice(S, K, V, R_min, R_max,, _max, r, K, Option) #oblicza wartosc opcji na podstawie macierzy V(j, t) #wartosci V(j, _max) znajduja sie w ostaniej kolumnie #jesli wartosc opcji ma byc obliczona dla t < _max, to nalezy uzyc parametru. Moment wyceny, _max i powiazane sa rownaniem: t = _max - delta_t* *** function [price] = StartCalculatingOptionPrice(Option, scheme, r, sigma, S, K, M, N, _min, _max, R_min, R_max, h) #nadzowruje dzialanie innych funkcji: funkcja "porzadkowa" ktora wywoluje kolejno podrzedne funkcje

Dokumentacja. Opcje europejskie PDE. Michał Grzelak

Dokumentacja. Opcje europejskie PDE. Michał Grzelak Dokumentacja Opcje europejskie PDE Michał Grzelak Spis treści 1 Ceny opcji z local volatility 2 1.1 Opcje plain vanilla z local volatility................. 2 1.2 Parametry greckie..........................

Bardziej szczegółowo

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski Dokumentacja Portal Mathfinance Wycena opcji paryskich metoda PDE Wiktor Madejski Spis treści 1 Wstęp 2 2 Opcje paryskie 2 2.1 Układ PDE dla opcji paryskich..................... 2 2.2 Schemat numeryczny..........................

Bardziej szczegółowo

Dokumentacja. Portal Mathfinance Wycena skomplikowanych opcji barierowych. Piotr Bochnia, Paweł Marcinkowski

Dokumentacja. Portal Mathfinance Wycena skomplikowanych opcji barierowych. Piotr Bochnia, Paweł Marcinkowski Dokumentacja Portal Mathfinance Wycena skomplikowanych opcji barierowych metoda PDE Piotr Bochnia, Paweł Marcinkowski Spis treści 1 Wstęp 2 2 Wyceniane instrumenty 2 2.1 Opcje z barierą monitorowaną dyskretnie...............

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Dokumentacja. Opcje europejskie PDE. Zbigniew Matczak

Dokumentacja. Opcje europejskie PDE. Zbigniew Matczak Dokumentacja Opcje europejskie PDE Zbigniew Matczak Spis treści 1 Model CEV 2 1.1 Cena opcji w modelu CEV...................... 2 1.2 Poprawność funkcji "option value" na podstawie funkcji delta oraz symulacji

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

Metody redukcji wariancji

Metody redukcji wariancji Metody redukcji wariancji Michał Kołodziejczyk 26 maja 2009 Spis treści 1 Przedstawienie problemu 1 2 Metody redukcji - opis teoretyczny 2 2.1 Metoda Antithetic Variates...............................

Bardziej szczegółowo

Model Blacka-Scholesa

Model Blacka-Scholesa WYCENA OPCJI EUROPEJSKIEJ I AMERYKAŃSKIEJ W MODELACH DWUMIANOWYCH I TRÓJMIANOWYCH COXA-ROSSA-RUBINSTEINA I JARROWA-RUDDA Joanna Karska W modelach dyskretnych wyceny opcji losowość wyrażana jest poprzez

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Stochastyczne równania różniczkowe, model Blacka-Scholesa

Stochastyczne równania różniczkowe, model Blacka-Scholesa Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3

Bardziej szczegółowo

Dokumentacja. Hestona i modeli pokrewnych. Mikołaj Bińkowski Wiktor Gromniak

Dokumentacja. Hestona i modeli pokrewnych. Mikołaj Bińkowski Wiktor Gromniak Dokumentacja Wycena opcji za pomoca uogólnionego modelu Hestona i modeli pokrewnych Mikołaj Bińkowski Wiktor Gromniak Spis treści 1 Wstęp teoretyczny 3 1.1 Rozpatrywane modele stochastycznej zmienności...........

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Transmitancje układów ciągłych

Transmitancje układów ciągłych Transmitancja operatorowa, podstawowe człony liniowe Transmitancja operatorowa (funkcja przejścia, G(s)) stosunek transformaty Laplace'a sygnału wyjściowego do transformaty Laplace'a sygnału wejściowego

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

Dokumentacja. Kalibracja parametrów modelu Hestona za rozszerzonego filtra Kalmana. Mikołaj Bińkowski Wiktor Gromniak

Dokumentacja. Kalibracja parametrów modelu Hestona za rozszerzonego filtra Kalmana. Mikołaj Bińkowski Wiktor Gromniak Dokumentacja Kalibracja parametrów modelu Hestona za pomoca rozszerzonego filtra Kalmana Mikołaj Bińkowski Wiktor Gromniak Spis treści 1 Wstęp 2 2 Struktura katalogów 2 3 Zależności 2 4 Funkcje 3 4.1 heston_calibr_kalman..........................

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku

Obliczanie całek. Instytut Fizyki Akademia Pomorska w Słupsku Obliczanie całek. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się ze sposobami i możliwościami przybliżonego obliczania całek w środowisku GNU octave. Wprowadzenie Kwadratury Zajmijmy się przybliżonym

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII Streszczenie W artykule przedstawiono

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami

Inżynieria Finansowa - Egzamin - 28 stycznia Rozwiązania zadań Wersja z dnia 1 marca 2005, z drobnymi poprawkami Inżynieria Finansowa - Egzamin - 28 stycznia 2005 Rozwiązania zadań Wersja z dnia marca 2005, z drobnymi poprawkami Uwaga: Dla uproszczenia we wszelkich obliczeniach przyjęliśmy, że długość n-miesięcznego

Bardziej szczegółowo

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t)

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Figure 1: Aproksymacja drzewem dwumianowym Wycena opcji Dynamika cen akcji:

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce

Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Inżynieria Finansowa: 9. Wartość opcji i model Blacka-Scholesa w praktyce Piotr Bańbuła atedra Ekonomii Ilościowej, AE Czerwiec 2017 r. Warszawa, Szkoła Główna Handlowa Wypłata Wypłata Opcja binarna 0

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Dokumentacja. równań różniczkowych czastkowych

Dokumentacja. równań różniczkowych czastkowych Dokumentacja Wycena opcji za pomoca równań różniczkowych czastkowych Maria Pawłowska Mikołaj Stelmach Piotr Sulewski Spis treści 1 Opcje europejskie 2 1.1 Opis problemu..............................................

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne ODE: ordinary differential equations Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2016 RÓWNANIA RÓŻNICZKOWE JEDNEJ ZMIENNEJ Motywacja Rozwiązania równań z 1, 2 lub

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Dokumentacja. Wycena opcji europejskich. w modelu Hestona

Dokumentacja. Wycena opcji europejskich. w modelu Hestona Dokumentacja Wycena opcji europejskich w modelu Hestona Konrad Stawski Spis treści 1 Opis problemu 2 2 Opis dyskretyzacji problemu 3 3 Zmienne wykorzystywane w programie 6 4 Spis wykorzystywanych funkcji

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która 3. Interpolacja Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która przyjmuje wartości y 1, y 2,, y n, dla skończonego zbioru argumentów x 1, x

Bardziej szczegółowo

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa

Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa Bogusław Wróblewski Obliczanie cen i parametrów greckich opcji walutowych w modelu Blacka-Scholesa Raport i dokumentacja 06.06.0 Spis treści. Opis problemu.......................................................

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Regulacja dwupołożeniowa.

Regulacja dwupołożeniowa. Politechnika Krakowska Wydział Inżynierii Elektrycznej i Komputerowej Zakład eorii Sterowania Regulacja dwupołożeniowa. Kraków Zakład eorii Sterowania (E ) Regulacja dwupołożeniowa opis ćwiczenia.. Opis

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)

Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Modelowanie ryzyka kredytowego Zadania 1.

Modelowanie ryzyka kredytowego Zadania 1. 1 Ex-dividend prices Modelowanie ryzyka kredytowego Zadania 1. Mariusz Niewęgłowski 19 października 2014 Definicja 1. Dla każdego t [0, T ] cena ex-dividend wypłaty (X, A, X, Z, τ) ( ) S t := B t E Q Bu

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Marta Zelmańska Toruń 009 1 Rozdział 1 Wstęp Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie: F (t, x, x, x,..., x (n) ) = 0 (1.1) Rozwiązaniem równania

Bardziej szczegółowo

Rozdziaª 9: Wycena opcji

Rozdziaª 9: Wycena opcji Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Równania różniczkowe zwyczajne

Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne Zajmiemy się teraz problemem numerycznego rozwiązywania równań różniczkowych zwyczajnych o postaci: z warunkeim początkowym. Zauważmy że przykładowe równanie różniczkowe

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przedmowa 11 1. Wprowadzenie 15 1.1. Początki rynków finansowych 15 1.2. Konferencja w Bretton Woods 17 1.3. Początki matematyki finansowej 19 1.4. Inżynieria finansowa 23 1.5. Nobel'97 z ekonomii 26 1.6.

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo