Bezwładnościowe systemy nawigacyjne. Bezwładnościowe systemy nawigacyjne. część 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bezwładnościowe systemy nawigacyjne. Bezwładnościowe systemy nawigacyjne. część 4"

Transkrypt

1 zęść 4 Bzpośrdi pomiar gorfrji zdjęć ( EZ). Podzas lotu są wykoywa pomiary: współrzędyh środków rzutów ata GPS (GNSS) a kadłui samolotu (+staja rfryja dgps) ahylń kątowyh kamry urządzi IMU/INS zamotowa a kamrz Bzwładośiow systmy awigayj Bzwładośiow systmy awigayj, azywa tż irjalymi (IS - Irtial fr Systm lu INS - Irtial Navigatio Systm) są podstawowym środkim awigaji dalkigo zasięgu samolotów komuikayjyh. Zlizają zmiay położia statku powitrzgo (SP) w przstrzi od puktu pozątkowgo a zasadzi pomiaru paramtrów lotu: zasu, zmia kiruku lotu w wszystkih osiah, przyspiszń i dayh arodyamizyh. Jdostka iryja składa się z żyroskopów i aklromtrów, ajzęśij z 3 żyroskopów i 3 aklromtrów. Żyroskopy (mhaiz lu optyz) służą do wyzazia oritaji kątowj (poprzz pomiar prędkośi kątowyh). Aklromtry (przyspisziomirz) służą do wyzazia pozyji (poprzz pomiar liiowyh zmia prędkośi). KPyka CFL I/4 aro GPS-INS 1 KPyka CFL I/4 aro GPS-INS 2 Bzwładośiow systmy awigayj Pomiary (prędkośi kątow, przyspiszia) służą do wyzazia pozyji i kątów oritaji, o wymaga złożoyh olizń. W lu rdukji łędów pomiarowyh algorytm przlizająy wykouj filtraję tzw. filtrm Kalmaa. IMU (Irtial Masurmt Uit) iryj urządzi pomiarow INS (Irtial Navigatio Systm) = IMU + hardwar + softwar KPyka CFL I/4 aro GPS-INS 4

2 Typow IMU składa się z 3 lasrowyh żyroskopów i 3 przyspisziomirzy (odpowidio dla 3 osi) Żyroskopy są wzajmi ortogoal wyzazają trzy kiruki. Przyspisziomirz okrślają zmiay prędkośi w tyh kirukah a podstawi zgo wyzaza są przmiszzia kątow. KPyka CFL I/4 aro GPS-INS 6 Dokładość INS spada z upływm zasu pomiaru. Spadk dokładośi jst liiowy. Systm auray Tim itrval high mdium low Podsystm iryjy IMU II Trzy żyroskopy światłowodow FG (Fir pti Gyros) Trzy przyśpisziomirz Dokładość oll/pith o Dokładość Hadig o 11'' 1 s m m m Positio Tilt 1 mi m m m 1 h m 1 3 km km 1 s < mi łąd 0,003 o 1000 m 5 m 500 m 2,5 m 100 m 0,5 m łąd 0,1 o 1000 m 174 m 500 m 87 m 100 m 17 m 500 m 1 h o - 3 o Dryft 0.03 o /h zyli po 1 h dokładość spada 10 razy [ Kraus, Photogrammtry, 2007 ] KPyka CFL I/4 aro GPS-INS 7 2,5 m KPyka CFL I/4 aro GPS-INS 8

3 Zalty INS : pomiar autoomizy (i jst potrz wspomagai) okrśla pozyję i ahyli wysoka zęstotliwość ( Hz) Wady INS: Strata dokładośi z upływm zasu dryft Szum losowy pomiarów Zalty GPS (GNSS): Wysoka dokładość zwzględa Wady GPS (GNSS): iska zęstotliwość, rzędu 1-2 Hz (są odioriki o zęstotliwośi Hz) prolm iozazoośi koiza dostępość sygału satlitargo Zitgrowai systmów GPS/INS pozwala wyzazać (urządzia wysokij jakośi): # położi z dokładośią 5-10 m # kąty oritaji dokładośią ok. 10", tj. 0,003 (Yaw/κ 2 razy gorzj) KPyka CFL I/4 aro GPS-INS 9 KPyka CFL I/4 aro GPS-INS 10 Pokładow pomiary kątów oritująyh są odoszo do układu awigayjgo Irtial rotatios AINC 705 (Aroautial adio, I Colltio) Yaw / Hadig Pith oll Y, Y, Z układ awigayjy KPyka CFL I/4 aro GPS-INS 11 KPyka CFL I/4 aro GPS-INS 12

4 Układ awigayjy porusza się względm Zimi wraz z SP Układ awigayjy porusza się względm Zimi wraz z SP [ Baumkr, Hims: Nw Caliratio ad Computig Mthod for Dirt, EEPE, Symp. ] KPyka CFL I/4 aro GPS-INS 13 KPyka CFL I/4 aro GPS-INS 14 + = + µ = + µ = P P - mairz trasformaji z układu kamry do układu trowgo - wktor współrzędyh w układzi projkyjym E,N (państwowym) plus układ wysokośiowy H : E,N,H Klasyza fotogramtria Fotogramtria z GNSS/INS Układy: pokładowy () i kamry () 1 = 1 α z α y α 1 z α α y α 1 Mairz małyh orotów gdy oś tłowa jst prawi rówolgła do osi układu pokładowgo (zyli do układu IMU) + P + µ P + µ - mairz trasformaji z układu kamry () do układu pokładowgo samolotu (-ody) - mairz trasformaji z układu pokładowgo () do układu awigayjgo () - mairz trasformaji z układu awigayjgo () do układu gotryzgo () wktor współrzędyh w układzi gotryzym,y,z (ECEF) Układ pokładowy jst układm zaistalowaj jdostki IMU KPyka CFL I/4 aro GPS-INS 15 KPyka CFL I/4 aro GPS-INS 16

5 + P + µ P + µ + P + µ P + µ Y Z - układ awigayjy =( φ, λ) Y =( φ, λ) Z Y Trasformaja z układu awigayjgo a gotryzy Z L B L B Y Z układ gotryzy KPyka CFL I/4 aro GPS-INS 17 KPyka CFL I/4 aro GPS-INS 18 + = + µ = + µ = P P wktor współrzędyh w układzi wsp. prostokątyh płaskih oraz H Jst to układ zdformoway (odwzorowai wprowadza zikształia) + = + µ = + µ = P P wktor współrzędyh w układzi wsp. prostokątyh płaskih oraz H Jst to układ zdformoway (odwzorowai wprowadza zikształia) TAK JEST z GNSS/INS + P + µ P + µ wktor współrzędyh w układzi gotryzym (ECEF) zzywista przstrzń 3D, i ma potrzy usuwaia wpływu krzywizy Zimi = + = + µ = +µ T P P p + P + µ P + µ wktor współrzędyh w układzi gotryzym (ECEF) zzywista przstrzń 3D, i ma potrzy usuwaia wpływu krzywizy Zimi = + = + µ = +µ T P P p TAK BYĆ PWINN Z GNSS/INS wktor współrzędyh w układzi wsp. prostokątyh płaskih oraz H KPyka CFL I/4 aro GPS-INS 19 wktor współrzędyh w układzi wsp. prostokątyh płaskih oraz H T p p T = T( φ, λ, dfiij_ wsp. p._ wsp. H) trasformaja z układu gotryzgo do układu wsp. prostokątyh płaskih+ H { H, P, } { κ, ϕ, ϖ) KPyka CFL I/4 aro GPS-INS 20 Al TAK JEST

6 Kąty mirzo przz INS są podo al i są idtyz jak kątow EZ. { H, P, } { κ, ϕ, ϖ) Układ awigayjy jst zmiy, oś N zmiia kiruk, zawsz jst skirowaa do igua. Kąt H i k różią się o kąt kowrgji (ziżość połudików) N 90 o E Kąty P i φ oraz i ω są podo al i idtyz. Kąty P i pokazują ahylia zdjęia do lokalgo poziomu (styza do lipsoidy, zyli ia dla każdgo zdjęia). Kąty φ i ω pokazują ahylia zdjęia do płaszzyzy projkyjj (stałj). 90 o Kiruk lotu prostopadły do osi N układu projkyjgo Korkja łędów systmatyzyh dgps i INS - modl łędów: zyik stały (przsuięi shift) zyik zalży od zasu (zos - drift) p p =p+ dp shift + dp drift (tt o ) Dodatkow rówaia psudo-osrwayj w prosi arotriagulaji Dwi iwiadom w każdym rówaiu (oso dla koljyh EZ) a ały profil Profil szrg (długi szrgi dzilo a krótsz profil) v = dp shift + dp drift (t t 0 ) + ( p 0 - p) góla postać rówaia osrwayjgo dla każdgo z pomirzoyh EZ. W każdym rówaiu 2 iwiadom t KPyka CFL I/4 aro GPS-INS 21 KPyka CFL I/4 aro GPS-INS 22 Liza rówań osrwayjyh # rówaia koliarośi: - pukty wiążą: 2 ( ) = 2 60 = fotopukty: 2 ( ) = 2 16 = 32 # dodatkow rówaia - środki rzutów 8 3 = 24 - kąty HP: 8 3 = 24 azm: = 200 Liza iwiadomyh: # lmty oritaji zwętrzj: 6 8 = 48; # współrzęd YZ pkt. wiążąyh: 20 3 = 60 # korkja łędów systmatyzyh środków rzutów: = 12 # korkja łędów systmatyzyh kątów HP: = 12 azm = szrgi po 4 zdjęia 20 puktów wiążąyh 6 fotopuktów Pomiary GNSS/INS i są wystarzająo dokład i dlatgo są traktowa jako osrwaj podlgają wyrówaiu. Korzyśi z wprowadzia osrwaji GNSS i INS do arotriagulaji: # ardzo dor wartośi przyliżo wsp. YZ środków rzutów # ardzo dor wartośi przyliżo kątowyh l. oritaji zwętrzj # możliw dowol wyhyli kamry od piou # loki zdjęć i muszą yć rgular # mijsza liza itraji # zmijszi lizy fotopuktów Liza osrwaji adlizowyh: = 68 z GPS i INS liza osrwaji adlizowyh = = 44 KPyka CFL I/4 aro GPS-INS 23 KPyka CFL I/4 aro GPS-INS 24

7 krawędź loku pas pokryia poprzzgo (3 5) B p (4 6) B p 4 B p 6 B p 12 B p Polowa osowa - przypadk klasyzy F- pukty i Z-pukty aro-1/s.32 Polowa osowa - przypadk współzsy, duż loki z GPS/INS osowa polowa - tylko F-pukty KPyka CFL I/4 aro GPS-INS 25 KPyka CFL I/4 aro GPS-INS 26 Polowa osowa liska przyszłość, loki z GPS/INS - rówozs wyrówai z osrwajami fotogramtryzymi, F -pukty w arożah loku oraz a pozątku i końu szrgu KPyka CFL I/4 aro GPS-INS 27 Polowa osowa dalsza przyszłość, loki z GPS/INS F -pukty TYLK w arożah loku Wzmaiai loku alotami poprzzymi KPyka CFL I/4 aro GPS-INS 28

Aerotriangulacja z obserwacjami GPS i INS

Aerotriangulacja z obserwacjami GPS i INS Arotriagulaja z osrwajami GPS i INS Podzas lotu są wykoywa pomiary: współrzędyh środków rzutów ata GPS a kadłui samolotu (+staja rfryja dgps) ahylń kątowyh urządzi IMU zamotowa a kamrz KP FC - aro 42 Arotriagulaja

Bardziej szczegółowo

X, K, +, - przestrzeń wektorowa

X, K, +, - przestrzeń wektorowa Zmiaa bazy przstrzi wktorowj Diicja 1. X, K, +, - przstrzń wktorowa ad ciałm K ( (,,..., ),,..., ) - owa baza - stara baza Macirzą przjścia P od do azywamy macirz odwzorowaia Idtyczościowgo P przstrzi

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

13. Optyka Polaryzacja przez odbicie.

13. Optyka Polaryzacja przez odbicie. 13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Wykład 10 Promieniowanie termiczne

Wykład 10 Promieniowanie termiczne Wykład Promiiowai trmiz Promiiowai lktromagtyz wysyła przz ogrza (do pwj tmpratury iała azywamy promiiowaim trmizym. Wszystki iała mitują taki promiiowai do otozia, a takż z tgo otozia j absorbują. Jżli

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja

Elementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala

Bardziej szczegółowo

O1. POMIARY KĄTA GRANICZNEGO

O1. POMIARY KĄTA GRANICZNEGO O1 POMIARY KĄTA GRANICZNEGO tekst opraowała: Bożea Jaowska-Dmoh Gdy wiązka światła pada a aię dwóh ośrodków przezrozystyh od stroy ośrodka optyzie gęstszego pod kątem aizym, to promień załamay ślizga się

Bardziej szczegółowo

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń

Bardziej szczegółowo

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska

MATEMATYKA zadania domowe dla studentów Ekonomii, rok 2016/17 Zestaw opracowała dr inż. Alina Jóźwikowska MATEMATYKA zadaia domow dla studtów Ekoomii rok /7 Zstaw opraowała dr iż Alia Jóźwikowska PRACA DOMOWA 5/EK CIĄGI LICZBOWE Zad Zbadać mootoizość iągu o wyrazi ogólym! a a b a a! zad Wykazać ograizoość

Bardziej szczegółowo

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008

Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008 Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala

Bardziej szczegółowo

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny

P π n π. Równanie ogólne płaszczyzny w E 3. Dane: n=[a,b,c] Wówczas: P 0 P=[x-x 0,y-y 0,z-z 0 ] Równanie (1) nazywamy równaniem ogólnym płaszczyzny Rówaie ogóle płaszczyzy w E 3. ae: P π i π o =[A,B,C] P (,y,z ) Wówczas: P P=[-,y-y,z-z ] P π PP PP= o o Rówaie () azywamy rówaiem ogólym płaszczyzy A(- )+B(y-y )+C(z-z )= ( ) A+By+Cz+= Przykład

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13

Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13 Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

2. Schemat ideowy układu pomiarowego

2. Schemat ideowy układu pomiarowego 1. Wiadomości ogóle o prostowikach sterowaych Układy prostowikowe sterowae są przekształtikami sterowaymi fazowo. UmoŜliwiają płya regulację średiej wartości apięcia wyprostowaego, a tym samym średiej

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie. Wykoujemy rzuty symetryczą kością do gry do chwili uzyskaia drugiej szóstki. Niech Y ozacza zmieą losową rówą liczbie rzutów w których uzyskaliśmy ie wyiki iż szóstka a zmieą losową rówą liczbie

Bardziej szczegółowo

Podstawy fotogrametrii i teledetekcji

Podstawy fotogrametrii i teledetekcji Podstawy fotogrametrii i teledetekcji Józef Woźniak Zakład Geodezji i Geoinformatyki Wrocław, 2013 Fotogrametria analityczna Metody pozyskiwania danych przestrzennych Plan prezentacji bezpośrednie pomiary

Bardziej szczegółowo

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych

Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

1 Płaska fala elektromagnetyczna

1 Płaska fala elektromagnetyczna 1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania)

MATERIAŁY POMOCNICZE DO WYKŁADU Z PODSTAW ZASTOSOWAŃ ULTRADŹWIĘKÓW W MEDYCYNIE (wyłącznie do celów dydaktycznych zakaz rozpowszechniania) MATERIAŁY PMCICZE WYKŁAU Z PSTAW ZASTSWAŃ ULTRAŹWIĘKÓW W MEYCYIE (wyłąznie do elów dydaktyznyh zakaz rozpowszehniania). iagnostyka ultradźwiękowa oparta na zjawisku opplera. ****************************************************************

Bardziej szczegółowo

Wymiana ciepła przez promieniowanie

Wymiana ciepła przez promieniowanie dr iż. Michał Strzszwski 003-006 yiaa cipła przz proiiowai Matriały do ćwiczń z wyiay cipła v..05. prowadzi Każd ciało wysyła pwą ilość rgii ciplj w postaci proiiowaia. Proiiowai cipl oż być traktowa jako

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

Rozkłady prawdopodobieństwa zmiennych losowych

Rozkłady prawdopodobieństwa zmiennych losowych Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.

Bardziej szczegółowo

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB

ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

Mikroskopia polaryzacyjna

Mikroskopia polaryzacyjna Mikroskopia polaracja Wktorow opis fali lktromagtcj r,t H r,t Dr,t B r,t -wktor atężia pola lktrcgo -wktor atężia pola magtcgo -wktor idukcji dilktrcj -wktor idukcji magtcj Wktor t, którch współręd alżą

Bardziej szczegółowo

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2

Płaskie układy obciąŝeń. Opis analityczny wielkości podstawowych. wersory. mechanika techniczna i wytrzymałość materiałów 1 statyka 2 Opis aalitcz wielkości podstawowch wersor e x, e Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B ) ) Opis aalitcz wielkości podstawowch współrzęde puktów A( x A, B( x B, A B )

Bardziej szczegółowo

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia

Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS. blok Bochnia Aerotriangulacja metodą niezależnych wiązek w programie AEROSYS blok Bochnia - 2014 Zdjęcia lotnicze okolic Bochni wykonane kamerą cyfrową DMCII-230 w dn.21.10.2012r Parametry zdjęć: Ck = 92.0071mm, skala

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

FILTRY ANALOGOWE Spis treści

FILTRY ANALOGOWE Spis treści FILTRY AALOGOWE Spis treśi. Modele iltrów aalogowyh. Idealy iltr doloprzepustowy 3. Rzezywiste iltry doloprzepustowe 4. Stabilość iltrów 5. Filtr Butterwortha 6. Filtr Czebyszewa 7. Filtry eliptyze 8.

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

T = Z t T t T t T t T t T : Z N (s i ) n i=1 n n S S = {(s i ) n i=1 N n : s j + j s k + k ( n), n N}. 1 j k n (s 1, s 2,..., s n ) s 1 s 2... s n m = s 1 s 2... s n m s i m i = 1,..., n S m S m = {(s

Bardziej szczegółowo

Karta przedmiotu. Politechnika Krakowska im. Tadeusza Kościuszki. 1 Przedmiot. 2 Rodzaj zajęć, liczba godzin w planie studiów

Karta przedmiotu. Politechnika Krakowska im. Tadeusza Kościuszki. 1 Przedmiot. 2 Rodzaj zajęć, liczba godzin w planie studiów Polithnika Krakowska im. Tausza Kośiuszki Karta przmiotu Wyział Fizyki, Matmatyki i Informatyki oowiązuj w roku akamikim 01/013 Kirunk stuiów: Matmatyka Forma stuiów: Stajonarn Profil: Ogólnoakamiki Ko

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Ą Ż ń ś Ś Ą Ę ś ń ś ń ź ź ś ś ń Ą ś Ę ń ś Ś Ń ź ś ś ń ś ń Ś ń ś ś ń Ą ź Ł ś ń ś Ń ź ń ś ć ś ń ź Ś ś ś ś ś ś ń ść Ś ś ń ń ś ń ść Ś ź ś ś ń Ą ś Ś ś ń ś Ę ś ć ś ś Ś ś ś ć ń ść ś ń ś ś ź Ą ń ń ź Ń ś ś ń Ś

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo

Etap 1. Rysunek: Układy odniesienia

Etap 1. Rysunek: Układy odniesienia Wprowadzenie. Jaś i Małgosia kręcą się na karuzeli symetrycznej dwuramiennej. Siedzą na karuzeli zwróceni do siebie twarzami, symetrycznie względem osi obrotu karuzeli. Jaś ma dropsa, którego chce dać

Bardziej szczegółowo

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone.

Obserw. przejść wymusz. przez pole EM tylko, gdy różnica populacji. Tymczasem w zakresie fal radiowych poziomy są ~ jednakowo obsadzone. Podsumowani W Obsrw. przjść wymusz. przz pol EM tylko, gdy różnica populacji. Tymczasm w zakrsi fal radiowych poziomy są ~ jdnakowo obsadzon. Nirównowagow rozkłady populacji pompowani optyczn (zasada zachowania

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru. Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię

Bardziej szczegółowo

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka]

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka] Rozził moy Wykrsy wytrzymłośi zwriowj wług EC Wykrsy wytrzymłośi zwriowj wług EN 439-1/EC 439-1 Bni typu zgoni z EN 439-1 W trki ni typu systmu przprowzn zostją nstępują ni systmów szyn ziorzyh Rittl jk

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 27.04.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Metoda największej wiarygodności ierównosć informacyjna

Bardziej szczegółowo

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.

Krzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią. Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA

OPIS PRZEDMIOTU ZAMÓWIENIA Załącznik nr 1 do SIWZ OPIS PRZEDMIOTU ZAMÓWIENIA Przedmiotem zamówienia jest usługa polegająca na wykonywaniu okresowej kontroli z powietrza lotniczych urządzeń naziemnych NAV i VAN funkcjonujących na

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 9 7.04.09 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 08/09 Metoda największej wiarygodności ierównosć informacyjna Metoda

Bardziej szczegółowo

Równania liniowe rzędu drugiego stałych współczynnikach

Równania liniowe rzędu drugiego stałych współczynnikach Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy

Weryfikacja modelu. ( ) Założenia Gaussa-Markowa. Związek pomiędzy zmienną objaśnianą a zmiennymi objaśniającymi ma charakter liniowy Wryfkacja modlu. Założa Gaussa-Markowa Zwązk pomędzy zmą objaśaą a zmym objaśającym ma charaktr lowy x, x,, K x k Wartośc zmych objaśających są ustalo ( są losow ε. Składk losow dla poszczgólych wartośc

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Wykład 30 Szczególne przekształcenie Lorentza

Wykład 30 Szczególne przekształcenie Lorentza Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

METODY KOREKCJI KĄTÓW OBROTU HEADING, PITCH, ROLL Z UŻYCIEM BEZZAŁOGOWEGO STATKU POWIETRZNEGO

METODY KOREKCJI KĄTÓW OBROTU HEADING, PITCH, ROLL Z UŻYCIEM BEZZAŁOGOWEGO STATKU POWIETRZNEGO MODELOWANIE INŻYNIERSKIE 2016 nr 58, ISSN 1896-771X MEODY KOREKCJI KĄÓW OBROU HEADING, PICH, ROLL Z UŻYCIEM BEZZAŁOGOWEGO SAKU POWIERZNEGO Damian Wierzbicki 1a, Kamil Krasuski 2b 1 Zakład Fotogrametrii

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Ć w i c z e n i e K 4

Ć w i c z e n i e K 4 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Metoda najmniejszych kwadratów Przykład wstępny. W ekonomicznej teorii produkcji rozważa się funkcję produkcji Cobba Douglasa: z = AL α K β gdzie z oznacza wielkość produkcji, L jest nakładem pracy, K

Bardziej szczegółowo

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.

Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów. Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH Szkic wykładu 1 Podstawowe rozkłady zmiennej losowej skokowej Rozkład dwupunktowy Rozkład dwumianowy Rozkład Poissona 2 Rozkład dwupunktowy Rozkład dwumianowy Rozkład

Bardziej szczegółowo

Elementy mechaniki relatywistycznej

Elementy mechaniki relatywistycznej Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka

Bardziej szczegółowo

Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF. Mariusz Kacprzak, Konrad Wodziński

Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF. Mariusz Kacprzak, Konrad Wodziński Przegląd zdjęć lotniczych lasów wykonanych w projekcie HESOFF Mariusz Kacprzak, Konrad Wodziński Plan prezentacji: 1) Omówienie głównych celów projektu oraz jego głównych założeń 2) Opis platformy multisensorowej

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Wyznaczenie pozycji anteny odbiornika może odbywać się w dwojaki sposób: na zasadzie pomiarów

Bardziej szczegółowo

4. Glücksburgowie ERREGO SW HAAKON VII 430 ASTIA OLAF V 433 HARALD V DYN EGII RW IE NO W LO KRÓ 429

4. Glücksburgowie ERREGO SW HAAKON VII 430 ASTIA OLAF V 433 HARALD V DYN EGII RW IE NO W LO KRÓ 429 K R Ó L O W I E N O R W E G I I W. Y D NŻ S T IŻ S W E R R E G O 4 2 8 4. Glücksburgowie K R Ó L O W I E N O R W E G I I W. Y D NŻ S T IŻ S W E R R E G O HŻŻ K O N V I I O LŻ F V HŻ RŻ L D V 4 2 9 430

Bardziej szczegółowo

Wprowadzenie nawigacja pilotowa jest to lokalna nawigacja wodna z uwzględnieniem znaków nawigacyjnych znajdujących się na danym akwenie i terenach

Wprowadzenie nawigacja pilotowa jest to lokalna nawigacja wodna z uwzględnieniem znaków nawigacyjnych znajdujących się na danym akwenie i terenach Wprowadzenie W zależności od stosowanych urządzeń, nawigację można podzielić na następujące działy: nawigacja astronomiczna, astronawigacja jest to nawigacja oparta na obserwacji ciał niebieskich, przy

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

Algorytmy estymacji stanu (filtry)

Algorytmy estymacji stanu (filtry) Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?

Bardziej szczegółowo

Przetworniki ciśnienia przylegający z przodu

Przetworniki ciśnienia przylegający z przodu FPT 85 Prztworniki ciśninia przylgający z przodu Szwajcarska firma Trafag jst wiodącym międzynarodowym dostawcą wysokij jakości czujników oraz mirników do pomiaru ciśninia oraz tmpratury. Przylgający z

Bardziej szczegółowo