Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
|
|
- Joanna Kubiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G = <V, E, w> z funkcj kosztu w: E R +. X zbiór wierzchołków grafu G, które nazwiemy terminalami. X = t. Elementy zbioru V\X to tzw. wierzchołki Steinera. Wyjcie: Drzewo rozpinajce wszystkie wierzchołki ze zbioru terminali o minimalnym koszcie. Do drzewa moe nalee dowolny podzbiór wierzchołków Steinera. Przykład Przykład grafu wejciowego w problemie Steinera. Kolorem czerwonym oznaczone s wierzchołki bdce terminalami, za kolorem czarnym wierzchołki Steinera. 1
2 Koszt drzewa Steinera wynosi 11. Kolorem niebieskim oznaczono krawdzie nalece do drzewa Steinera 2. Zastosowania Problem drzewa Steinera ma zastosowania w wielu dziedzinach. Przykładowe zastosowania: problem multicast routingu - terminale w drzewie Steinera s jednoznaczne z komputerami odbiorców, pozostałe wzły sieci to routery. Naley wyznaczy taki zbiór routerów, aby połczy wszystkich odbiorców i zmaksymalizowa szybko połczenia (albo zminimalizowa opónienia). 2
3 projektowanie układów elektronicznych VLSI ( ang. Very Large Scale Integration (VLSI) wicej ni elementów, typowo miliony elementów), w których naley wyznaczy moliwie najkrótsze cieki łczce poszczególne piny. 3. Algorytm dokładny (Hakimi 1971) Problem drzewa Steinera zarówno w sformułowaniu klasycznym jak i we wszystkich odmianach naley do problemów NPtrudnych. Algorytm dokładny rozwizujcy ten problem ma zatem koszt ponadwielomianowy nie moe by zastosowany do grafów, które maj wicej ni wierzchołków, z powodu nierozsdnego czasu wykonania. W algorytmie Hakimi, który jest algorytmem dokładnym, wyznaczamy wszystkie podzbiory zbioru wierzchołków nie bdcych terminalami. Liczno tych podzbiorów waha si od 0 3
4 do liczby wierzchołków Steinera. Dla kadego z podzbiorów wyznaczamy drzewo spinajce wierzchołki terminalne z tym podzbiorem. Jeli rozmiar tego drzewa jest mniejszy od rozmiaru drzewa znalezionego w kroku poprzednim, zastpujemy stare drzewo, nowym. Drzewo o minimalnym koszcie jest minimalnym drzewem Steinera. algorytmu Hakimi: min=; for (A V/X) { T = minimalne drzewo spinajce podzbiór A ze wszystkimi terminalami ; if ( T istnieje ) { if (w(t)<min) // w(t) koszt drzewa T { T min = T; min = w(t); } } } return T min ; 4
5 Przykład Wierzchołki {a, c, g, i} to terminale, za wzły {b, d, e, f, h} to wierzchołki Steinera. W kadym kroku algorytmu Hakimi sprawdzany jest jeden podzbiór A wierzchołków Steinera. Najliczniejszy z tych podzbiorów jest picioelementowy: {b, d, e, f, h}. Kolejne podzbiory maj rozmiar mniejszy od 5. Wród wszystkich podzbiorów jest równie podzbiór pusty. Dla kadego podzbioru A wyznaczane jest minimalne drzewo T spinajce ten podzbiór oraz wszystkie terminale wystpujce w grafie. Dla podzbioru A = {b, d, e, f, h} minimalne drzewo spinajce T wyglda nastpujco: 5
6 Dla podzbioru A = {b, d, e} nie istnieje minimalne drzewo rozpinajce łczce wierzchołki ze zbioru A ze wszystkimi terminalami. W tej sytuacji podzbiór A jest odrzucany. Wyznaczajc wszystkie podzbiory dla rozpatrywanego przykładu, okazuje si i podzbiór A = {b, e, h} wygeneruje minimalne drzewo Steinera. Poniej wypisane zostały wszystkie podzbiory A oraz wagi minimalnych drzew spinajcych wierzchołki tych podzbiorów: {b, d, e, f, h} = 14 zapis ten oznacza, e koszt minimalnego drzewa spinajce wierzchołki {b, d, e, f, h} z terminalami wynosi 14. 6
7 {b, d, e} nie istnieje {b, d, f} = 14 {b, d, h} = 12 {b, e, f} - nie istnieje {b, e, h} = 10 {b, f, h} = 12 {d,e,f} = 14 {d, e, h} - nie istnieje {d, f, h} = 13 {e, f, h} - nie istnieje {b, d} - nie istnieje {b, e} - nie istnieje {b, f} - nie istnieje {b, h} - nie istnieje {d, e} - nie istnieje {d, f} - nie istnieje {d, h} - nie istnieje {e, f} - nie istnieje {e,h} - nie istnieje {f, h} - nie istnieje {b} - nie istnieje {d} - nie istnieje {e} - nie istnieje {f} - nie istnieje {h} - nie istnieje {} - nie istnieje Koszt algorytmu dokładnego Generowane s wszystkie podzbiory zbioru wierzchołków Steinera. Liczba elementów w tych podzbiorach wynosi 0, 1,, n t, zatem liczba tych podzbiorów jest równa 2 n-t. Dla kadego podzbioru wyznaczane jest minimalne drzewo rozpinajce ten podzbiór oraz wszystkie terminale. Do generowania minimalnego drzewa rozpinajcego mona wykorzysta algorytm Prima. Koszt tego algorytmu jest rzdu Ο ( mlog n) (pod warunkiem, e kolejka priorytetowa zostanie zrealizowana na kopcu Fibonacciego). Na koszt całego algorytmu ma to niewielki wpływ. Koszt globalny algorytmu jest równy O(2 n-t mlogn). 7
8 4. Algorytm zachłanny Nierozsdny (ponadwielomianowy) koszt rozwiza dokładnych dla problemu drzewa Steinera powoduje, e nie mog by one wykorzystane w praktyce. Opracowano wiele rozwiza aproksymacyjnych dla tego problemu. Najprostsza heurystyka opiera si na technice zachłannej. Algorytm rozpoczyna si od wylosowania terminala. W kolejnych krokach wybierany jest terminal najbliszy poprzedniemu, to jest z najmniejsz wag krawdzi. Nastpnie łczymy nowo wybrany terminal z poprzednim krawdziami najkrótszej cieki midzy nimi. Algorytm koczy si w momencie wykorzystania wszystkich terminali. algorytm zachłanny; x = losowy terminal x X ; T = ({x}, ); for (i = 1; i <=t-1; i++) { s = x; D = algorytm_dijkstry(s); // D tabela minimalnych // odległoci z s v = terminal najbliszy x ; T = T path(s, v); // path(s, v) krawdzie z najkrótszej // cieki midzy s a v } return T; 8
9 Przykład Wierzchołki {a, c, g, i} s terminalami, za wierzchołki { b, d, e, f, h} to wierzchołki Steinera. W pierwszym kroku algorytmu wybierany jest drog losow wierzchołek v bdcy terminalem. Niech v = c. Ustalamy najkrótsze cieki z v do pozostałych terminali. Mona tutaj uy algorytmu Dijkstry, który zwraca tablic odległoci D z danego wierzchołka terminalnego do wszystkich pozostałych wierzchołków. 9
10 Tablica D wyglda nastpujco: D = [ 4, 2, 0, 5, 3, 2, 7, 5, 5] a b c d e f g h i Z tabeli D wybieramy terminalny wierzchołek połoony najbliej wierzchołka c, który nie został jeszcze włczony do drzewa. Najbliszym terminalem w stosunku do c jest wierzchołek a, a odległo do niego wynosi 4. Rozmiar minimalnego drzewa Steinera wynosi teraz 4. Drzewo to zawiera krawdzie z najkrótszej cieki z c do a. Tablica D ulega zmianie, gdy teraz wierzchołek a jest wierzchołkiem startowym w algorytmie Dijkstry. Nowa zawarto tablicy D jest nastpujca: D = [0, 2, 4, 3, 3, 5, 5, 5, 7] a b c d e f g h i W tej sytuacji najbliszym a i niewybranym dotd terminalem jest g. Sytuacj t obrazuje rysunek poniej: 10
11 Po dodaniu kolejnego terminala do drzewa Steinera zwiksza si jego rozmiar do 9. Po raz kolejny tablica D generowana przez algorytm Dijkstry ulega zmianie. Tym razem wierzchołkiem pocztkowym jest wierzchołek g. Tablica D przedstawia si teraz nastpujco: D = [5, 5, 7, 2, 3, 5, 0, 1, 3] a b c d e f g h i Z tablicy tej wybieramy terminal najbliszy g. Jest nim terminal i. Sprawdzamy, czy nie naley do drzewa Steinera. Jeli nie, to dołczamy go do drzewa. Koczymy algorytm w momencie, gdy wszystkie terminale s odwiedzone. Ostatecznie minimalne drzewo Steinera ma rozmiar równy 12 i przedstawia si nastpujco: 11
12 Koszt algorytmu zachłannego dla problemu drzewa Steinera Koszt algorytmu zachłannego w porównaniu z algorytmem dokładnym jest niewielki. Na czas realizacji tego algorytmu ma głównie wpływ wykorzystanie algorytmu Dijkstry. Algorytm ten jest uruchamiany dla kadego terminala, czyli t razy. Koszt algorytmu Dijkstry jest rzdu O(nlogn), a wic koszt globalny algorytmu wynosi O(tnlogn). Algorytmy zachłanny nie zawsze zwraca wynik optymalny. Jako aproksymacji tego algorytmu zostanie omówiona póniej. 5. Algorytm KMB (Kou, Markovsky, Berman) Algorytm KMB, w celu obliczenie minimalnego drzewa Steinera, przebudowuje graf wejciowy, usuwajc z niego wszystkie wierzchołki Steinera. W powstałym grafie pełnym krawdzie midzy terminalami maj wag równ długoci najkrótszych cieek w grafie pocztkowym. 12
13 algorytm KMB; G = <X, E >; // E ={(a, b): a, b X i // w(a, b) = w( minimalna cieka z a do b w G )} T = minimalne drzewo spinajce G ; T = podgraf G taki, e dla kadej krawdzi w T odtwarzamy najkrótsz ciek w G ; return T; Przykład Wierzchołki {a, c, g, i} s terminalami, za wierzchołki {b, d, e, f, h} to wierzchołki Steinera. Pierwszym krokiem algorytmu KMB jest przebudowanie grafu G na graf G. Zastpujemy wszystkie krawdzie midzy terminalami prowadzce przez wierzchołki Steinera jedn krawdzi o koszcie najkrótszej cieki pomidzy tym terminalem w grafie G. 13
14 W momencie utworzenia nowego grafu G wywoływany jest algorytm wyznaczajcy minimalne drzewo rozpinajce graf G. Jeeli zastosowany zostanie algorytm Prima, to minimalne drzewo rozpinajce T grafu G bdzie nastpujce: W ostatnim kroku algorytmu naley odtworzy cieki z grafu G dla kadej krawdzi drzewa T. Uzyskane w ten sposób drzewo T jest wynikiem algorytmu. 14
15 Koszt drzewa T wynosi 12. Koszt algorytmu KMB dla problemu drzewa Steinera Konstrukcja grafu G ma koszt O(t 2 nlogn), poniewa dla kadej pary terminali trzeba ustali najkrótsz ciek midzy tymi terminalami. Wyznaczenie drzewa rozpinajcego T dla grafu G ma koszt O(t 2 logn) (gdy zastosujemy algorytm Prima z kolejk zaimplementowan na kopcu Fibonacciego). Odtworzenie najkrótszych cieek z grafu G dla kadej krawdzi drzewa T ma koszt O(t 2 nlogn) poniewa dla kadej krawdzi z T trzeba wywoła algorytm Dijkstry. Zatem koszt łczny algorytmu KMB wynosi O(t 2 nlogn). 6. Jako aproksymacji algorytmów przyblionych Jako aproksymacji mona okrela stosujc pojcie ograniczenia wzgldnego. W poniszych definicjach bd stosowane nastpujce oznaczenia: C* - koszt rozwizania optymalnego, C koszt rozwizania przyblionego. Def. Powiemy, e algorytm aproksymacyjny ma ograniczenie wzgldne ε(n), gdy dla dowolnych danych wejciowych spełniony jest warunek: C max C *, C C * ε ( n) Algorytm zachłanny i KMB ma stałe ograniczenie wzgldne równe odpowiednio 2 i
oraz spełnia warunki: (*) dla wszystkich wierzchołków
Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Szukanie najkrótszych dróg z jednym ródłem
Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi
Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych
Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych 1. Problem komiwojaera Wejcie: Graf G = pełny, zorientowany z dodatnimi wagami; w - funkcja wag grafu Wyjcie: Najtaszy
Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.
206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu
Przygotował: mgr in. Jarosław Szybiski Projekt okablowania strukturalnego dla I semestru Akademii CISCO we WSIZ Copernicus we Wrocławiu 1. Wstp Okablowanie strukturalne to pojcie, którym okrela si specyficzne
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:.
Temat: Geometria obliczeniowa, cz I. Podstawowe algorytmy geometryczne. Problem sprawdzania przynalenoci punktu do wielokta. Problem otoczki wypukłej algorytmy Grahama, i Jarvisa. 1. Oznaczenia Punkty
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Teoria grafów i sieci 1 / 188
Teoria grafów i sieci / Drzewa z wagami Drzewem z wagami nazywamy drzewo z korzeniem, w którym do ka»dego li±cia przyporz dkowana jest liczba nieujemna, nazywana wag tego li±cia. / Drzewa z wagami Drzewem
Projektowanie algorytmów rekurencyjnych
C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i
12: Znajdowanie najkrótszych ±cie»ek w grafach
12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Kolorowanie wierzchołków
240 Kolorowanie wierzchołków Def. Niech G bdzie grafem prostym. Przez kolorowanie wierzchołków rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, e ssiednie wierzchołki otrzymuj róne liczby
Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Problem straŝaka w drzewach. Agnieszka Skorupka Matematyka Stosowana FTiMS
Problem straŝaka w drzewach Agnieszka Skorupka Matematyka Stosowana FTiMS Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem StraŜaka: Co to jest? Problem
.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.
!"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania
Przykªady problemów optymalizacji kombinatorycznej
Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:
Planowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman
Poprawa efektywnoci metody wstecznej propagac bdu Algorytm wstecznej propagac bdu. Wygeneruj losowo wektory wag. 2. Podaj wybrany wzorzec na wejcie sieci. 3. Wyznacz odpowiedzi wszystkich neuronów wyjciowych
Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } )
1 Pojcie grafu Def. Graf prosty G=(V,E) jest uporzdkowan par dwóch elementów: zbioru wierzchołków V oraz zbioru krawdzi E V V. Krawd pomidzy wierzchołkami u oraz v oznaczamy {u,v}. Graf prosty nie zawiera
DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku
DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Gramatyki regularne i automaty skoczone
Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
VPN Virtual Private Network. Uycie certyfikatów niekwalifikowanych w sieciach VPN. wersja 1.1 UNIZETO TECHNOLOGIES SA
VPN Virtual Private Network Uycie certyfikatów niekwalifikowanych w sieciach VPN wersja 1.1 Spis treci 1. CO TO JEST VPN I DO CZEGO SŁUY... 3 2. RODZAJE SIECI VPN... 3 3. ZALETY STOSOWANIA SIECI IPSEC
Podejście zachłanne, a programowanie dynamiczne
Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów
Multipro GbE. Testy RFC2544. Wszystko na jednej platformie
Multipro GbE Testy RFC2544 Wszystko na jednej platformie Interlab Sp z o.o, ul.kosiarzy 37 paw.20, 02-953 Warszawa tel: (022) 840-81-70; fax: 022 651 83 71; mail: interlab@interlab.pl www.interlab.pl Wprowadzenie
Przykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.
6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich
I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna
I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).
Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Poniszy rysunek przedstawia obraz ukoczonej powierzchni wykorzystywanej w wiczeniu.
Ten rozdział pokae jak tworzy powierzchnie prostoliniowe i trasowane oraz dostarczy niezbdnych informacji o rónych typach powierzchni, które moemy stosowa przy tworzeniu geometrii. Rozdział pokazuje równie
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów
Przeszukiwanie przestrzeni stanów Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia Inynierskie Przestrze stanów jest to czwórka uporzdkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
PROWIZJE Menad er Schematy rozliczeniowe
W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo
Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)
Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys
Algorytmy aproksymacyjne i parametryzowane
Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo
PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH
%!%*+,-.*+,/ 0103 6'7 PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH zadanie odpowied punkty 1 A D 3 D 4 E 5 C 6 A 7 A 8 B 9 6 10 zadania 6 11 otwarte 6 1 maksymalna moliwa łczna liczba punktów 6 40 strona 1
stopie szaro ci piksela ( x, y)
I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.
Instytut Informatyki Uniwersytet Wrocławski. Dane w sieciach. (i inne historie) Marcin Bieńkowski
Dane w sieciach (i inne historie) Marcin Bieńkowski Jak przechowywać dane w sieciach (strony WWW, bazy danych, ) tak, żeby dowolne ciągi odwołań do (części) tych obiektów mogły być obsłużone małym kosztem?
Studium przypadku Case Study CCNA2-ROUTING
Na podstawie oryginału CISCO, przygotował: mgr in. Jarosław Szybiski Studium przypadku Case Study CCNA2-ROUTING Ogólne załoenia dla projektu Przegld i cele Podczas tego wiczenia uczestnicy wykonaj zadanie
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Języki formalne i automaty Ćwiczenia 8
Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA
OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska
Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone
Zagadnienie najkrótszej drogi w sieci
L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy
Symulacja cieek klinicznych w rodowisku PowerDesigner i SIMUL8
Symulacja w Badaniach i Rozwoju Vol. 1, No. 2/2010 Marta LIGNOWSKA Wojskowa Akademia Techniczna, ul. Kaliskiego 2, 00-908 Warszawa E-mail: marta.lignowska@wat.edu.pl Symulacja cieek klinicznych w rodowisku
ELEMENT SYSTEMU BIBI.NET. Instrukcja Obsługi
ELEMENT SYSTEMU BIBI.NET Instrukcja Obsługi Copyright 2005 by All rights reserved Wszelkie prawa zastrzeone!"# $%%%&%'(%)* +(+%'(%)* Wszystkie nazwy i znaki towarowe uyte w niniejszej publikacji s własnoci
FUNKCJE UYTKOWNIKA. Rozbrajanie systemu pod przymusem [Kod przymusu] Blokowanie linii
Instrukcja uytkownika centrali Orbit-5;strona 1 FUNKCJE UYTKOWNIKA FUNKCJA PROCEDURA Uzbrajanie systemu [Kod uytkownika] + [ARM] Uzbrajanie w trybie W domu [Kod uytkownika] + [STAY] Rozbrajanie systemu
Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty
Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Program SMS4 Monitor
Program SMS4 Monitor INSTRUKCJA OBSŁUGI Wersja 1.0 Spis treci 1. Opis ogólny... 2 2. Instalacja i wymagania programu... 2 3. Ustawienia programu... 2 4. Opis wskaników w oknie aplikacji... 3 5. Opcje uruchomienia
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Analiza stanów gry na potrzeby UCT w DVRP
Analiza stanów gry na potrzeby UCT w DVRP Seminarium IO na MiNI 04.11.2014 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP DVRP na potrzeby UCB Analiza
PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Algorytmy aproksymacyjne dla problemów stochastycznych
Algorytmy aproksymacyjne dla problemów stochastycznych Piotr Sankowski Uniwersytet Warszawski PhD Open, 5-6 grudzień, 2008 - p. 1/47 Plan - Wykład III Aproksymacyjne algorytmy online Aproksymacyjne stochastyczne
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf