O PEWNEJ WERSJI TWIERDZENIA O MAGISTRALI W GOSPODARCE GALE A ZE ZMIENN TECHNOLOGI

Wielkość: px
Rozpocząć pokaz od strony:

Download "O PEWNEJ WERSJI TWIERDZENIA O MAGISTRALI W GOSPODARCE GALE A ZE ZMIENN TECHNOLOGI"

Transkrypt

1 PRZEGLD STATYSTYCZNY R. LXI ZESZYT EMIL PANEK O PEWNEJ WERSJI TWIERDZENIA O MAGISTRALI W GOSPODARCE GALE A ZE ZMIENN TECHNOLOGI 1. WSTP 1 Artyku wpisuje si w nurt tych (nielicznych) prac z teorii magistral, w których dowodzi si tzw. efektu magistrali w niestacjonarnych modelach dynamiki ekonomicznej typu Neumanna-Gale a 2. Do jednej z takich prac naley artyku Panek (2014), w którym udowodnione zostao tzw. sabe twierdzenie o magistrali w niestacjonarnej gospodarce Gale a z rosncym tempem wzrostu produkcji na magistrali goszce, e w dugich okresach czasu (dugich horyzontach gospodarki) T = {0,1,..., t 1 }, t 1 < +, optymalne procesy wzrostu przebiegaj w dowolnie bliskim (w sensie odlegoci ktowej) otoczeniu pewnej cieki wzrostu, zwanej magistral, na której gospodarka rozwija si w najwyszym tempie. Wykorzystujc ide dowodu twierdzenia 5 przedstawionego w pracy Panek (2013b) dowodzimy, e jeeli w niestacjonarnej gospodarce Gale a podobnej do opisanej we wspomnianej pracy Panek (2014) optymalny proces wzrostu w pewnym okresie czasu dociera do magistrali, a ceny (von Neumanna) nie zmieniaj si zbyt gwatownie, to niezalenie od dugoci horyzontu (niezalenie od t 1 ) proces taki przez wszystkie kolejne okresy t T pozostaje blisko magistrali, za wyjtkiem by moe kocowego okresu t MODEL. RÓWNOWAGA CHWILOWA VON NEUMANNA Zakadamy, e czas t zmienia si skokowo, t = 0, 1, 2,. W gospodarce zuywa si i wytwarza n towarów. Przez x(t) = (x 1 (t), x 2 (t),...,x n (t)) 0 oznaczamy wektor towarów zuywanych w okresie t (wektor nakadów), a przez y(t) = (y 1 (t), y 2 (t),...,y n (t)) 0 wektor towarów wytwarzanych w tym okresie (wektor produkcji). Jeeli z nakadów x(t) mona wytworzy produkcj y(t), wtedy o parze (x(t), y(t)) 1 Pomys tego artykuu zrodzi si po zoeniu do druku pracy Panek (2014). Sam model, poza jednym warunkiem, nie róni si od jego wersji przedstawionej we wspomnianej pracy. Prezentujemy go maksymalnie syntetycznie, odsyajc zainteresowanego Czytelnika do pracy autora z 2014 r. 2 Zob. np. Gantz (1980), Joshi (1997), Keeler (1972), Panek (2013a,b, 2014).

2 106 Emil Panek mówimy, e opisuje dopuszczalny proces produkcji w okresie t. Przez oznaczamy zbiór wszystkich dopuszczalnych procesów produkcji w gospodarce w okresie t = 0, 1, 2,. Nazywamy go przestrzeni produkcyjn Gale a w okresie t. Warunek (x(t), y(t)) Z(t) (równowanie (x, y) Z(t) oznacza, e w okresie t z nakadów x(t) moliwe jest wytworzenie produkcji y(t). Przestrzenie produkcyjne Z(t) speniaj nastpujce warunki: (G1) (G2). (G3). (G4) Zbiory Z(t) s domknite w R 2n. Warunki powysze obowizuj w caej pracy. Tak zdeniowane przestrzenie produkcyjne s stokami zanurzonymi w z wierzchokami w 0, których ksztat moe zmienia si z czasem, stosownie do zmian technologii produkcji (szerzej: postpu technologiczno-organizacyjnego) w gospodarce. Z warunku (G2) wynika, e jeeli (x, y) Z(t) oraz (x, y), to x Dalej interesuj nas wycznie niezerowe procesy (x(t), y(t)). Liczb nazywamy wskanikiem technologicznej efektywnoci procesu (x(t), y(t)) Z(t) \{0}. Funkcja jest ciga i dodatnio jednorodna stopnia 0 na obszarze okrelonoci; Panek (2003, tw. 5.2). Liczb = (1) nazywamy optymalnym wskanikiem technologicznej efektywnoci produkcji w niestacjonarnej gospodarce Gale a w okresie t. Zadanie (1) ma rozwizanie, tj. Panek (2013b, tw.2). Mówimy, e para opisuje optymalny proces produkcji w okresie t. Z dodatniej jednorodnoci stopnia 0 funkcji wynika, e procesy te s okrelone z dokadnoci do struktury:.

3 O pewnej wersji twierdzenia o magistrali w gospodarce Gale a ze zmienn technologi 107 Zakadamy, e (G5) W optymalnych procesach produkcji wytwarzane s wszystkie towary 3. Wówczas z (G1) wynika, e. (2) Przez oznaczamy wektor cen towarów w niestacjonarnej gospodarce Gale a w okresie t. Liczb nazywamy wskanikiem ekonomicznej efektywnoci procesu (x(t), y(t)) przy cenach p(t) (przez a, b oznaczamy iloczyn skalarny wektorów a, b). W regularnej gospodarce Gale a w kadym okresie t 0 istniej takie ceny, nazywane cenami von Neumanna, przy których (3) Panek (2003, tw. 5.4). Mówimy, e trójka opisuje stan chwilowej równowagi von Neumanna w niestacjonarnej gospodarce Gale a. W równowadze takiej w kadym okresie t dochodzi do zrównania technologicznej efektywnoci produkcji z efektywnoci ekonomiczn i jest to zawsze najwysza efektywno jak moe osign gospodarka. Ceny w równowadze von Neumanna s okrelone z dokadnoci do struktury (mnoenia przez sta dodatni). Interesuje nas niestacjonarna gospodarka Gale a, w której moliwe jest ustalenie takich cen, aby byy one nierosnce 4 : (G6). 3. TWIERDZENIE O MAGISTRALI Oznaczamy przez T = {0, 1,, t 1 }, t 1 < +, podzbiór okresów czasu, który dalej nazywamy horyzontem gospodarki. Liczba t 1 oznacza jednoczenie dugo horyzontu T. Niech t < t 1. Wemy dwa ssiednie procesy produkcji: 3 Tzw. warunek regularnoci gospodarki, zob. np. Panek (2003, rozdz. 5, pkt 5.1). 4 Warunek jest speniony gdy np. ceny von Neumanna s zawsze (w kadym okresie t) dodatnie.

4 108 Emil Panek. Zakadamy, e gospodarka jest zamknita w tym sensie, e nakady w okresie nastpnym mog pochodzi tylko z produkcji wytworzonej w okresie poprzednim: co wobec (G3) prowadzi do warunku:. (4) Ustalmy pocztkowy wektor produkcji:. (5) O cigu wektorów speniajcym warunki (4), (5) mówimy, e opisuje (y 0, t 1 ) dopuszczalny proces wzrostu (trajektori produkcji) w niestacjonarnej gospodarce Gale a. Wemy ceny von Neumanna i rozpatrzmy nastpujce zadanie wzrostu docelowego (maksymalizacji wartoci produkcji wytworzonej w gospodarce w ostatnim okresie horyzontu T):. Jego rozwizanie nazywamy optymalnym procesem wzrostu (trajektori produkcji) w niestacjonarnej gospodarce Gale a. 5 Zauwamy, e biorc dowolny optymalny proces produkcji mona zawsze decyduj o tym warunki (G1), (G5)) wskaza taki optymalny proces produkcji Z(t + 1), e 5 Przy przyjtych zaoeniach zadanie to ma rozwizanie. Dowód przebiega podobnie jak dowód tw. 5.7 w pracy Panek (2003).

5 O pewnej wersji twierdzenia o magistrali w gospodarce Gale a ze zmienn technologi 109 Zakadamy, e (G7) Niezalenie od dugoci horyzontu T = {0, 1,, t 1 } stnieje cig optymalnych procesów produkcji, w którym: Wówczas cig tworzy dopuszczalny proces wzrostu, w którym czyli (6) t 1 1t T = {0, 1,, t 1 } (tutaj i dalej. Proces taki charakteryzuje si sta w czasie (optymaln) struktur produkcji oraz maksymalnym (cho zmiennym w czasie) tempem wzrostu produkcji. Póprosta wyznacza tzw. magistral produkcyjn (promie von Neumanna) w niestacjonarnej gospodarce Gale a, na której produkcja ronie z okresu na okres w maksymalnym tempie. Wszystkie procesy wzrostu postaci (6) le na magistrali. Zgodnie z (3) ekonomiczna efektywno dowolnego procesu produkcji nie przekracza technologicznej efektywnoci M,t. Maksymaln technologiczn efektywno gospodarka osiga na magistrali. Dochodzi wówczas do zrównania obu tych efektywnoci (i to na najwyszym moliwym do osignicia poziomie). Zasadne jest wic przyjcie, e: (G8) t 0(x(t), y(t)). Jeeli speniony jest ten warunek, to: (7)

6 110 Emil Panek Panek (2003, lemat 5.2) 6. Aby wykluczy sytuacj, gdy z upywem czasu dla pewnej liczby > 0 zakadamy, e: 7 (G9). Przypadek jest mao realistyczny. Oznacza, e z czasem efektywno ekonomiczna procesu zblia si do optymalnej nawet wówczas, gdy struktura procesu odbiega stale od optymalnej o ustalon wielko > 0 Poniewa,t (0, M,t ), wic v s (0,1). Twierdzenie (o magistrali w niestacjonarnej gospodarce Gale a) Ustalmy horyzont T = {0,1,..., t 1 } (0 < t 1 < +) i wemy liczb > 0 Niech liczba v spenia warunek (G9) oraz optymalny proces wzrostu w pewnym okresie dociera do magistrali: Jeeli zachodz warunki (G1) (G8) oraz ceny von Neumanna w okresach,, t 1 speniaj warunek 8 : to. (8) 6 Warunek gosi, e efektywno ekonomiczna dowolnego procesu, w którym struktura produkcji róni si od magistralnej, jest nisza od maksymalnej efektywnoci moliwej do osignicia na magistrali. 7 Z geometrycznego punktu widzenia warunek (G9) wyklucza sytuacj, w której przy t + stoki Z(t) puchn w otoczeniu magistrali N. 8 Ceny speniajce ten warunek nie zmieniaj si gwatownie.

7 O pewnej wersji twierdzenia o magistrali w gospodarce Gale a ze zmienn technologi 111 Dowód. Z (3), (4) oraz denicji funkcji wnioskujemy, e Dla t = t 1 1 mamy:. W myl (G6) a std. Postpujc tak dalej dochodzimy do warunku:. Poniewa wic (naley przyj czyli:. (9) Zaómy, e. Wówczas, zgodnie z (7),

8 112 Emil Panek czyli (10) czc (9), (10) mamy:. (11) Utwórzmy nastpujcy cig wektorów produkcji Cig ten tworzy proces (y 0, t 1 ) dopuszczalny, który dostajemy ze sklejenia pocztkowego fragmentu optymalnej trajektorii (dla i dopuszczalnej trajektorii postaci (6) (dla. Z denicji procesu optymalnego: (12) Z (11), (12) otrzymujemy nierówno: z której zwaywszy na warunki (G9) i (8) wynika, e Otrzymana sprzeczno zamyka dowód.

9 O pewnej wersji twierdzenia o magistrali w gospodarce Gale a ze zmienn technologi UWAGI KOCOWE Przedstawiony model róni si od wikszoci znanych wersji modelu Neumanna- Gale a przede wszystkim zaoeniem o zmiennej technologii (zmieniajcych w czasie przestrzeniach produkcyjnych Z(t)). Gospodarka moe rozwija si w maksymalnym tempie (rónym w rónych okresach) pod warunkiem osignicia optymalnej struktury produkcji charakterystycznej dla magistrali N (swoista droga najszybszego ruchu gospodarki). W standardowych, stacjonarnych modelach Neumanna-Gale a (ze sta technologi) dowodzi si wówczas, e niezalenie od dugoci horyzontu T = {0,1,..., t 1 } optymalny proces wzrostu: przebiega w dowolnie bliskim otoczeniu magistrali, za wyjtkiem co najwyej pewnej liczby okresów pocztkowych i kocowych (innymi sowy, im duszy jest horyzont, tym duej w jego rodkowym okresie gospodarka rozwija si w otoczeniu magistrali), jeeli w pewnym okresie gospodarka dociera do magistrali, wtedy pozostaje na niej przez wszystkie nastpne okresy horyzontu T, poza co najwyej (jednym) kocowym okresem t 1. Pierwsz grup twierdze przyjto w literaturze nazywa silnymi, drug bardzo silnymi twierdzeniami o magistrali 9. Przedstawione w artykule twierdzenie jest ogniwem porednim midzy wersj siln i bardzo siln. Co istotne na tle literatury, jego dowód nie wymaga dodatkowych zaoe o kierunkach zmian technologii w gospodarce 10. Uniwersytet Ekonomiczny w Poznaniu LITERATURA Czeremnych J. N., (1982), Analiz powiedienija trajektorii dynamiki narodnochoziajstwien- nych modeliej, Nauka, Moskwa. Gantz D., (1980), A Strong Turnpike Theorem for a Nonstationary von Neumann-Gale Production Model, Econometrica, 48 (7), Joshi S., (1997), Turnpike Theorems in Nonconvex Nonstationary Envirenments, International Economic Review, 38 (1), Keeler E. B., (1972), A Twisted Turnpike, International Economic Review, 13 (1), Panek E., (2003), Ekonomia matematyczna, Wyd. AEP, Pozna. Panek E., (2013a), Niestacjonarny model von Neumanna z graniczn technologi, Studia Oecnomica Posnaniensia, 1 (1), Zob. np. Takayama (1985, rozdz. 7), Panek (2013a,b). 10 Mamy na myli te nieliczne prace, m.in. Czeremnych (1982, rozdz. 4), Panek (2013a,b), w których przy dowodach magistralnych wasnoci niestacjonarnych gospodarek Neumanna-Gale a (ze zmienn technologi) zakada si zbieno technologii do pewnej technologii granicznej.

10 114 Emil Panek Panek E., (2013b), Saby i bardzo silny efekt magistrali w niestacjonarnej gospodarce Gale a z graniczn technologi, Przegld Statystyczny, 60 (3), Panek E., (2014), Niestacjonarna gospodarka Gale a z rosnc efektywnoci produkcji na magistrali, Przegld Statystyczny, 61 (1), Takayama A., (1985), Mathematical Economics, Cambrige Univ. Press, Cambridge. O PEWNEJ WERSJI TWIERDZENIA O MAGISTRALI W GOSPODARCE GALE A ZE ZMIENN TECHNOLOGI Streszczenie Artyku wpisuje si w nurt nielicznych prac z ekonomii matematycznej, zawierajcych dowody tzw. twierdze o magistrali w modelach niestacjonarnych gospodarek typu Neumanna-Gale a. Wykorzystujc ide dowodu twierdzenia 5 przedstawionego w pracy Panek (2013b) udowodniono wersj poredni- midzy siln i bardzo siln twierdzenia o magistrali w niestacjonarnej gospodarce Gale a goszc, e jeeli w niestacjonarnej gospodarce Gale a optymalny proces wzrostu w pewnym okresie czasu dociera do magistrali, a ceny (von Neumanna) nie zmieniaj si zbyt gwatownie, to niezalenie od dugoci horyzontu proces taki przez wszystkie kolejne okresy (za wyjtkiem co najwyej ostatniego) przebiega w pobliu magistrali. Sowa kluczowe: niestacjonarna gospodarka Gale a, przestrze produkcyjna, technologiczna i ekonomiczna efektywno produkcji, równowaga von Neumanna, magistrala produkcyjna A NEW APPROACH TO THE TURNPIKE THEOREM IN THE GALE ECONOMY WITH CHANGEABLE TECHNOLOGY Abstract This article is part of a trend of few works of mathematical economics containing proofs of the so-called turnpike theorems in the non-stationary Neumann-Gale economies. Using the idea of the proof of theorem 5 in the article Panek (2013b) the intermediate version was proven, that stands between the strong and the very strony turnpike theorem in the non-stationary Gale economy. It states that if in the non-stationary Gale s economy the optimal growth process in a certain period of time reaches the turnpike and the (von Neumann) prices do not change to abruptly, than irrespectively of the length of the horizon, such a process for all subsequent periods (except for perhaps the nal time) can be found in the turnpike s proximity. Keywords: non-stationary Gale economy, production set, technological and economic production efciency, von Neumanna equilibrium, production turnpike

ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ II

ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ II PRZEGLĄD STATYSTYCZNY R. LXII ZESZYT 4 2015 EMIL PANEK 1 ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ II 1. WSTĘP Obrazem geometrycznym zakrzywionej magistrali w niestacjonarnej gospodarce

Bardziej szczegółowo

ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ I

ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ I PRZEGLĄD STATYSTYCZNY R. LXII ZESZYT 2 2015 EMIL PANEK 1 ZAKRZYWIONA MAGISTRALA W NIESTACJONARNEJ GOSPODARCE GALE A. CZĘŚĆ I 1. WSTĘP W teorii magistral mimo upływu czasu do nielicznych należą prace poświęcone

Bardziej szczegółowo

EMIL PANEK, HENRYK J. RUNKA DWA TWIERDZENIA O MAGISTRALI W MODELU VON NEUMANNA 1. WSTĘP

EMIL PANEK, HENRYK J. RUNKA DWA TWIERDZENIA O MAGISTRALI W MODELU VON NEUMANNA 1. WSTĘP PRZEGLĄD STATYSTYCZY R. LIX ZESZYT 2 2012 EMIL PAEK, HERYK J. RUKA DWA TWIERDZEIA O MAGISTRALI W MODELU VO EUMAA 1. WSTĘP W pracy [5] przedstawiono prosty dowód słabego twierdzenia o magistrali w modelu

Bardziej szczegółowo

ISSN Indeks RADA PROGRAMOWA

ISSN Indeks RADA PROGRAMOWA RADA PROGRAMOWA Andrzej S. Barczak, Czesław Domański, Marek Gruszczyński, Krzysztof Jajuga (Przewodniczący), Tadeusz Kufel, Igor G. Mantsurov, Jacek Osiewalski, Sven Schreiber, Mirosław Szreder, D. Stephen

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy

Bardziej szczegółowo

DIAGNOZOWANIE STANÓW ZDOLNO CI JAKO CIOWEJ PROCESU PRODUKCYJNEGO

DIAGNOZOWANIE STANÓW ZDOLNO CI JAKO CIOWEJ PROCESU PRODUKCYJNEGO DIAGNOSTYKA 27 ARTYKUY GÓWNE SZKODA, Diagnozowanie stanów zdolnoci jakociowej 89 DIAGNOZOWANIE STANÓW ZDOLNOCI JAKOCIOWEJ PROCESU PRODUKCYJNEGO Jerzy SZKODA Katedra Eksploatacji Pojazdów i Maszyn Uniwersytetu

Bardziej szczegółowo

Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman

Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman Poprawa efektywnoci metody wstecznej propagac bdu Algorytm wstecznej propagac bdu. Wygeneruj losowo wektory wag. 2. Podaj wybrany wzorzec na wejcie sieci. 3. Wyznacz odpowiedzi wszystkich neuronów wyjciowych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szkoy dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajcego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron

Bardziej szczegółowo

ZASTOSOWANIE ODCINKOWO-LINIOWEGO MINIMODELU DO MODELOWANIA PRODUKCJI SPRZEDANEJ PRZEMYSŁU

ZASTOSOWANIE ODCINKOWO-LINIOWEGO MINIMODELU DO MODELOWANIA PRODUKCJI SPRZEDANEJ PRZEMYSŁU ZASTOSOWANIE ODCINKOWO-LINIOWEGO MINIMODELU DO MODELOWANIA PRODUKCJI SPRZEDANEJ PRZEMYSŁU W artykule przedstawiono now metod modelowania zjawisk ekonomicznych. Metoda odcinkowo-liniowego minimodelu szczególnie

Bardziej szczegółowo

6.2. Baza i wymiar. V nazywamy baz-

6.2. Baza i wymiar. V nazywamy baz- 62 Baza i wymiar V nazywamy baz- Definicja 66 Niech V bdzie przestrzeni, liniow, nad cia/em F Podzbiór B przestrzeni V, je2eli: () B jest liniowo niezale2ny, (2) B jest generuj,cy, tzn lin(b) =V Przyk/ady:

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

stopie szaro ci piksela ( x, y)

stopie szaro ci piksela ( x, y) I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.

1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f. GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Amortyzacja rodków trwałych

Amortyzacja rodków trwałych Amortyzacja rodków trwałych Wydawnictwo Podatkowe GOFIN http://www.gofin.pl/podp.php/190/665/ Dodatek do Zeszytów Metodycznych Rachunkowoci z dnia 2003-07-20 Nr 7 Nr kolejny 110 Warto pocztkow rodków trwałych

Bardziej szczegółowo

Wstp. Warto przepływu to

Wstp. Warto przepływu to 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomoci i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojcia wartoci argumentu i wartoci funkcji.

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Równowaga i stabilność gospodarki konkurencyjnej z zapasami

Równowaga i stabilność gospodarki konkurencyjnej z zapasami Uniwersytet Ekonomiczny w Poznaniu Wydział Informatyki i Gospodarki Elektronicznej Katedra Ekonomii Matematycznej Streszczenie rozprawy doktorskiej Równowaga i stabilność gospodarki konkurencyjnej z zapasami

Bardziej szczegółowo

Pochodna funkcji jednej zmiennej

Pochodna funkcji jednej zmiennej Pochodna funkcji jednej zmiennej Denicja. (pochodnej funkcji w punkcie) Je±li funkcja f : D R, D R okre±lona jest w pewnym otoczeniu punktu D i istnieje sko«czona granica ilorazu ró»niczkowego: f f( +

Bardziej szczegółowo

OCENIANIE ARKUSZA POZIOM ROZSZERZONY

OCENIANIE ARKUSZA POZIOM ROZSZERZONY Numer zadania... Etapy rozwizania zadania Przeksztacenie wzoru funkcji do danej postaci f ( x) lub f ( x) x x. I sposób rozwizania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE ARKUSZA

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich

Bardziej szczegółowo

KONKURENCJA DOSKONA!A

KONKURENCJA DOSKONA!A KONKURENCJA OSKONA!A Bez wzgl"du na rodzaj konkurencji, w jakiej uczestniczy firma, jej celem gospodarowania jest maksymalizacja zysku (minimalizacja straty) w krótkim okresie i maksymalizacja warto"ci

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Wektory w przestrzeni

Wektory w przestrzeni Wektory w przestrzeni Informacje pomocnicze Denicja 1. Wektorem nazywamy uporz dkowan par punktów. Pierwszy z tych punktów nazywamy pocz tkiem wektora albo punktem zaczepienia wektora, a drugi - ko«cem

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

Materiaªy do Repetytorium z matematyki

Materiaªy do Repetytorium z matematyki Materiaªy do Repetytorium z matematyki 0/0 Dziaªania na liczbach wymiernych i niewymiernych wiczenie Obliczy + 4 + 4 5. ( + ) ( 4 + 4 5). ( : ) ( : 4) 4 5 6. 7. { [ 7 4 ( 0 7) ] ( } : 5) : 0 75 ( 8) (

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Ukad graficzny CKE 2013 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. WPISUJE ZDAJCY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRZEGLĄD STATYSTYCZNY

PRZEGLĄD STATYSTYCZNY POLSKA AKADEMIA NAUK KOMITET STATYSTYKI I EKONOMETRII PRZEGLĄD STATYSTYCZNY STATISTICAL REVIEW TOM 62 4 2015 WARSZAWA 2015 WYDAWCA Komitet Statystyki i Ekonometrii Polskiej Akademii Nauk RADA REDAKCYJNA

Bardziej szczegółowo

Równowaga w prostym modelu wymiany

Równowaga w prostym modelu wymiany Równowaga w prostym modelu wymiany Piotr Maćkowiak Katedra Ekonomii Matematycznej Uniwersytet Ekonomiczny w Poznaniu Między teorią a zastosowaniami matematyka w działaniu Będlewo 2015 P.Maćkowiak (KEM

Bardziej szczegółowo

PRZEGLĄD STATYSTYCZNY

PRZEGLĄD STATYSTYCZNY POLSKA AKADEMIA NAUK KOMITET STATYSTYKI I EKONOMETRII PRZEGLĄD STATYSTYCZNY STATISTICAL REVIEW TOM 62 2 2015 WARSZAWA 2015 WYDAWCA Komitet Statystyki i Ekonometrii Polskiej Akademii Nauk RADA REDAKCYJNA

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZCIA EGZAMINU! Miejsce na naklejk MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja dla

Bardziej szczegółowo

Planowanie adresacji IP dla przedsibiorstwa.

Planowanie adresacji IP dla przedsibiorstwa. Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

MAJ Czas pracy: 170 minut. do uzyskania: pobrano z Miejsce na naklejk z kodem KOD. liczby. punktów. pióra z czarnym tuszem

MAJ Czas pracy: 170 minut. do uzyskania: pobrano z   Miejsce na naklejk z kodem KOD. liczby. punktów. pióra z czarnym tuszem Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. Ukad graficzny CKE 03 WPISUJE ZDAJCY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY.

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. 0

Bardziej szczegółowo

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór

Bardziej szczegółowo

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci

1 Przypomnienie wiadomo±ci ze szkoªy ±redniej. Rozwi zywanie prostych równa«i nierówno±ci Zebraª do celów edukacyjnych od wykªadowców PK, z ró»nych podr czników Maciej Zakarczemny 1 Przypomnienie wiadomo±ci ze szkoªy ±redniej Rozwi zywanie prostych równa«i nierówno±ci dotycz cych funkcji elementarnych,

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. Ukad graficzny CKE 00 KOD WPISUJE ZDAJCY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

KOSZTY PLANOWEJ OBSŁUGI TECHNICZNEJ CIGNIKÓW ROLNICZYCH NOWEJ GENERACJI

KOSZTY PLANOWEJ OBSŁUGI TECHNICZNEJ CIGNIKÓW ROLNICZYCH NOWEJ GENERACJI Technica Agraria 2(2) 2003, 53-57 KOSZTY PLANOWEJ OBSŁUGI TECHNICZNEJ CIGNIKÓW ROLNICZYCH NOWEJ GENERACJI Zenon Grze Streszczenie. W pracy dokonano analizy kosztów planowej obsługi technicznej cigników

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWI ZA ZADA W ARKUSZU II

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWI ZA ZADA W ARKUSZU II Nr zadania.1.. Przemiany gazu.. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIZA ZADA W ARKUSZU II PUNKTOWANE ELEMENTY ODPOWIEDZI Za czynno Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy

Bardziej szczegółowo

PRZEGLĄD STATYSTYCZNY

PRZEGLĄD STATYSTYCZNY POLSKA AKADEMIA NAUK KOMITET STATYSTYKI I EKONOMETRII PRZEGLĄD STATYSTYCZNY STATISTICAL REVIEW TOM 63 4 2016 WARSZAWA 2016 WYDAWCA Komitet Statystyki i Ekonometrii Polskiej Akademii Nauk RADA PROGRAMOWA

Bardziej szczegółowo

Równowaga i stabilność rynku konkurencyjnego z krzyżowymi zależnościami między dynamiką cen, popytem na towary i ich podażą

Równowaga i stabilność rynku konkurencyjnego z krzyżowymi zależnościami między dynamiką cen, popytem na towary i ich podażą Monika Majewska * Równowaga i stabilność rynku konkurencyjnego z krzyżowymi zależnościami między dynamiką cen, popytem na towary i ich podażą Wstęp Równowaga od lat pozostaje niezmiennie w centrum zainteresowania

Bardziej szczegółowo

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4 Strona 1 z 23 Andrzej Sładek, Instytut Matematyki UŚl sladek@math.us.edu.pl Letnia Szkoła Instytutu Matematyki 20-23 września

Bardziej szczegółowo

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,

Bardziej szczegółowo

SYMULACYJNE BADANIA GEOMETRII MAGAZYNU PRZY WYKORZYSTANIU PAKIETU KOMPUTEROWEGO OL09

SYMULACYJNE BADANIA GEOMETRII MAGAZYNU PRZY WYKORZYSTANIU PAKIETU KOMPUTEROWEGO OL09 PRACE NAUKOWE POITECHNIKI WARSZAWSKIEJ z. 77 Transport 2011 Mariusz Kostrzewski Wydzia Transportu Politechniki Warszawskiej SYMUACYJNE BADANIA GEOMETRII MAGAZYNU PRZY WYKORZYSTANIU PAKIETU KOMPUTEROWEGO

Bardziej szczegółowo

Funkcja liniowa poziom podstawowy

Funkcja liniowa poziom podstawowy Funkcja liniowa poziom podstawowy Zadanie. (6 pkt) Źródło: CKE 005 (PP), zad. 6. Dane s zbiory liczb rzeczywistych: A x: x B x: x 8x x 6x Zapisz w postaci przedziaów liczbowych zbiory A, B, A B oraz B

Bardziej szczegółowo

Regulamin ustalania wysokoci, przyznawania i wypłacania wiadcze pomocy materialnej dla doktorantów (studia III stopnia ) Akademii Muzycznej im.

Regulamin ustalania wysokoci, przyznawania i wypłacania wiadcze pomocy materialnej dla doktorantów (studia III stopnia ) Akademii Muzycznej im. Regulamin ustalania wysokoci, przyznawania i wypłacania wiadcze pomocy materialnej dla doktorantów (studia III stopnia ) Akademii Muzycznej im. Karola Szymanowskiego w Katowicach KATOWICE 2011 1 Przepisy

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

Twierdzenia ekstremalne teorii plastycznoci

Twierdzenia ekstremalne teorii plastycznoci Twierdzenia ekstremalne teorii plastycznoci Oprócz nonoci przekroju (sprystej i plastycznej) uywane jest take pojcie nonoci granicznej konstrukcji, czyli najwikszego obcienia przenoszonego przez konstrukcj

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH %!%*+,-.*+,/ 0103 6'7 PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH zadanie odpowied punkty 1 A D 3 D 4 E 5 C 6 A 7 A 8 B 9 6 10 zadania 6 11 otwarte 6 1 maksymalna moliwa łczna liczba punktów 6 40 strona 1

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach

Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach Materiały. Konferencji Informatyka w Technologii Metali KomPlasTech24 Zakopane -4 stycznia 24 Optymalizacja procesów odlewania cigłego i walcowania tam w walcach-krystalizatorach P. Sewastjanow, L. Dymowa

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Analiza matematyczna 2; MatematykaS-I 0 lic 21 maja 2018 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(, y b dzie okre±lona przynajmniej na otoczeniu punktu

Bardziej szczegółowo

Sterowalność liniowych uk ladów sterowania

Sterowalność liniowych uk ladów sterowania Sterowalność liniowych uk ladów sterowania W zadaniach sterowania docelowego należy przeprowadzić obiekt opisywany za pomoc a równania stanu z zadanego stanu pocz atkowego ẋ(t) = f(x(t), u(t), t), t [t,

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szkoy dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-PAP-06 POZIOM PODSTAWOWY Czas pracy 0 minut Instrukcja dla zdajcego. Sprawd, czy arkusz egzaminacyjny zawiera 4 stron (zadania

Bardziej szczegółowo

Któr? bojk? DSMB powinienem wybra??

Któr? bojk? DSMB powinienem wybra?? Któr? bojk? DSMB powinienem wybra?? Bojki DSMB (ang. Delayed Surface Marker Buoy), które s? wypuszczane na powierzchni? przez nurków pod koniec nurkowania lub w sytuacjach awaryjnych, nie s??adn? nowo?ci?.

Bardziej szczegółowo

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak

Algebra Liniowa 2. Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Algebra Liniowa 2 Zadania do samodzielnych wicze«wydziaª Elektroniki, I rok Karina Olszak i Zbigniew Olszak Podobie«stwo macierzy, diagonalizacja macierzy 1. Znale¹ macierze przeksztaªcenia liniowego T

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Mgr El"bieta Babula TEORIA KONSUMETA

Mgr Elbieta Babula TEORIA KONSUMETA TEORIA KONSUMETA Krzywa popytu jest rezultatem decyzji podejmowanych przez wszystkich ch!tnych i gotowych do nabycia danego dobra. Nale"y zatem wyja#ni$, w jaki sposób suma decyzji nabywców uk%ada si!

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi

Bardziej szczegółowo

DECYZJA. Warszawa, dnia 4 padziernika 2004 r. GI-DEC-DS-208/04

DECYZJA. Warszawa, dnia 4 padziernika 2004 r. GI-DEC-DS-208/04 Decyzja GIODO z dnia 4 padziernika 2004 r. nakazujca udostpnienie operatorowi telefonii komórkowej, udostpnienie Komendantowi Stray Miejskiej, danych osobowych abonenta telefonu komórkowego, w zakresie

Bardziej szczegółowo

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek

Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Logika intuicjonistyczna

Logika intuicjonistyczna 9 listopada 2011 Plan 1 2 3 4 Plan 1 2 3 4 Intuicjonizm Pogl d w lozoi matematyki wprowadzony w 1912 L. E. J. Brouwera. Twierdzenia matematyczne powstaj dzi ki intuicjom naszego umysªu. Skupienie si na

Bardziej szczegółowo

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017

i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017 i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_

Bardziej szczegółowo

Proste modele o zªo»onej dynamice

Proste modele o zªo»onej dynamice Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ

ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary

Bardziej szczegółowo

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady.

Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie, przykłady. Przedmiot: EKONOMIA MATEMATYCZNA Katedra: Ekonomii Opracowanie: dr hab. Jerzy Telep Temat: Matematyczna teoria produkcji Zagadnienia: Teoria produkcji pojęcie, prawa, izokwanty. Funkcja produkcji pojęcie,

Bardziej szczegółowo

Rysunek przedstawia wykres funkcji y f x. Wska rysunek, na którym jest przedstawiony wykres funkcji y f x 1. A. B. Zadanie 3.

Rysunek przedstawia wykres funkcji y f x. Wska rysunek, na którym jest przedstawiony wykres funkcji y f x 1. A. B. Zadanie 3. VII ZIÓR PRZYKAOWYH ZAA MATURALNYH ZAANIA ZAMKNITE Zadanie ( pkt) Liczba 0 90 9 jest równa 0 00 0 9 7 700 Zadanie ( pkt) Liczba 8 9 jest równa 9 Zadanie ( pkt) Liczba log jest równa log log 0 log 6 log

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

MATERIAŁ WICZENIOWY Z MATEMATYKI

MATERIAŁ WICZENIOWY Z MATEMATYKI Miejsce na naklejk POZNA MATERIAŁ WICZENIOWY Z MATEMATYKI STYCZE 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdajcego 1. Sprawd, czy arkusz zawiera 16 stron (zadania 1 9). Ewentualny brak

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZCIA EGZAMINU! Miejsce na naklejk MMA-P_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 008 Czas pracy 0 minut Instrukcja dla

Bardziej szczegółowo

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10

Matematyka A kolokwium, 27 maja 2015, godz. 18:15 20:10 Matematyka A kolokwium, 7 maja, godz 8: : Poprawiłem: godz :, 4 września r 3 p Rozwiazać x t x t xt = x t x t xt = 6 + t cos3t + 36te 3t 7e 3t Pierwiastkami równania charakterystycznego = λ λ = λ + 3λ

Bardziej szczegółowo

ESTYMACJA WARIANCJI ARYTMETYCZNEGO RUCHU BROWNA NA PODSTAWIE ZNANYCH WARTO CI MINIMUM, MAKSIMUM, KO COWEJ ORAZ DRYFU 1

ESTYMACJA WARIANCJI ARYTMETYCZNEGO RUCHU BROWNA NA PODSTAWIE ZNANYCH WARTO CI MINIMUM, MAKSIMUM, KO COWEJ ORAZ DRYFU 1 PRZEGLD STATYSTYCZNY R. LX ZESZYT 1 2013 GRZEGORZ PERCZAK, PIOTR FISZEDER ESTYMACJA WARIANCJI ARYTMETYCZNEGO RUCHU BROWNA NA PODSTAWIE ZNANYCH WARTOCI MINIMUM, MAKSIMUM, KOCOWEJ ORAZ DRYFU 1 1. WPROWADZENIE

Bardziej szczegółowo

Eugeniusz ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, Kraków

Eugeniusz ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, Kraków Eugeniusz ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, Kraków 1. Wprowadzenie. Szczegółowa analiza poboru mocy przez badan maszyn czy urzdzenie odlewnicze, zarówno w aspekcie technologicznym jak i ekonomicznym,

Bardziej szczegółowo