Dywersyfikacja jako metoda zabezpieczania się przed ryzykiem
|
|
- Jan Kozak
- 5 lat temu
- Przeglądów:
Transkrypt
1 ywesyfkaca ako metoda zabezeczaa sę zed yzykem otfel dwuskładkowy Jedą z metod zabezeczaa sę zed yzykem est dywesyfkaca. W sytuac gdy decydet sto zed wyboem edego z klku dostęych yzykowych waatów, okazue sę, że może o zmeszyć swoe yzyko dzęk secale kostukc otfela, złożoego z odowedch udzałów dostęych waatów. Odoweda kostukca tego otfela może sowodować, że będze o odzaczał sę ższym yzykem ż każda z aalzowaych z osoba oc. toa zwotu z otfela Rozważamy otfel złożoy z akc o stoach zwotu w skal oku wyoszących. Zakładamy, że cey zakuu akc wyoszą odowedo O O. Zmay ce w aalzowaym okese są ówe ( - O) ( - O). W okese tym łacoe są óweż dywdedy. toy zwotu dla oszczególych akc wyoszą węc odowedo: Twozymy otfel, dla któego wag oszczególych akc wykaą z ch udzału w ogóle WRTOŚCI otfela cea zakuu: = O + O cea końcowa: = + = O( + ) - + ( + ) - dywdeda: = + toa zwotu otfela utwozoego z akc wyaża sę wec wzoem: Ozaczaąc zez udzały akc w otfelu mamy () oeważ stoa zwotu otfela est zmeą losową będącą kombacą lową zmeych losowych, wzó a e watość oczekwaą ma ostać: oeważ: oaz sełoa est eówość:, ma, m
2 Ryzyko otfela Ryzyko otfela okeśloe zostae a odstawe waac odchylea stadadowego. Wyzaczamy waacę dla otfela akc:, cov gdze - wsółczyk koelac lowe medzy stoam zwotu oeważ:, węc: oeważ: ma, to Z owyższego wyka, że yzyko otfela może być mesze od yzyka każde z westyc twozące otfel. Zawsko obżaa yzyka w wyku twozea otfela westyc azywa sę efektem otfelowym. () aa stoa zwotu yzyko dla ustaloych:,,,, óżych udzałach oszukwae otfela otymalego odbywać sę mus e tylko w oacu o kyteum mmalzac yzyka, ale óweż maksymalzac osągae zy m stoy zwotu z otfela. Należy oszukwać ewe ówowag omędzy odemowaym yzykem a możlwą do osągęca stoą zwotu. zy ustaloych:,,,, dysouemy układem ówań osuących oczekwaą stoę zwotu otfela, oaz ego waacę. Układ te est aametyczym osem łuku w układze o wsółzędych: oeważ () (), układ () () moża zedstawć w ostac () () () () RKUZ
3 otfel welu akc Załóżmy, że otfel składa sę z kc., oczekwaa stoa zwotu -te akc w otfelu wsółczyk koelac mędzy stoam zwotu -te -te akc udzał -te akc w otfelu,,3,..., Oczekwaa stoa zwotu z otfela ówa est śede aytmetycze stó zwotu ego składowych (ważoe ch udzałam w otfelu). Na yzyko otfela (mezoe waacą) składaą sę tzy komoety:. Lczba aktywów w otfelu. Ryzyko oszczególych aktywów wchodzących w skład otfela 3. toeń koelac omędzy stoam zwotu z oszczególych aktywów gdze: cov, czyl o odstaweu waaca otfela udzał -tego aktywu w otfelu waaca -tego aktywu cov, kowaaca omędzy aktywam: -tym -tym, koelaca omędzy aktywam: -tym -tym,, cov, : Waacę otfela moża wyzaczyć ako loczy dwóch wektoów macezy kwadatowe: macezy waac kowaac ---, cov, cov cov, cov, cov, cov, --- lub macezy koelac , ---, ,, ---,, oeważ wsółczyk koelac zymue watośc z zakesu <-,>, a odchylea stadadowe waace są zawsze dodate, dodawae do otfela ueme z m skoelowaych aktywów sowodue obżee ego zmeośc, czyl yzyka dla westoa.
4 Iwesto twoząc otfel dokoue wybou z eskończoego (teoetycze) ola możlwośc. Keue sę zy tym kyteum maksmum zysku, mmum yzyka. Ozacza to, że decyduąc sę a okeśloy ozom yzyka wybea otfel zaduący sę awyże (awększa etowość), lub decyduąc sę a okeśloy ozom zysku decydue sę a otfel zaduący sę abadze a lewo (amesze yzyko). Zbó otfel abadze efektywych (w swoe klase ) zedstawa łuk eezetuący otfele o awyższe dochodowośc dla daego yzyka otfel czteoskładkowy.ls
5 ołączae do otfela aeów watoścowych wolych od yzyka La CL oblem dołączaa do otfela westycyego aeów bezeczych lustue ysuek. westyca wola od yzyka f = oaz f=f otfel złożoy z westyc yzykowych e, e la otfela dwuskładkowego składaącego sę z westyc mamy: oczekwaa stoa zwotu: waaca: odchylee stadadowe: () () (v) odstawaąc (v) do () otzymuemy lową zależość: (v) osta osywaa wzoem zechodz zez ukt eezetuący westycę wolą od yzyka, oaz zez ukt eezetuący otfel yzykowy. Jest oa zatem zboem uktów eezetuących otfele dwuskładkowe. () - co to za otfel? (Rozwąć wyaśee a odstawe W.Juek s 5!!!) zymuąc założee o homogeczośc oczekwań westoów (taka sama wedza a temat aametów wszystkch akc twozących wszystke otfele yzykowe) zy edocześe óżym odeścu westoów do yzyka (będą wybeać óże ukty a oste II), ależy uzać, że wszyscy będą wybeać do swoego otfela tak sam otfel. Jeżel wszyscy wybeaą te sam otfel, to u każdego est tak sam udzał aeów daego odzau w całym otfelu. umuąc wszystke otfele westoów moża stwedzć, że udzały te będą odowadać udzałow katału dae sółk w ogólym katale wszystkch sółek. koo stuktua otfela odzwecedla stuktuę yku, to est to otfel ykowy. W takm zyadku wzó (v) zybea ostać l CL (v) Rykowa la katału (CL) - la eezetuąca zbó efektywych otfel składaących sę z westyc wole od yzyka otfela ykowego. oża e zedstawć ako: (v)
6 (v) odstawowe zastosowae CL to sawdzee, czy otfel est efektywy. Zaąc yzyko otfela odstawaąc e za do ówaa (v) uzyskuemy oczekwaą stoę zwotu otfela efektywego o tym yzyku. Jeśl aalzoway otfel ma taką samą oczekwaą stoę zwotu, est KTYWNY, to zaczy e est zdomoway zez żade y otfel (W.Juek s 5!!!) otfel czteoskladkowy_bode_cl.ls odel HR a - CL odel edowskaźkowy (sgle-de model) hae'a owstał ako model uaszczaący klasyczą teoę otfela. Obece model te z eguły ozatue sę w owązau z modelam yku katałowego (główe C) odel te oea sę a założeu, że kształtowae sę stó zwotu akc est zdetemowae dzałaem czyka odzwecedlaącego zmay a yku katałowym. Obsewace emycze otwedzaą, że a welu ykach katałowych stoy zwotu wększośc akc są w dużym stou owązae ze stoą zwotu deksu yku, odzwecedlaącego ogólą sytuacę a yku. Ideks gełdy może być taktoway ako substytut otfela ykowego. Zależość stoy zwotu akc od stoy zwotu deksu yku (deksu gełdy, otfela ykowego) zedstawa sę za omocą astęuącego ówaa: R R Na odstawe () w modelu HR a zachodzą astęuące zależośc: R R gdze: (v) (v) - waaca stoy zwotu deksu yku, - waaca składka esztowego, () zczególe zaczee ma zależość (v). Wskazue oa, że yzyko akc (mezoe za omocą waac), tzw. yzyko całkowte (total sk), est sumą dwóch składków. ewszy składk est to yzyko systematycze, zwae óweż yzykem ykowym (systematc sk, maket sk). uga część yzyka akc (dug składk wzou (v)) est to yzyko secyfcze lub esystematycze (secfc sk, osystematc sk), mezoe waacą składka losowego. Jest to ta część yzyka, któa est zwązaa tylko z daą akcą e zależy od yku. C - model ówowag yku katałowego L owstae modelu C est zasługą tzech badaczy: hae'a, Ltea ossa. W modelu tym każdy walo osyway est zez stoę zwotu yzyko, któe est mezoe wsółczykem eta (model haa). oma yzyka wyłącze w oacu o wskaźk eta ozacza, że w modelu C uwzględay est tylko ykowy składk yzyka oedyczego stumetu lub otfela. Zakłada sę bowem, że składk secyfczy może zostać zdywesyfkoway zgode z modelem akowtza. L - secuty maket le odstawowa teza modelu C głos, ż stee osta lowa zależość mędzy yzykem walou/otfela a ego stoą zwotu. Zależość tę osue wzó: gdze: () L oczekway zwot z walou oczekway zwot z walou ozbawoego yzyka β wsółczyk β daego walou oczekway zwot z otfela ykowego
7 Rówae () zasywae est często w alteatywe ostac: () L Nadwyżka stoy zwotu akc (otfela) est oocoala do adwyżk stoy zwotu otfela ykowego ad stoa wolą od yzyka. Wsółczykem oocoalośc est eta (ysuek). L - Na odstawe L moża wyzaczyć wsółczyk alfa (e ależy go mylć ze wsółczykem alfa l chaakteystycze akc). (v) gdze: - oczekwaa stoa zwotu otfela (. oszacowaa za omocą aalzy fudametale). Z (v) wyka, że wsółczyk alfa est adwyżką oczekwae stoy zwotu ad oczekwaą stoą zwotu a yku zaduącym sę w ówowadze. Jeśl akca leży a L, to wsółczyk alfa ówy est. L dotyczy dowolego (e koecze efektywego) otfela a yku będącym w ówowadze. Oczekwaa stoa zwotu takego otfela est sumą dwóch składków:. stoa zwotu wola od yzyka (odobe ak w CL - cea czasu),. cea yzyka (loczy welkośc yzyka systematyczego daego otfela, mezoego wsółczykem beta, oaz em za yzyko będące óżcą mędzy stoą zwotu otfela ykowego stoą zwotu wolą od yzyka.) oęce dobze wyceoy" odos sę do L (C) ozacza, że oczekwaa stoa zwotu tych otfel est taka sama ak wększośc otfel o tym samym wsółczyku beta. otfel zeszacoway edoszacoway otfel C leży owyże L. Wsółczyk alfa tego otfela est dodat. Ozacza to, że odowada mu wyższa oczekwaa stoa zwotu ż otfelow C, któy ma te sam wsółczyk beta, ale leży a L (czyl est dobze wyceoy). otfel C est edoszacoway (udeced), lub acze - edowatoścoway (udevalued). otfel C stae sę dla westoa atakcyy,
8 węc będze o sę staał dokoać ego zakuu. owodue to zwększoy oyt a otfel C, wzost ego cey, a w zwązku z tym sadek ego oczekwae stoy zwotu. Te dzałaa doowadzą do ówowag otfel C stae sę otfelem C, czyl zadze sę a l L. otfel leży oże L. Wsółczyk alfa tego otfela est uemy. Ozacza to, że odowada mu ższa oczekwaa stoa zwotu ż otfelow ', któy ma te sam wsółczyk beta, ale leży a L (czyl est dobze wyceoy). otfel est zeszacoway (oveced), lub acze - zewatoścoway (ovevalued). otfel stae sę dla westoa eatakcyy, węc będze o sę staał dokoać ego szedaży (óweż kótke szedaży). owodue to zwększoą odaż otfela, sadek ego cey, a w zwązku z tym wzost ego oczekwae stoy zwotu. Te dzałaa doowadzą do ówowag otfel stae sę otfelem ', czyl zadze sę a l L. odstawowe zastosowae L to sawdzee, czy otfel est dobze wyceoy zy uwzględeu ego yzyka systematyczego wyażoego zez eta otfela. Zaąc wsółczyk beta otfela odstawaąc go do ówaa () uzyskuemy oczekwaą stoę zwotu otfela dobze wyceoego. Jeśl aalzoway otfel ma ższą oczekwaą stoę zwotu, to est zeszacoway, eśl zaś wyższą oczekwaą stoę zwotu, to est edoszacoway.
9 toa zwotu zykład: C.ls Oczekwaa stoa zwotu otfela ykowego wyos %, yzyko tego otfela %, a stoa wola od yzyka 6%. adae oawośc wycey otfel Rozważymy cztey otfele. Zostae sawdzoe, czy otfele leżą a L. Naew ależy wyzaczyć wsółczyk beta otfel. Zgode ze wzoem (atz HR): (v) Nastęe, z ówaa oste L () wyzaczoa zostae dla każdego eta watość stoy zwotu dobze wyceoego otfela (ukty leżące a L). taową oe ukt odesea dla oczekwaych stó zwotu otfel, wyzaczoych a odstawe aalzy fudametale. Zgode ze wzoem (v) óżca omędzy watoścą oczekwaą stoy zwotu otfela a stoą zwotu otfela dobze wyceaego dla zadaego eta okeśla wskaźk lfa otfela. oówae uzyskaych wyków z oczekwaym stoam zwotu uzyskaym za omocą aalzy fudametale wskazue, że dwa ewsze otfele leżą a L, czyl są dobze wyceoe, tzec otfel leży owyże L, czyl est edoszacoway, a czwaty otfel leży oże L, czyl est zeszacoway. 8,% 6,% 6,8% 5,% 4,% 3,%,%,%,% 8,% 6,% 4,%,%,% -,,,3,4,5,6,7,8 eta L a odstawe aalzy fudametale
Tablice wzorów Przygotował: Mateusz Szczygieł
Tablce zoó Pzygotoał: Mateusz Szczygeł DKATORFIASOWY.COM.PL . Oczekaa stoa zotu - adoodobeństo zaśca daego zdazea ożla do zealzoaa stoa zotu. Waaca aaca stoy zotu oczekaa stoa zotu [ ] 3. Odchylee stadadoe
Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
Portfel złożony z wielu papierów wartościowych
Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe
FINANSE II. Model jednowskaźnikowy Sharpe a.
ODELE RYNKU KAPITAŁOWEGO odel jedowskaźkowy Sharpe a. odel ryku kaptałowego - CAP (Captal Asset Prcg odel odel wycey aktywów kaptałowych). odel APT (Arbtrage Prcg Theory Teora artrażu ceowego). odel jedowskaźkowy
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
Portfel. Portfel pytania. Portfel pytania. Analiza i Zarządzanie Portfelem cz. 2. Katedra Inwestycji Finansowych i Zarządzania Ryzykiem
Katedra Ietycj Faoych Zarządzaa yzykem Aalza Zarządzae Portfelem cz. Dr Katarzya Kuzak Co to jet portfel? Portfel grupa aktyó (trumetó faoych, aktyó rzeczoych), które zotały yelekcjooae, którym ależy zarządzać
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
Funkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
System finansowy gospodarki
System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym
Statystyka Inżynierska
Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe
Badania Operacyjne (dualnośc w programowaniu liniowym)
Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)
Monika Jeziorska-Pąpka Uniwersytet Mikołaja Kopernika w Toruniu. Zastosowanie progowego modelu Sharpe a w analizie szeregów rynku kapitałowego
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnoolske Semnaum Naukowe, 6 8 wześna 005 w Tounu Kateda Ekonomet Statystyk, Unwesytet Mkołaja Koenka w Tounu Monka Jezoska-Pąka Unwesytet Mkołaja Koenka w Tounu Zastosowane
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8
Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja
EKSTREMA FUNKCJI EKSTREMA FUNKCJI JEDNEJ ZMIENNEJ. Tw. Weierstrassa Każda funkcja ciągła na przedziale domkniętym ma wartość najmniejszą i największą.
Joaa Ceślak, aula Bawej ESTREA FUNCJI ESTREA FUNCJI JEDNEJ ZIENNEJ Otoczeem puktu R jest każdy przedzał postac,+, gdze >. Sąsedztwem puktu jest każdy zbór postac,,+, gdze >. Nech R, : R oraz ech. De. ówmy,
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy.
Statystyka osowa Statystyka osowa óż sę od statystyk matematyczej tym, że óy statystyczej dotyczącej daej cechy, e wykozystuje sę do woskowaa a temat oulacj, z któej óa ta została wylosowaa, a jedye aalzuje
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
Wynik finansowy transakcji w momencie jej zawierania jest nieznany z uwagi na zmienność ceny przedmiotu transakcji, czyli instrumentu bazowego
.Istmety ochoe otaty temiowe azywae sa istmetami ochoymi (eivatives. otat temiowy zobowiazje wie stoy o zeowazeia w zyszłosci ewej tasacji a wczesiej staloych waach. Jea stoa otatów (abywca - te, co je
teorii optymalizacji
Poltechka Gdańska Wydzał Oceaotechk Okrętowctwa St. II stop. se. I Podstawy teor optyalzac wykład 7 M. H. Ghae Ma 5 Podstawy teor optyalzac Oceaotechka II stop. se. I 5 Podstawy teor optyalzac Oceaotechka
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5
Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja
Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
ĆWICZENIE 3 ANALIZA WSPÓŁZALEŻNOŚCI ZJAWISK MASOWYCH
Laboaoum eod aczch ĆWICZENIE 3 ANALIZA WPÓŁZALEŻNOŚCI ZJAWIK AOWCH Jedo wozące zboowość chaaezowae ą zazwcza za pomocą welu cech óe wzaeme ę wauuą. Celem aalz wpółzależośc e wedzee cz mędz badam cecham
5. OPTYMALIZACJA NIELINIOWA
5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe
24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC
4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.
Matematyka ubezpieczeń majątkowych r. t warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Zadae. W kolejych okresach czasu t =, ubezpeczoy, charakteryzujący sę parametrem ryzyka Λ, geeruje N t szkód. Dla daego Λ = λ zmee N, N są warukowo ezależe mają (brzegowe) rozkłady Possoa: k λ Pr( N t
Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer
Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Politechnika Gdańska Wydział Elektrotechniki i Automatyki
PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI Mosław Kweselewcz Poltechka Gdańska Wydzał Elektotechk Automatyk PORZĄDKOWANIE WARIANTÓW PRZY NIEKOMPLETNYCH MACIERZACH PORÓWNAŃ PARAMI
Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży
Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,
Szeregi czasowe, modele DL i ADL, przyczynowość, integracja
Szereg czasowe, modele DL ADL, rzyczyowość, egracja Szereg czasowy, o cąg realzacj zmeej losowej, owedzmy y, w kolejych okresach czasu: { y } T, co rówoważe możemy zasać: = 1 y = { y1, y,..., y T }. Najogólej
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych
dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m
Badania Maszyn CNC. Nr 2
Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5
L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk
System finansowy gospodarki
System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
STATYKA. Cel statyki. Prof. Edmund Wittbrodt
STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
ρ (6) przy czym ρ ij to współczynnik korelacji, wyznaczany na podstawie następującej formuły: (7)
PROCES ZARZĄDZANIA PORTFELEM PAPIERÓW WARTOŚCIOWYCH WSPOMAGANY PRZEZ ŚRODOWISKO AUTOMATÓW KOMÓRKOWYCH Ageszka ULFIK Streszczee: W pracy przedstawoo sposób zarządzaa portfelem paperów wartoścowych wspomagay
3. OPTYMALIZACJA NIELINIOWA
Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz
POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4
POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
TMM-2 Analiza kinematyki manipulatora metodą analityczną
Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
2. GAZY DOSKONAŁE I PÓŁDOSKONAŁE
Gazy doskoałe ółdoskoałe /. GZY DOSKONŁE I PÓŁDOSKONŁE Gazy wystęujące w zyodze składają sę z ooej lośc cząsteczek, któe zajdują sę w cąły uchu. ząsteczk wykoują uchy taslacyje (zeeszczea ostolowe), otacyje
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Podprzestrzenie macierzowe
Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0
Matematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
WARTOŚĆ PIENIĄDZA W CZASIE
WARTOŚĆ PIENIĄDZA W CZASIE Czyiki wpływające a zmiaę watości pieiądza w czasie:. Spadek siły abywczej. 2. Możliwość iwestowaia. 3. Występowaie yzyka. 4. Pefeowaie bieżącej kosumpcji pzez człowieka. Watość
Miary statystyczne. Katowice 2014
Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących
Podstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
08 Model planowania sieci dostaw 1Po_2Pr_KT+KM
Nr Tytuł: Autor: 08 Model plaowaa sec dostaw 1Po_2Pr_KT+KM Potr SAWICKI Zakład Systeów Trasportowych WIT PP potr.sawck@put.poza.pl potr.sawck.pracowk.put.poza.pl www.facebook.co/potr.sawck.put Przedot:
+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba
Atomy weloelektoowe: ekulombowsk potecał (cetaly) kedy? ektóe atomy weloelektoowe (p. alkalcze) maą elekto w śede odległ. od ąda >> ż odległośc pozostałych elektoów, el. walecyy kadłub atomu Róże stay
www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie
Rozdzał moogaf: 'Bazy Daych: Nowe Techologe', Kozelsk S., Małysak B., Kaspowsk P., Mozek D. (ed.), WKŁ 007 Rozdzał 3 Zastosowae języka SQL w statystyce opsowej Steszczee. Relacyje bazy daych staową odpowede
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych
Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku
Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?
Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)
Tradycyjne mierniki ryzyka
Tadycyjne mieniki yzyka Pzykład 1. Ryzyko w pzypadku potfela inwestycyjnego Dwie inwestycje mają następujące stopy zwotu, zależne od sytuacji gospodaczej: Sytuacja Pawdopodobieństwo R R Recesja 0, 9,0%
Statystyka Wykład 3 Adam Ćmiel A3-A4 311a
styaca uktowa Podstawowe oęca estyac uktowe Nech B P={P :} będze zestzeą statystyczą. Na odstawe obsewac oszacować g Y gdze g: Y est zaą fukcą. Watość g est ezaa gdyż e zay. Rozwązae tego obleu będze ewa
BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ
Fzyka cała stałego, Elektyczość magetyzm BADANIE CHARAKTERYTYKI DIODY PÓŁPRZEWODNIKOWEJ 1. Ops teoetyczy do ćwczea zameszczoy jest a stoe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE..
PROGRAMOWANIE LINIOWE.
Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
INSTRUMENTY DŁUŻNE. Rodzaje ryzyka inwestowania w obligacje Duracja i wypukłość obligacji Wrażliwość wyceny obligacji
INSTRUMENTY ŁUŻNE Rozaje yzyka iwesowaia w obligacje uacja i wypukłość obligacji Ważliwość wycey obligacji Ryzyko iwesycji w obligacje Ryzyko eiwesycyje możliwość uzyskaia iskiej sopy zwou z wypłacoych
PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej
PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,
Arytmetyka finansowa Wykład 1 Dr Wioletta Nowak
Aytmetyka fiasowa Wykład D Wioletta Nowak Sylabus Watość ieiądza jako fukcja czasu. Oocetowaie lokaty. aitalizacja osta, złożoa z dołu i z góy, ciągła. aitalizacja zgoda i iezgoda. Rówoważość oocetowaia.
Janusz Górczyński. Moduł 1. Podstawy prognozowania. Model regresji liniowej
Materały omoccze do e-leargu Progozowae symulacje Jausz Górczyńsk Moduł. Podstawy rogozowaa. Model regresj lowej Wyższa Szkoła Zarządzaa Marketgu Sochaczew Od Autora Treśc zawarte w tym materale były erwote
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
Analiza wyniku finansowego - analiza wstępna
Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe
Modelowanie i Analiza Danych Przestrzennych
Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
ROZKŁADY ZMIENNYCH LOSOWYCH
ROZKŁADY ZMIENNYCH LOSOWYCH ZMIENNA LOSOWA Defcja. Zmeą losową jest fukcja: X: E -> R która każdemu zdarzeu elemetaremu E przypsuje lczbę rzeczywstą e X ( e) R DYSTRYBUANTA Dystrybuatą zmeej losowej X
Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2
Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w
Zmiana bazy i macierz przejścia
Auomaya Roboya Algebra -Wyład - dr Adam Ćmel cmel@agh.edu.pl Zmaa bazy macerz prześca Nech V będze wymarową przesrzeą lową ad całem K. Nech Be e będze bazą przesrze V. Rozważmy ową bazę B e... e. Oczywśce
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Statystyka opisowa. W szeregu tym prezentowana jest ilość wystąpień w próbie każdej wartości cechy.
Statystyka osowa Statystyka osowa óż sę od statystyk matematyczej tym, że óby statystyczej dotyczącej daej cechy, e wykozystuje sę do woskowaa a temat oulacj, z któej óba ta została wylosowaa, a jedye
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
Wybrane wzory i tablice statystyczne
Wykłady ze Statystyk Ekoometr Jausz Górczyńsk Wybrae wzory tablce statystycze Wydae III orawoe uzuełoe Wyższa Szkoła Zarządzaa Marketgu Sochaczew 6 W ser materałów dydaktyczych Wykłady ze Statystyk Ekoometr
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORATORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX. min. min
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LABORAORIUM II PROGRAMOWANIE CELOWE, ILORAZOWE I MIN-MAX Probley prograowae celowego lorazowego to probley prograowae ateatyczego elowego, który oża sktecze zlearyzować
BRYŁA SZTYWNA. Zestaw foliogramów. Opracowała Lucja Duda II Liceum Ogólnokształcące w Pabianicach
BRYŁA SZTYWNA Zestaw fologamów Opacowała Lucja Duda II Lceum Ogólokształcące w Pabacach Pabace 003 Byłą sztywą azywamy cało, któe e defomuje sę pod wpływem sł zewętzych. Poszczególe częśc były sztywej
Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych
Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
Indukcja matematyczna
Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya
ĆWICZENIE 10 OPTYMALIZACJA STRUKTURY CZUJKI TEMPERATURY W ASPEKCIE NIEZWODNOŚCI
ĆWICZENIE 0 OPTYMALIZACJA STUKTUY CZUJKI TEMPEATUY W ASPEKCIE NIEZWODNOŚCI Cel ćwczea: zapozae z metodam optymalzac wewętrze struktury mozakowe czuk temperatury stosowae w systemach sygalzac pożaru; wyzaczee
Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka
Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee