ANALIZA DRGAŃ WŁASNYCH PŁYT PIERŚCIENIOWYCH O SKOKOWO ZMIENNEJ GRUBOŚCI
|
|
- Aniela Dagmara Wasilewska
- 5 lat temu
- Przeglądów:
Transkrypt
1 OELOANIE INŻYNIERKIE INN X s. -8 liwice 6 ANALIZA RAŃ ŁANYCH PŁYT PIERŚCIENIOYCH O KOKOO ZIENNEJ RUBOŚCI TANIŁA KUKLA ARIUZ ZECZYK Instytut temtyki i Infomtyki Politechnik Częstochowsk teszczenie. Pzestwion pc otyczy zgnieni osiowosymetycznych gń włsnych płyt pieścieniowych o skokowo zmienne gubości. Rozwiąznie zgnieni otzymno pzez poził ozwżne płyty n elementy któymi są płyty pieścieniowe o stłych gubościch. okłne ozwiąznie zgnieni uzyskno stosuąc metoę funkci een. Pzestwiono wyniki bń numeycznych wpływu skokowe zminy gubości płyty n gni włsne.. TĘP Zgnieni gń włsnych płyt pieścieniowych są pzemiotem bń wielu pc (np. pce [ ]. pcch tych pzestwiono wyniki bń teoetycznych i numeycznych gń włsnych płyt pieścieniowych o gubości zmieniące się wzłuż pomieni płyty. Rozwiązni postwionych zgnień gń uzyskno stosuąc metoy pzybliżone: metoę elementów skończonych [] lub metoę Ryleigh-Ritz [ ]. pcy [] ozwżno poblem gń płyty pieścieniowe o stłe gubości popte n współśokowych pieścienich spężystych. Rozwiąznie zgnieni otzymno wykozystuąc włsności funkci een. Niniesz pc otyczy osiowosymetycznych gń włsnych płyt pieścieniowych o skokowo zmienne gubości. Rozwiąznie zgnieni gń otzymno okonuąc poziłu ozwżne płyty n płyty pieścieniowe o stłych gubościch. oel mtemtyczny obemue płyty skłące się z owolne skończone liczby płyt pieścieniowych o stłych gubościch. opisie mtemtycznym gń płyty złożone połączeni sąsiuących płyt o stłe gubości wzłuż ich wspólnego bzegu zpewnione są pzez wunki ciągłości. Równni uchu płyty i wunki ciągłości uzupełnią opowienie wunki bzegowe. Rozptzono płyty swobonie popte swobone i sztywno zmocowne n bzegch zewnętznym i wewnętznym płyty złożone. okłne ozwiąznie zgnieni gń włsnych otzymno stosuąc metoę funkci een. Funkce een opowiące ozwżnym płytom pieścieniowym wyznczono ozwiązuąc opowienie zgnieni pomocnicze. Równnie częstości gń płyty o skokowo zmienne gubości otzymno wykozystuąc wunki ciągłości. ykozystuąc otzymne w postci nlityczne ozwiąznie zgnieni gń wykonno bni numeyczne wpływu pmetów chkteyzuących płytę n częstości gń
2 . KUKLA. ZECZYK włsnych. Rozptzono pzypki płyt pieścieniowych o skokowo zmienne gubości skłących się z wóch lub wielu płyt o stłe gubości.. FORUŁOANIE I ROZIĄZANIE ZAANIENIA Rozwżmy płytę pieścieniową o skokowo zmienne gubości (ys.. Zkłmy że zmin gubości płyty nstępue wzłuż (n koncentycznych okęgów któe zielą płytę n n elementów płyt o stłych gubościch h oz o pomienich - gzie - < ( n. Rys.. Pzekó popzeczny płyty pieścieniowe skłące się z n elementów o stłych gubościch Osiowosymetyczne gni -tego elementu czyli pieścieniowe płyty enoone o stłe gubości opisue nstępuące ównnie óżniczkowe: w ( w q h s δ( m δ ( sδ( mδ ( t gzie w w ( t est wychyleniem popzecznym płyty sztywnością zginni płyty q q( t funkcą opisuącą ozkł obciążeni płyty n enostkę powiezchni gęstością płyty h gubością płyty ntomist s s (t est siłą tnącą m m (t momentem gnącym pzy czym s m s n m n. ystępuąc po pwe stonie ównni δ( ozncz ystybucę ic. Równni óżniczkowe ( uzupełnione są opowienimi wunkmi bzegowymi: w n [ w ] ( oz wunkmi ciągłości: w t [ ] n n ( w ( t w ( t w ( t n ( Rozwżąc swobone gni hmoniczne pzymuemy q oz iω iω t iω t w t e s ( t e m ( t e ( ( ( t gzie ω est częstością gń włsnych ukłu. Po ozzieleniu zmiennych oz wpowzeniu wielkości bezwymiowych / i / ównnie ( oz wunki ciągłości ( pzymuą postć:
3 ANALIZA RAŃ ŁANYCH PŁYT PIERŚCIENIOYCH O KOKOO ZIENNEJ... [ ] ( ( ( ( δ δ δ δ L (5 ( ( ( ( n (6 gzie [ ] ( L oz ( h ω / / / i / n. lsze części pcy opuszczone zostły keski n litemi. Rozwiąznie ównni (5 wyznczymy wykozystuąc włsności funkci een. Funkce een opeto L l wybnych wunków bzegowych wyznczono w nstępnym ozzile pcy. Zkłąc że funkc een est znn ozwiąznie ównni (5 możn pzestwić w postci: ( ( ( ( ( (7 Uwzglęniąc (7 w wunkch ciągłości (6 otzymue się ukł (n ównń z niewiomymi (...n : ( ( ( ( ( ( ( ( (8 ( ( ( ( ( ( ( ( ( (9 pzy czym n n. Ukł ten zpisuemy w postci mciezowe X A ( gzie [ ] T n n X.... Równnie ( m nietywilne ozwiąznie wtey i tylko wtey gy ( et ω A (
4 . KUKLA. ZECZYK unek ( stnowi ównnie częstości gń włsnych ukłu. Równnie to est ozwiązywne numeycznie wzglęem ω.. FUNKCJE REENA Rozwżmy osiowosymetyczne gni enoone płyty pieścieniowe o stłe gubości. Zkłmy że bzeg zewnętzny ( te płyty est swobony bzeg wewnętzny ( b swobonie popty. Funkc een opowiąc te płycie est ozwiązniem nstępuącego ównni óżniczkowego: [ ( ] δ ( L ( hω gzie L [ ] oz. Ponto funkc spełni wunki bzegowe: ν ( b ν ( gzie ν est współczynnikiem Poisson. Rozwiąznie ównni ( możn pzestwić w postci sumy []: ( ( ( H ( (5 gzie funkc est ozwiązniem ównni enoonego: L [ ] (6 ntomist iloczyn ( H ( ( est ozwiązniem szczególnym ównni ( (H ozncz funkcę Hevisie. ożn pokzć że funkc est ozwiązniem ównni enoonego (6 spełniącym wunki: oz Poniewż ozwiąznie ogólne ównni (6 m postć: ( cj ( ci ( cy ( ck( (8 więc wyzncząc stłe c c c c z wunków (7 otzymue się: π ( ( I ( K ( I ( K ( ( J ( Y ( J ( Y ( (9 ystępuące w ównnich (8 9 funkce J Y i I K są opowienio funkcmi Bessel i zmoyfikownymi funkcmi Bessel zęu. Funkc m nstępuącą postć: ( CJ ( CI ( CY ( CK ( ( b (7
5 ANALIZA RAŃ ŁANYCH PŁYT PIERŚCIENIOYCH O KOKOO ZIENNEJ... 5 pzy czym stłe C C C C wyznczmy uwzglęniąc (9 i ( w (5 nstępnie wykozystuąc wunki bzegowe (-. Pzymuąc b < otzymuemy funkcę w postci: ν ( ( J( ( Ψ( ( b I( b Y( b ( ν Φ( b Ψ( b gzie: ( b K( b Y( b ( ν Φ( b Ψ( ( ( ( ν I Ψ ( ( b J ( b K ( b ( ν Φ ( b Ψ ( bπ ν b ( K ( b Y ( b ( ν Φ ( b Ψ ( b ( Y ( ( Ψ ( ( b I ( b J ( b ( ν Φ ( b Ψ ( ( b J( b K( b ( ν Φ( b Ψ( ( ( ( ν K Ψ ( ( b I ( b J ( b ( ν Φ ( b Ψ ( bπ ( bi ( b Y ( b ( ν Φ ( b Ψ ( ( ( by( b ( ν Y( b Ψ( b ( bj( b ( ν J( b Ψ( b ( ν ( K ( b Ψ ( b I ( b Ψ ( b π oz Ψ Φ ( J ( z I ( z J ( z I ( z Φ ( J ( z K ( z J ( z K ( z z z Φ ( Y ( z I ( z Y ( z I ( z Φ ( Y ( z K ( z Y ( z K ( z Ψ Ψ Ψ z z ( u z J( z K( z ( uφ( u ( ν J( u I( u I ( z ( uφ ( u ( ν J ( u K ( u ( u z Y( z K( z ( uφ( u ( ν Y( u I( u I ( z ( uφ ( u ( ν Y ( u K ( u π J ( u z I ( z ( Y ( z ( u Φ ( u ( ν J ( u I ( u π J ( z ( u Φ ( u ( ν Y ( u I ( u ( u z K ( z ( Y ( z ( u Φ ( u ( ν J ( u K ( u ( z ( u Φ ( u ( ν Y ( u K ( u Osttecznie funkcę een opowiącą płycie o bzegu zewnętznym ( swobonym i bzegu wewnętznym swobonie poptym ( b (płyt -F otzymue się uwzglęniąc (9 i ( w (5. Funkcę een g opowiącą płycie F- (b > możn pzestwić wykozystuąc wyznczone wcześnie funkce i l płyty -F. ezultcie otzymue się g ( ( ( ( H( (
6 6. KUKLA. ZECZYK yznczone powyże funkce een l płyt F- i -F wykozystne są w ozwiąznich zgnień gń opowienich elementów bne płyty złożone. Funkce een l innych typów płyt wyznczone zostły w pcch [ ].. PRZYKŁAY NUERYCZNE Rozwżmy płytę pieścieniową o bzegu wewnętznym ( b swobonym i bzegu zewnętznym ( sztywno zmocownym (F-C. Zmin gubości płyty nstępue wzłuż okęgu o pomieniu c. Płyt zostł pozielon n w elementy (Rys.. Tbeli zebno bezwymiowe częstości gń włsnych płyty F-C otzymne pezentowną metoą funkci een oz metomi elementów skończonych i Ryleigh-Ritz []. b Rys.. Płyt pieścieniow pozielon n w elementy F-C b F- Tbel. Bezwymiowe częstości gń włsnych h / płyty F-C meto elementów skończonych meto Ryleigh-Ritz meto funkci een h / h.6 b/...7 c/ Poobnie wykonno bni numeyczne l płyty pieścieniowe o bzegu wewnętznym ( b swobonym i bzegu zewnętznym ( swobonie poptym (F-. Płyt zmieni swą gubość wzłuż okęgu o pomieniu c. Płyt zostł pozielon n w elementy (Rys. b. N ysunku pzestwiono częstości gń włsnych tkie płyty ko funkce stosunku gubości skłowych płyt pieścieniowych o stłych gubościch. Obliczeni wykonno l óżnych wtości pomieni c okęgu wzłuż któego nstępue zmin gubości płyty. Osttni pzykł otyczy gń płyty pieścieniowe o bzegch swobonych (F-F. otkowo zkł się że płyt est swobonie popt wzłuż okęgu o pomieniu c zmin gubości płyty nstępue wzłuż okęgu o pomieniu. Płyt t zostł pozielon n
7 ANALIZA RAŃ ŁANYCH PŁYT PIERŚCIENIOYCH O KOKOO ZIENNEJ... 7 tzy elementy (Rys.. Częstości gń włsnych płyty otzymne metoą funkci een zostły poównne z wynikmi pezentownymi w pcy [] któe uzyskno metoą Ryleigh-Ritz (Tbel. szystkie obliczeni zostły pzepowzone l ν....7 c/.6 c/.7 c/ h / h h / h Rys.. wie piewsze bezwymiowe częstości gń włsnych pieścieniowe F- b/. h ω płyty / Rys.. Płyt pieścieniow F-F swobonie popt wzłuż wewnętznego okęgu pozielon n tzy elementy 5. POUOANIE tosuąc metoę funkci een otzymno ozwiąznie okłne zgnieni gń włsnych płyt pieścieniowych o skokowo zmieniące się gubości. Pzestwione ozwiąznie obemue osiowosymetyczne gni włsne płyt pieścieniowych l óżnych pzypków wunków bzegowych oz owolne skończone liczby płyt skłowych. Zstosownie pzestwione metoy pozwl wykozystć wcześnie wyznczone funkce een l ozwiązni óżnych poblemów gń płyt pieścieniowych i kołowych.
8 8. KUKLA. ZECZYK Tbel. Częstości gń włsnych h / płyty pieścieniowe F-F otzymnych metoą Ryleigh-Ritz (kusyw i metoą funkci een h / h.6 h / h.8 b/ c/ / / sfomułowniu i ozwiązniu zgnieni uwzglęniono występownie swobonych popć wzłuż koncentycznych okęgów ozmieszczonych w obębie płyty. yniki otzymne pezentowną metoą zostły poównne z wynikmi otzymnymi pzez innych utoów metoą elementów skończonych i metoą Ryleigh-Ritz. ob zgoność wyników potwiez popwność pzestwione metoy. Anliz wyników numeycznych wskzue że stosunek gubości elementów płyty pieścieniowe k i pomień zminy gubości płyty mą znczący wpływ n częstości gń włsnych płyty złożone. LITERATURA.. R. Avlos H. A. Lono V. onzogni P. A. A. Lu: A genel ppoximte solution of the poblem of fee vibtions of nnul pltes of steppe thickness. Jounl of oun n Vibtion s R. H. utieez P. A. A. Lu: Funmentl fequency of n nnul cicul plte of non-unifom thickness n n intemeite concentic cicul suppot. Jounl of oun n Vibtion 999 s Kukl. zewczyk: Appliction of een s function metho in fequency nlysis of xisymmetic vibtion of nnul pltes with elstic ing suppots. cientific Resech of the Institute of themtics n Compute cience Częstochow 5 s Kukl. zewczyk: The een s functions fo vibtion poblems of cicul pltes with elstic ing suppots. cientific Resech of the Institute of themtics n Compute cience Częstochow s VIBRATION ANALYI OF ANNULAR PLATE OF TEPPE THICKNE ummy. The ppe concens xisymmetic vibtion of nnul pltes of steppe thickness. olution to the poblem ws obtine by iviing of consiee plte into nnul pltes of unifom thickness. Exct solution to the ntul vibtion poblem ws obtine by using een s function metho. Fequency eqution of vibtion poblem of plte with steppe thickness ws by using continuity conitions.
Zadania do rozdziału 7.
Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły
= przy założeniu iż wartość momentu pędu ciała jest różna od zera: 0. const. , co pozwala na określenie go w sposób jednoznaczny.
Z 6 sei I ozszezone Chce znleźć to ch cił n któe ził sił centln: F, pz złożeni iż wtość oent pę cił jest óżn o ze: Do ozwiązni ożn wkozstć np wzó l ównowżn je wzó const ± spowzjąc pole po wpowzeni postwini
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
Metody analizy światłowodów wielomodowych
Metody nlizy świtłowodów wielomodowych 1. Metod optyki geometycznej wyzncznie tou pomieni optycznego w świtłowodzie. Metod WKB wyzncznie w sposób pzybliżony modów świtłowodowych i wyznczenie obszów ich
Równania różniczkowe cząstkowe - metoda Fouriera. Przykładowe rozwiązania i wskazówki
INSTYTUT MATEMATYKI POLITECHNIKA KRAKOWSKA Dr Mrgret Wicik e-mi: mwicik@pk.edu.p Równni różniczkowe cząstkowe - metod Fourier. Przykłdowe rozwiązni i wskzówki zd.1. Wyznczyć funkcję opisującą drgni podłużne
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
METODY HODOWLANE - zagadnienia
METODY HODOWLANE METODY HODOWLANE - zgdnieni. Mtemtyczne podstwy metod odowlnyc. Wtość cecy ilościowej i definicje pmetów genetycznyc. Metody szcowni pmetów genetycznyc 4. Wtość odowln cecy ilościowej
TORY PLANET (Rozważania na temat kształtów torów ruchu planety wokół stacjonarnej gwiazdy)
Rysz Chybicki TORY PLANET (Rozwżni n tet ksztłtów toów uchu lnety wokół stcjonnej gwizy) (Posługiwnie się zez osoby tzecie ty tykułe lub jego istotnyi fgenti bez wiezy uto jest wzbonione) MIELEC Plnecie
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA POZIOM ROZSZERZONY. Copyright by Nowa Era Sp. z o.o.
PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ 0/06 MATEMATYKA POZIOM ROZSZERZONY Zsdy ocenini ozwiązń zdń Copyight by Now E Sp. z o.o. Póbny egzmin mtulny z Nową Eą Uwg: Akceptowne są wszystkie odpowiedzi meytoycznie
KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p
KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni
Momenty bezwładności figur płaskich - definicje i wzory
Moment ezwłnośi figu płski - efinije i wzo Dn jest figu płsk o polu oz postokątn ukł współzęn Momentem ezwłnośi figu wzglęem osi jest Momentem ezwłnośi figu wzglęem osi jest Momentem ewijnm figu wzglęem
Zadania otwarte. 2. Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą n n. 2n n. lim 10.
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 05 skle.oeon.l/mtu
Znajdowanie analogii w geometrii płaskiej i przestrzennej
Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec
1. SZCZEGÓLNE PRZYPADKI ŁUKÓW.
Olga Kopacz, Aam Łoygowski, Kzysztof Tymbe, ichał Płotkowiak, Wojciech Pawłowski Konsultacje naukowe: pof. hab. Jezy Rakowski Poznań /. SZCZEGÓLNE PRZYPADKI ŁUKÓW.. Łuk jenopzegubowy kołowy. Dla łuku jak
G i m n a z j a l i s t ó w
Ko³o Mtemtyzne G i m n z j l i s t ó w Stowzyszenie n zez Edukji Mtemtyznej Zestw 6 szkie ozwiązń zdń Znjdź wszystkie tójki (x, y, z) liz zezywistyh, któe są ozwiąznimi ównni 5(x +y +z ) = 4(xy +yz +zx)
1Coulomb 1Volt. Rys. 1. Schemat kondensatora płaskiego. Jednostką pojemności w układzie SI, jest Farad (F):
POJEMNOŚĆ ELEKTRYZNA Konenstor służy o mgzynowni energii potencjlnej w polu elektrycznym. Typowy konenstor płski, skł się z wóch równoległych, przewozących okłek o polu przekroju S umieszczonych w oległości
Oscylator harmoniczny tłumiony drgania wymuszone
Oscylor hroniczny łuiony rgni wyuszone x / Γ x e x Oscylor swoony łuiony Γ x Jeśli Γ
mgh. Praca ta jest zmagazynowana w postaci energii potencjalnej,
Wykłd z fizyki. Piot Posmykiewicz 49 6-4 Enegi potencjln Cłkowit pc wykonn nd punktem mteilnym jest ówn zminie jego enegii kinetycznej. Często jednk, jesteśmy zinteesowni znlezieniem pcy jką sił wykonł
GEOMETRIA PŁASZCZYZNY
GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
dr inż. Zbigniew Szklarski
Wkłd 3: Kinemtk d inż. Zbigniew Szklski szkl@gh.edu.pl http://le.uci.gh.edu.pl/z.szklski/ Wstęp Opis uchu KINEMATYKA Dlczego tki uch? Pzczn uchu DYNAMIKA MECHANIKA 08.03.018 Wdził Infomtki, Elektoniki
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka. Poziom rozszerzony. Listopad Wskazówki do rozwiązania zadania
Vdemecum Mtemtyk KRYTERIA OCENIANIA OPOWIEZI Póbn Mtu z OPERONEM mtemtyk ZAKRES ROZSZERZONY VAEMECUM MATURA 06 kod wewnątz Mtemtyk Poziom ozszezony Zcznij zygotowni do mtuy już dziś Listod 0 Zdni zmknięte
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ODPOWIEDZI DO ARKUSZA ROZSZERZONEGO Zadanie ( pkt) A Zadanie ( pkt) C Zadanie ( pkt) A, bo sinα + cosα sinα + cosα cos sinα sin cosα + π π + π sin α π A więc musi
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM
Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Komputerowe wspomgnie decyzi 008/009 Liniowe zgdnieni decyzyne Nottki do temtu Metody poszukiwni rozwiązń ednokryterilnych problemów decyzynych metody dl zgdnień liniowego progrmowni mtemtycznego Liniowe
5. Mechanika bryły sztywnej
W ozdzie dpowiedzi i wskzówki znjdują się odpowiedzi do wszystkich zdń, znjdziesz tm ównież wskzówki do ozwiązń tudnych zdń. Pełne ozwiązni zdń możesz uzyskć pzysyłjąc e-mi n des: kons@x.wp.p 5. Mechnik
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
O sposobie poszukiwania dobrej metody inwestowania na giełdzie
Kzysztof PIASECKI Ademi Eonomiczn w Poznniu O sposobie poszuiwni dobe metody inwestowni n giełdzie Poblem bdwczy Podstwowym poblemem pzed im ste inwesto est oeślenie słdu i stutuy tiego potfel ego inwestyci
Mechanika techniczna
Mechnik techniczn pzykłdowe pytni i zdni sttyk. Zcytowć i ziustowć zsdę ównoegłooku (zsd sttyki).. Kiedy dwie siły pzyłożone do cił sztywnego ównowżą się?. okzć, że w sttyce siły pzyłożone do cił sztywnego
3b. ELEKTROSTATYKA. r r. 4πε. 3.4 Podstawowe pojęcia. kqq0 E =
3b. LKTROTATYKA 3.4 Postawowe pojęcia Zasaa zachowania łaunku umayczny łaunek ukłau elektycznie izolowanego jest stały. Pawo Coulomba - siła oziaływania elektostatycznego 4 1 18 F C A s ˆ gzie : k 8,85*1
Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym
1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci
ANALIZA TECHNICZNA I ELEMENTARNA WYBRANYCH RODZAJÓW BIOMASY ORAZ WĘGLA KAMIENNEGO
ANALIZA TECHNICZNA I ELEMENTARNA WYBRANYCH RODZAJÓW BIOMASY ORAZ WĘGLA KAMIENNEGO Autozy: Jn C. Stępień, Antoni Slij, Kzysztof Psuj ( Rynek Enegii 3/218) Słow kluczowe: bioms, węgiel kmienny, pmety enegetyczne
IV OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy część 2 ZADANIA 29 lutego 2012r.
V OGÓLNOPOLSK KONKS Z FZYK Fizyka się liczy część ZADANA 9 lutego 0.. Dwie planety obiegają Słooce po, w pzybliżeniu, kołowych obitach o pomieniach 50 0 km (Ziemia) i 080 km (Wenus). Znaleź stosunek ich
WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ KONSTRUKCJI DREWNIANYCH
95 ROCZNII INŻYNIERII BUDOWLANEJ ZESZYT 3/03 omisj Inżynierii Budowlnej Oddził Polskiej Akdemii Nuk w towicch WPŁYW WILGOTNOŚCI NA SZTYWNOŚCIOWE TŁUMIENIE DRGAŃ ONSTRUCJI DREWNIANYCH mil PAWLI, Zbigniew
Macierzy rzadkie symetryczne
Mcierzy rzkie symetryczne Istnieje wielu problemów technicznych i nukowych, w których zstosownie formlizcji mtemtycznej oprowzi o ziłń n mcierzmi rzkimi symetrycznymi. To są zni mechniki, hyromechniki,
PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego
PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa
ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA
ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Mechanika techniczna. przykładowe pytania i zadania
Mechnik techniczn pzykłdowe pytni i zdni sttyk. Zcytowć i zilustowć zsdę ównoległooku (zsd sttyki).. Kiedy dwie siły pzyłożone do cił sztywnego ównowżą się?. okzć, że w sttyce siły pzyłożone do cił sztywnego
Zagadnienie brachistochrony jako przyk lad zastosowania rachunku wariacyjnego
Zgnienie brchistochrony jko przyk l zstosowni rchunku wricyjnego 1. Przestwienie problemu. Równni Euler-Lgrenge 3. Tożsmość Beltrmiego 4. Równnie cykloiy 5. Zs Fermt 1 Przestwienie problemu Brchistochron
3. Rozkład macierzy według wartości szczególnych
Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +
Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA. dr inŝ. Jan Lewiński
RURA GRUBOŚCIENNA W STANIE UPLASTYCZNIENIA d inŝ. Jn Lwiński CEL OPRACOWANIA Clm oowni jst zdstwini sosou olizń wytzymłośiowyh uy guośinnj, oddnj iśniniu wwnętznmu, znjdująj się w łskim stni odksztłni,
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
Modelowanie przepływu cieczy przez ośrodki porowate Wykład III
Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
= (10.1) gdzie: σ - odchylenie standardowe m - wartość średnia (10.2) (10.3) gdzie: p i prawdopodobieństwo wystąpienia wyniku x i
10.1. Pomiry bezpośrenie O okłności wyniku ecyują czynniki tkie jk: jkość przyrząu, iość powtrznych pomirów, wrunki pomiru, tkże - w użym stopniu - umiejętności osoby przeprowzjącej pomir. Istotne jest
IKONY CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI
CZĘŚĆ I 1. WIELOKĄTY I OKRĘGI 1.1. Okąg opisny n wielokącie (s. 10) Zdni utwljące (s. ) 1.. Okąg wpisny w wielokąt (s. 4) Zdni utwljące (s. 35) 1.3. Wielokąty foemne (s. 37) Zdni utwljące (s. 43) Zdni
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Przejmowanie ciepła przy konwekcji swobodnej w przestrzeni ograniczonej (szczeliny)
inż. Michał Stzeszewski 0-006 Pzejowanie ciepła pzy konwekcji swobonej w pzestzeni oganiczonej (szczeliny) Zaania o saozielnego ozwiązania v. 0.. powazenie celu uposzczenia achunkowego ozwiązania zjawiska
MECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
Temat ćwiczenia. Pomiary kół zębatych
POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temt ćwiczeni Pomiy kół zębtych I. Cel ćwiczeni Zpoznnie studentów z metodmi pomiu uzębień wlcowych kół zębtych o zębch postych oz pktyczny pomi koł. II. Widomości
5.1 Połączenia gwintowe
5.0 Połączenia Połączenia służą o pzenoszenia obciążeń mięzy elementami konstukcyjnymi uniemożliwiając ich wzajemne pzemieszczenia. POŁĄCZENIA NIEROZŁĄCZNE ROZŁĄCZNE PLASTYCZNE - nitowe - zawijane - zaginane
DARIUSZ KULMA. Jak zdać maturę. z matematyki. na poziomie rozszerzonym DLA BYSTRZAKÓW I NIE TYLKO! WYDAWNICTWO ELITMAT Mińsk Mazowiecki 2013
DARIUSZ KULMA Jk zć mturę z mtemtyki n poziomie rozszerzonym DLA BYSTRZAKÓW I NIE TYLKO!? WYDAWNICTWO ELITMAT Mińsk Mzowiecki 03 Autor: Driusz Kulm Oprcownie rekcyjne: Młgorzt Zkrzewsk Projekt grficzny
Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:
Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz
METODA ELEMENTÓW SKOŃCZONYCH DLA UKŁADÓW PRĘTOWYCH
EODA ELEENÓW SKOŃCZONYCH DLA UKŁADÓW PRĘOWYCH Pzyłd. B o zminnym zoju z ociążnim tójątnym Wysy sił zojowych, oz ini ugięci o N/m P, m N m Nm, o L,m V Ix I x V. Dystyzcj Podził n dw mnty ow niwidomych E
Sieć odwrotna. Fale i funkcje okresowe
Sieć odwotn Fle i funkcje okesowe o Wiele obiektów w pzyodzie d; o Różne fle ozchodzą się w pzestzeni (zówno w póżni jk i w mteii); o Aby mtemtycznie opisć tkie okesowe zminy stosuje się funkcje sinus
BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:
Niektóe powody aby poznać ten dział: BRYŁA SZTYWNA stanowi dobe uzupełnienie mechaniki punktu mateialnego, opisuje wiele sytuacji z życia codziennego, ma wiele powiązań z innymi działami fizyki (temodynamika,
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH
Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź
Wspomaganie obliczeń za pomocą programu MathCad
Wprowdzenie do Mthcd' Oprcowł:M. Detk P. Stąpór Wspomgnie oliczeń z pomocą progrmu MthCd Definicj zmiennych e f g h 8 Przykłd dowolnego wyrŝeni Ay zdefinowc znienną e wyierz z klwitury kolejno: e: e f
magnetycznym. Rozwiązanie: Na elektron poruszający się z prędkością υ w polu B działa siła Lorentza F L, wektorów B i υ.
Zdni do ozdziłu 8. Zd.8.. Elekton (o msie 3 9 m 9, 0 kg i łdunku elektycznym e.6 0 C ) wpd z pędkością υ 0 7 m / s w obsz jednoodnego pol mgnetycznego o indukcji B 0 T postopdle do linii sił tego pol.
Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I
Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk
REZONATORY MIKROFALOWE
RZONATORY MIKROFALOW Reonto mikofow jest to pewien obs mknięt. Pe obs mknięt oumie się obs pe bei któeo nie m pepłwu eneii, tn. wunki beowe wmusją w kżdm punkcie beu niknie skłdowej stcnej po eektcneo
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (1) Zalety łuków (2) Geometria łuku (2) Geometria łuku (1) Kształt osi łuku (1) Kształt osi łuku (2)
Łuki, skepienia Mechanika ogóna Wykład n Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposó, że podpoy nie
Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)
Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
Czarnodziurowy Wszechświat a dwu-potencjalność pola grawitacyjnego
Zbiniew Osik Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo.07.08 Cznodziuowy Wszehświt dwu-potenjlność pol wityjneo Zbiniew Osik E-mil: zbiniew.osik@mil.om http://oid.o/0000-000-5007-06x http://vix.o/utho/zbiniew_osik
Równania różniczkowe. y xy (1.1) x y (1.2) z xyz (1.3)
ownn oznczkowe Równn óżnczkowe. Wstę Równne óżnczkow nzw ównne zwejące funkcje newdoe zenne nezleżne oz ocodne funkcj newdoc lu c óżnczk. Pzkłd d 5 d d sn d. d d e d d d. z z z z. ównne óżnczkowe zwczjne
IV.2. Efekt Coriolisa.
IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA
Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni
Mechanika kwantowa. Mechanika kwantowa. dx dy dz. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Równanie Schrödingera. zasada zachowania energii
Mecnik kwntow Jk opisć tom wodou? Jk opisć inne cąstecki? Mecnik kwntow Równnie Scödinge Ĥ E ψ H ˆψ = Eψ opeto óżnickow Hmilton enegi funkcj flow d d d + + m d d d opeto enegii kinetcn enegi kinetcn elektonu
L(x, 0, y, 0) = x 2 + y 2 (3)
0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej
Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).
Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy
LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN. Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów
LABORAORIUM DRGANIA I WIBROAKUSYKA MASZYN Wydził Budowy Mszyn i Zządzni Zkłd Wibokustyki i Bio-Dynmiki Systemów Ćwiczenie n WYZNACZANIE PARAMERÓW DYNAMICZNYCH UKŁADÓW metodą dgń swobodnych Ce ćwiczeni:
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.
GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś