Aerotriangulacja z obserwacjami GPS i INS

Wielkość: px
Rozpocząć pokaz od strony:

Download "Aerotriangulacja z obserwacjami GPS i INS"

Transkrypt

1 Arotriagulaja z osrwajami GPS i INS Podzas lotu są wykoywa pomiary: współrzędyh środków rzutów ata GPS a kadłui samolotu (+staja rfryja dgps) ahylń kątowyh urządzi IMU zamotowa a kamrz KP FC - aro 42 Arotriagulaja z osrwajami GPS i INS IMU składa się z 3 lasrowyh Ŝyroskopów i 3 przyspisziomirzy. śyroskopy są wzajmi ortogoal wyzazają trzy kiruki. Przyspisziomirz okrślają zmiay prędkośi w tyh kirukah a podstawi zgo wyzaza są przmiszzia kątow. IMU urządzi pomiarow INS (Irtial Navigatio Systm) = IMU+ softwar KP FC - aro 43 1

2 Arotriagulaja z osrwajami GPS i INS Ekstry pomiędzy kamrą, GPS, INS MK-Top C30 KP FC - aro 44 Arotriagulaja z osrwajami GPS i INS X X + X = X + µ X = X + µ = P P - mairz trasformaji z układu kamry do układu trowgo X - wktor współrzędyh w układzi trowym (prostokątym układzi wsp. płaskih oraz H : E,N,H) z y P H / Z N / Y P X X + XP = X + µ X P = X + µ = E / X - mairz trasformaji z układu kamry () do układu pokładowgo samolotu (-ody) - mairz trasformaji z układu pokładowgo () do układu awigayjgo () - mairz trasformaji z układu awigayjgo () do układu gotryzgo () X wktor współrzędyh w układzi gotryzym X,Y,Z (ECEF) KP FC - aro 45 2

3 Arotriagulaja z osrwajami GPS i INS Układy: pokładowy () i kamry () 1 = 1 α z α y α 1 z α α y α 1 gdy oś tłowa jst prawi rówolgła do osi układu pokładowgo KP FC - aro 46 Arotriagulaja z osrwajami GPS i INS Pokładow pomiary kątów oritująyh są odoszo do układu awigayjgo Irtial rotatios AINC 705 = ( H, P, ) Yaw / Hadig Pith oll Y X X, Y, Z układ awigayjy { H, P, } { κ, ϕ, ϖ ) KP FC - aro 47 3

4 Arotriagulaja z osrwajami GPS i INS X X + X P = X + µ X P = X + µ = = ( φ, λ) X Y Z - układ awigayjy (topotryzy) X Y Z - układ światowy (gotryzy, ECEF) KP FC - aro 48 Arotriagulaja z osrwajami GPS i INS X X + X = X + µ X = X + µ = P P X wktor współrzędyh w układzi trowym (prostokątym układzi wsp. płaskih oraz H ) Jst to układ zdformoway (odwzorowai wprowadza zikształia) TAK JEST X = X + X P = X + µ X P = X + µ X wktor współrzędyh w układzi gotryzym (ECEF) zzy wista przstrzń 3D, i ma potrzy usu waia wpływu krzy wizy Zimi TAK BĘDZIE p T X = X + X = X + µ X = X + µ T P P p X wktor współrzędyh w układzi trowym (prostokątym układzi wsp. płaskih plus H ) = T (,, dfiij _ wsp. p._ wsp. H ) T p φ λ trasformaja z układu gotryzgo do układu wsp. prostokątyh płaskih i wsp. wysokośiowyh { H, P, } { κ, ϕ, ϖ ) KP FC - aro 49 Przjśiowo TAK JEST 4

5 Arotriagulaja z osrwajami GPS i INS { H, P, } { κ, ϕ, ϖ ) KP FC - aro 50 Arotriagulaja z osrwajami GPS i INS Korkja łędów systmatyzyh dgps i INS - modl łędów: zyik stały (przsuięi ) = p + p + ( zyik zalŝy od zasu (zos - drift) p ~ t t o ) X ~ o = Xo + dxo + ( t to) Xo drift Y ~ o = Yo + dyo + ( t to) Yo drift Z ~ o = Zo + dzo + ( t to) Zo drift ~ ϖ = ϖ + dϖ + ( t to) θ ~ ϕ = ϕ + dϕ + ( t to) ϕ ~ κ = κ + dκ + ( t to) κ drift drift drift oll Pith Had korkja t Dodatkow rówaia psudo-osrwayj w prosi arotriagulaji gdy dgps i INS po szść dla kaŝdgo profilu Profil szrg (długi szrgi dzilo a krótsz profil) KP FC - aro 51 5

6 Liza rówań osrwayjyh Arotriagulaja z osrwajami GPS i INS rówaia koliarośi: pukty wiąŝą: 2 ( ) = 2 60 = 120 fotopukty: 2 ( ) = 2 16 = 32 dodatkow rówaia fotopukty: 3 16 = 48 środki rzutów 8 3 = 24 kąty HP: 8 3 = 24 azm: = 248 Liza iwiadomyh: lmty oritaji zwętrzj: 6 8 = 48; współrzęd XYZ pkt. wiąŝąyh: 20 3 = 60 wyrówa wsp. fotopuktów: 16 3 = 48 korkja łędów systmatyzyh środków rzutów: = 12 korkja łędów systmatyzyh katów HP: = 12 azm = 180 Liza osrwaji adlizowyh: = 68 Dodatkow korzyśi: za dor wartośi przyliŝo wsp. XYZ środków rzutów za dor wartośi przyliŝo kątowyh l. oritaji zwętrzj moŝliw większ wyhyli kamry od piou loki zdjęć i muszą yć rgular mijsza liza itraji KP FC - aro 52 Arotriagulaja z osrwajami GPS i INS Zalta INS : pomiar izalŝy od GPS, okrśla pozyję i ahyli wysoka zęstotliwość Wada INS: Strata dokładośi z upływm zasu drift Zalta GPS: Wysoka dokładość zwzględa Wada GPS: iska zęstotliwość prolm iozazoośi Zitgrowai systmów GPS/INS pozwala rjstrować połoŝi z dokładośią lpszą iŝ 10 m oraz kąty oritaji dokładośią ok. 10", tj. 0,003 (zęstotliwość pomiaru rzędu Hz) KP FC - aro 53 6

7 sowa fotogramtryza sowa foto. składa się z wszystkih puktów iorąyh udział w arotriagulaji, dzili się a polową i kamralą. Polowa osowa fotogramtryza (fotopukty) to ziór puktów któr mają okrślo współrzęd z odpowidią dokładośią i są jdozazi idtyfikowa w tri i a zdjęiah. Kamrala osowa to ziór puktów któr są idtyfikowa a zdjęiah a ih współrzęd trow są wyzazo podzas arotriagulaji. sowę kamralą tworzą pukty wiąŝą strogramy i szrgi (lu pukty wyzaza dla iyh lów) Podziały fotopuktów 1. Sygalizowa sztuzi oraz tzw. atural (szzgóły trow) 2. wg lizy okrśloyh współrzędyh pł, F-pukty, za XYZ płaski, P-pukty, za XY wysokośiow, Z-pukty, za Z 3. Wg fukji w arotriagulaji podstawow, właśiw iorą udział w wyrówaiu kotrol przzazo do sprawdzia dokładośi wyrówaia arotriagulaji KP FC - aro 54 sowa fotogramtryza Zasady wyoru f-pktów aturalyh i puktów wiąŝąyh alŝy wyirać pukty wyzazo z przięia lmtów liiowyh (kształt przypomiająy L, T, X, V) lu dorz odfotografowa, pozwalają a jdozazą idtyfikaję pukty tral lmtów pokryia trowgo w kształi rgularj figury gomtryzj (koło, lipsa, wilokąt formy) o wymiarah kilka razy większyh od trowgo wymiaru piksla. Pukty powiy lŝć a poziomj lu tylko lkko ahyloj powirzhi tru (ajliŝsz sąsidztwo). Przykłady lmtów liiowyh któryh wzajm przięia są dorymi puktami: wąski rowy, krawędzi dróg, podjazdów do gospodarstw, krawędzi parkigów, przpustów, przyzółków mostów, lii a oiskah, parkigah, lądowiskah, zaki poziom malowa a drogah (wyjątkowo sam końówki liii) Środki gomtryz szzgółów o symtryzym kształi, jak: studi, włazy do kaałów, iwilki głazy, dro, iwysoki kop sztuz lu atural, klomy,. mał krzazki. W drugij koljośi: podstawy słupów rgtyzyh i tlkomuikayjyh, iski ogrodzia, iwilki krzaki. NalŜy uikać pkt. a lmtah wystająyh ad tr w tym aroŝików dahów KP FC - aro 55 7

Bezwładnościowe systemy nawigacyjne. Bezwładnościowe systemy nawigacyjne. część 4

Bezwładnościowe systemy nawigacyjne. Bezwładnościowe systemy nawigacyjne. część 4 zęść 4 Bzpośrdi pomiar gorfrji zdjęć ( EZ). Podzas lotu są wykoywa pomiary: współrzędyh środków rzutów ata GPS (GNSS) a kadłui samolotu (+staja rfryja dgps) ahylń kątowyh kamry urządzi IMU/INS zamotowa

Bardziej szczegółowo

Osnowa fotogrametryczna

Osnowa fotogrametryczna składa się z wszystkich punktów biorących udział w aerotriangulacji, dzieli się na polową i kameralną. Polowa osnowa fotogrametryczna (fotopunkty) to zbiór punktów które mają określone współrzędne z odpowiednią

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS blok Bochnia - 2014 Zdjęcia lotnicze okolic Bochni wykonane kamerą cyfrową DMCII-230 w dn.21.10.2012r Parametry zdjęć: Ck = 92.0071mm, skala

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę

Bardziej szczegółowo

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim ( AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/

Bardziej szczegółowo

Temat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych.

Temat lekcji: Utrwalenie wiadomości dotyczących rozwiązywania równań kwadratowych. -- S C E N A R I U S Z L E K C J I Przedmiot: Matematyka Klasa: (poziom podstawowy Imię i azwisko auzyiela: Aleksadra Trzepaz Temat lekji: Utrwaleie wiadomośi dotyząyh rozwiązywaia rówań kwadratowyh. Cele

Bardziej szczegółowo

13. Optyka Polaryzacja przez odbicie.

13. Optyka Polaryzacja przez odbicie. 13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1

Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1 Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności * Rozwiązanie zadania * Oznaczenia : A [cm²] - pole powierzchni figury Xo [cm] - współrzędna

Bardziej szczegółowo

Podstawy fotogrametrii i teledetekcji

Podstawy fotogrametrii i teledetekcji Podstawy fotogrametrii i teledetekcji Józef Woźniak Zakład Geodezji i Geoinformatyki Wrocław, 2013 Fotogrametria analityczna Metody pozyskiwania danych przestrzennych Plan prezentacji bezpośrednie pomiary

Bardziej szczegółowo

ÓŁ Ś Ó Ó Ó ć ć ć Ź Ó ŚĆ Ś ć ć ć ŚĆ Ź ć Ż Ó Ś Ó ć Ł Ż Ł Ż Ż ć ź ÓŁ Ż Ó Ź Ó Ó Ż ź Ś ć Ż Ś Ó Ź Ż ć ć ć Ż Ó Ó Ś Ó Ó Ź ć ź Ó Ź Ż Ó Ó Ż Ó Ś Ś Ż Ź Ś Ó Ź Ź Ó Ó Ł ÓŁ Ż Ż Ł Ó Ż Ż Ż ć ć ć Ż ź ź ć ź ć Ź Ó ć Ś Ś

Bardziej szczegółowo

O1. POMIARY KĄTA GRANICZNEGO

O1. POMIARY KĄTA GRANICZNEGO O1 POMIARY KĄTA GRANICZNEGO tekst opraowała: Bożea Jaowska-Dmoh Gdy wiązka światła pada a aię dwóh ośrodków przezrozystyh od stroy ośrodka optyzie gęstszego pod kątem aizym, to promień załamay ślizga się

Bardziej szczegółowo

T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD IX to technika pomiarowa oparta na obrazach fotograficznych. Taki obraz uzyskiwany jest dzięki wykorzystaniu kamery lub aparatu. Obraz powstaje na specjalnym

Bardziej szczegółowo

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza Temat 2 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza Rzut środkowy Rzut środkowy czworościanu ABCD na płaszczyznę rzutów Pi O środek rzutów Pi rzutnia,

Bardziej szczegółowo

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza

Temat 2. 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza Temat 2 1.Rzut środkowy 2.Wyznaczenie elementów orientacji wewnętrznej 3.Kamera naziemna 4.Kamera lotnicza Rzut środkowy Rzut środkowy czworościanu ABCD na płaszczyznę rzutów Pi O środek rzutów Pi rzutnia,

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD.

Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD. Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Opracowanie stereogramu zdjęć naziemnych na VSD. Instrukcja do ćwiczeń dla

Bardziej szczegółowo

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I WOJEWÓDZKI KONKRS FIZYCZNY DLA CZNIÓW GIMNAZJÓW W ROK SZKOLNYM 205/206 STOPIEŃ WOJEWÓDZKI KLCZ ODPOWIEDZI I SCHEMAT PNKTOWANIA waga: Poprawe rozwiązaie zadań, iym sposobem iż poday w kryteriah, powoduje

Bardziej szczegółowo

Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3

Wykład 3. Poziome sieci geodezyjne - od triangulacji do poligonizacji. Wykład 3 Poziome sieci geodezyjne - od triangulacji do poligonizacji. 1 Współrzędne prostokątne i biegunowe na płaszczyźnie Geodeci wiążą osie x,y z geograficznymi kierunkami; oś x kierują na północ (N), a oś y

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski 3 listopad 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 5 1/41 Plan wykładu Podstawy optyki geometrycznej Załamanie światła, soczewki Odbicie

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

gruparectan.pl 1. Szkic projektu Strona:1

gruparectan.pl 1. Szkic projektu Strona:1 Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

FOTOGRAMETRIA ANALITYCZNA I CYFROWA

FOTOGRAMETRIA ANALITYCZNA I CYFROWA Uniwersytet Wrocławski Podstawy Fotogrametrii FOTOGRAMETRIA ANALITYCZNA I CYFROWA METODY POZYSKIWANIA DANYCH DO BUDOWY NMT I ORTOFOTOMAPY CYFROWEJ Józef Woźniak gis@pwr.wroc.pl Zestaw pytań z fotogrametrii

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

FOTOGRAMETRIA ANALITYCZNA I CYFROWA

FOTOGRAMETRIA ANALITYCZNA I CYFROWA Miernictwo Podstawy Fotogrametrii FOTOGRAMETRIA ANALITYCZNA I CYFROWA METODY POZYSKIWANIA DANYCH DO BUDOWY NMT I ORTOFOTOMAPY CYFROWEJ Józef Woźniak gis@pwr.wroc.pl Podstawowe pojęcia definicja fotogrametrii

Bardziej szczegółowo

2.9. Kinematyka typowych struktur manipulatorów

2.9. Kinematyka typowych struktur manipulatorów Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.9. Kinematyka typowych struktur manipulatorów 2.9.1. Manipulator planarny 3DOF Notacja DH Rys. 28 Tablica 1 Parametry DH Nr ogniwa

Bardziej szczegółowo

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018

Geodezja fizyczna. Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz. 8 listopada 2018 Geodezja fizyczna Potencjał normalny. Potencjał zakłócajacy. Dr inż. Liliana Bujkiewicz 8 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna 8 listopada 2018 1 / 24 Literatura 1 Geodezja współczesna

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

rectan.co.uk 1. Szkic projektu Strona:1

rectan.co.uk 1. Szkic projektu Strona:1 Zadanie: Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności 1. Szkic projektu * Rozwiązanie zadania * Oznaczenia: A [cm²] - pole powierzchni figury

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

Wykład 5. Pomiary sytuacyjne. Wykład 5 1

Wykład 5. Pomiary sytuacyjne. Wykład 5 1 Wykład 5 Pomiary sytuacyjne Wykład 5 1 Proste pomiary polowe Tyczenie linii prostych Tyczenie kątów prostych Pomiar szczegółów topograficznych: - metoda ortogonalna, - metoda biegunowa, - związek liniowy.

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta 5 Oblizanie harakterystyk geometryznyh przekrojów poprzeznyh pręta Zadanie 5.. Wyznazyć główne entralne momenty bezwładnośi przekroju poprzeznego dwuteownika o wymiarah 9 6 m (rys. 5.. Rozpatrywany przekrój

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

Wydział Architektury Gospodarka Przestrzenna I Rok FOTOGRAMETRIA ANALITYCZNA I CYFROWA

Wydział Architektury Gospodarka Przestrzenna I Rok FOTOGRAMETRIA ANALITYCZNA I CYFROWA Wydział Architektury Gospodarka Przestrzenna I Rok FOTOGRAMETRIA ANALITYCZNA I CYFROWA METODY POZYSKIWANIA DANYCH DO BUDOWY NMT I ORTOFOTOMAPY CYFROWEJ Józef Woźniak gis@pwr.wroc.pl Podstawowe pojęcia

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

Projekt skrzydła. Dobór profilu

Projekt skrzydła. Dobór profilu Projekt skrzydła Dobór profilu Wybór profilu ze względu na jego charakterystyki aerodynamiczne (K max, C Zmax, charakterystyki przeciągnięcia) Wybór profilu ze względu na strukturę płata; 1 GEOMETRIA PROFILU

Bardziej szczegółowo

Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF. Mariusz Kacprzak, Konrad Wodziński

Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF. Mariusz Kacprzak, Konrad Wodziński Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF Mariusz Kacprzak, Konrad Wodziński Plan prezentacji: 1) Omówienie głównych celów projektu oraz jego głównych założeń 2) Opis platformy multisensorowej

Bardziej szczegółowo

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego

Je eli m, n! C i a, b! R[ m a. = -x. a a. m = d n pot ga ilorazu. m m m. l = a pot ga pot gi. a $ b = a $ b pierwiastek stopnia trzeciego 0 Podzi kàtów ze wzgl du mir Przyk dy kàtów 0 B B W soêi Kàt wkl s y m mir wi kszà od 80 i miejszà od 60. Kàty wyuk e to kàty, któryh mir jest wi ksz àdê rów 0 i miejsz àdê rów 80, lu rów 60. Ni ej rzedstwimy

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

SPRAWDZANIE SPRAWDZIANU DWUGRANICZNEGO TŁOCZKOWEGO DO OTWORÓW

SPRAWDZANIE SPRAWDZIANU DWUGRANICZNEGO TŁOCZKOWEGO DO OTWORÓW PROTOKÓŁ POMIAROWY Imię i nazwisko Kierunek: Rok akademicki:. Semestr: Grupa lab:.. Ocena.. Uwagi TEMAT: Ćwiczenie nr SPRAWDZANIE SPRAWDZIANU DWUGRANICZNEGO TŁOCZKOWEGO DO OTWORÓW CEL ĆWICZENIA........

Bardziej szczegółowo

źródła błędów ortorektyfikacji wpływ błędów NMT wpływ błędów EOZ wpływ postaci NMT standardy ortofoto

źródła błędów ortorektyfikacji wpływ błędów NMT wpływ błędów EOZ wpływ postaci NMT standardy ortofoto Dokładność geoetryczna ortofotoapy źródła błędów ortorektyfikacji wpływ błędów NMT wpływ błędów EOZ wpływ postaci NMT standardy ortofoto Opracował dr Andrzej Wróbel 1 Źródła błędów Błędy geoetryczne ortofotoapy

Bardziej szczegółowo

Filtry aktywne filtr górnoprzepustowy

Filtry aktywne filtr górnoprzepustowy . el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa

Bardziej szczegółowo

Pomieszczenia biurowe - Baza

Pomieszczenia biurowe - Baza Klient Osoba kontaktowa Osoba kontaktowa ata: 08-09-4 ata: r. akrusza: KL KL KL KL4 KL5 KL6 KL7 Q7 O7 O8 O9 O0 W ZS WYM KL KL KL Q4 G G G G G Q Q5 O O O G4 G5 G6 Q G9 G0 G G G G4 G5 G6 G7 G G G G4 G5 Q

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4) Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Materiał ilustracyjny do przedmiotu LKTROTCHNKA Prowadzący: (Cz. 4) Dr inż. Piotr Zieliński (-9, A0 p.408, tel. 30-3 9) Wrocław 003/4

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Dynamika ruchu po okręgu siła dośrodkowa Prawa ruchu w układzie nieinercjalnym siły bezwładności Prawa ruchu w układzie obracajacym się siła odśrodkowa siła

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Eksperyment 1.2 1.2 Bilans energii oraz wydajność turbiny wiatrowej Zadanie Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją.. Układ połączeń

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Analiza parametrów rozszczepienia zero-polowego oraz pola krystalicznego dla jonów Mn 2+ i Cr 3+ domieszkowanych w krysztale YAl 3 (BO 3 ) 4

Analiza parametrów rozszczepienia zero-polowego oraz pola krystalicznego dla jonów Mn 2+ i Cr 3+ domieszkowanych w krysztale YAl 3 (BO 3 ) 4 Analiza parametrów rozszczepienia zero-polowego oraz pola rystalicznego dla jonów Mn 2+ i Cr 3+ domieszowanych w rysztale YAl 3 (BO 3 ) 4 Paweł Gnute & Muhammed Açıgöz Czesław Rudowicz Strutura ryształu

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3) Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Z A KŁ A D M A S Z YN L K TR C Materiał ilustracyjny do przedmiotu LKTROTCHNKA Y Z N Y C H Prowadzący: * * M N (Cz. 3) Dr inż. Piotr

Bardziej szczegółowo

Krzywe stożkowe. Algebra. Aleksander Denisiuk

Krzywe stożkowe. Algebra. Aleksander Denisiuk Algebra Krzywe stożkowe Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Krzywe stożkowe

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

Karta przedmiotu. Politechnika Krakowska im. Tadeusza Kościuszki. 1 Przedmiot. 2 Rodzaj zajęć, liczba godzin w planie studiów

Karta przedmiotu. Politechnika Krakowska im. Tadeusza Kościuszki. 1 Przedmiot. 2 Rodzaj zajęć, liczba godzin w planie studiów Polithnika Krakowska im. Tausza Kośiuszki Karta przmiotu Wyział Fizyki, Matmatyki i Informatyki oowiązuj w roku akamikim 01/013 Kirunk stuiów: Matmatyka Forma stuiów: Stajonarn Profil: Ogólnoakamiki Ko

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Proste pomiary na pojedynczym zdjęciu lotniczym

Proste pomiary na pojedynczym zdjęciu lotniczym Uniwersytet Rolniczy w Krakowie Wydział Inżynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat: Proste pomiary na pojedynczym zdjęciu lotniczym Kartometryczność zdjęcia Zdjęcie lotnicze

Bardziej szczegółowo

Cyfrowy Powiat Krotoszyński- cyfryzacja i modernizacja baz danych

Cyfrowy Powiat Krotoszyński- cyfryzacja i modernizacja baz danych OPIS PRZEDMIOTU ZAMÓWIENIA WYKONANIE ZDJĘĆ LOTNICZYCH ORAZ ORTOFOTOMAPY DLA CAŁEGO POWIATU KROTOSZYŃSKIEGO STAROSTWO POWIATOWE W KROTOSZYNIE ul. 56 Pułku Piechoty Wlkp. 10 63-700 Krotoszyn 1 OBOWIĄZUJĄCE

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska MATEMATYKA zadaia domow dla studtów Ekoomii rok /7 Zstaw opraowała dr iż Alia Jóźwikowska PRACA DOMOWA 5/EK CIĄGI LICZBOWE Zad Zbadać mootoizość iągu o wyrazi ogólym! a a b a a! zad Wykazać ograizoość

Bardziej szczegółowo

Model kwarkowo-partonowy oddziaływań cząstek Diagramy kwarkowe (quark line diagrams) Kąt Cabibbo, mechanizm GIM, macierz Kobayashi-Maskawy (CKM)

Model kwarkowo-partonowy oddziaływań cząstek Diagramy kwarkowe (quark line diagrams) Kąt Cabibbo, mechanizm GIM, macierz Kobayashi-Maskawy (CKM) Rozział 3 Moel kwarkowo-partonowy oziaływań zątek Diagramy kwarkowe (qark line iagram) Kąt Cabibbo, mehanizm GIM, maierz Kobayahi-Makawy (CKM) QED QCD elektron łanek elektryzny foton pozytonim N f tripletów

Bardziej szczegółowo

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1.

Analiza danych. 7 th International Olympiad on Astronomy & Astrophysics 27 July 5 August 2013, Volos Greece. Zadanie 1. Analiza danych Zadanie 1. Zdjęcie 1 przedstawiające część gwiazdozbioru Wielkiej Niedźwiedzicy, zostało zarejestrowane kamerą CCD o rozmiarze chipu 17mm 22mm. Wyznacz ogniskową f systemu optycznego oraz

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 22 października 2013 1 Przestrzeń styczna i kostyczna c.d. Pora na podsumowanie: Zdefiniowaliśmy przestrzeń styczną do przestrzeni afinicznej

Bardziej szczegółowo

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008 Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

Ó Ś Ą ŚĆ Ą Ś Ś ż Ó Ą Ś Ó Ż Ó Ó ć ć ć Ó Ó Ń Ś Ó ć Ś Ó Ń Ą Ś ć Ó Ó ć Ź ć ć Ź ż Ź ć ż ć ż ż ż ż ć ć ć Ó Ó Ó ć ż ż ż Ó Ó Ó Ń ż ć ć ż ż Ż ć Ó Ó ć ć ć ć ć ż ż Ó Ó ć ć Ó Ą Ź Ź Ó Ó Ó Ń ć ż ć ż Ó ż ć Ź ć ć Ż ż

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Konstrukcje typowe. Rusztowania ramowe typ PIONART model BAL

Konstrukcje typowe. Rusztowania ramowe typ PIONART model BAL Konstrukje typowe Rusztowania ramowe typ Konstrukje typowe Rusztowania ramowe typ Opraowanie to stanowi wyiąg z DTR PIONART jest złonkiem Polskiej Izy Gospodarzej Rusztowań Copyright y PIONART, Zarze

Bardziej szczegółowo

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x.

x 2 5x + 6, (i) lim 9 + 2x 5 lim x + 3 ( ) 9 Zadanie 1.4. Czy funkcjom, (c) h(x) =, (b) g(x) = x x, (c) h(x) = x + x. Zadaie.. Obliczyć graice x 2 + 2x 3 (a) x x x2 + x2 + 25 5 (d) x 0. Graica i ciągłość fukcji x 2 5x + 6 (b) x x 2 x 6 4x (e) x 0si 2x (g) x 0 cos x x 2 (h) x 8 Zadaie.2. Obliczyć graice (a) (d) (g) x (x3

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo