Poprawa efektywnoci metody wstecznej propagacji bdu. Jacek Bartman
|
|
- Patryk Wierzbicki
- 9 lat temu
- Przeglądów:
Transkrypt
1 Poprawa efektywnoci metody wstecznej propagac bdu
2 Algorytm wstecznej propagac bdu. Wygeneruj losowo wektory wag. 2. Podaj wybrany wzorzec na wejcie sieci. 3. Wyznacz odpowiedzi wszystkich neuronów wyjciowych sieci: y wyj k l = f w j= wyj kj y wyj j 4. Oblicz b"#dy wszystkich neuronów warstwy wyjciowej: wyj k = z k y wyj k 5. Oblicz b"#dy w warstwach ukrytych (pami#taj'c, )e, aby wyznaczy* b"'d w warstwie h -, konieczna jest znajomo* b"#du w warstwie po niej nast#puj'cej - h): h j = d f( du h j h j u ) l k= h k w h kj 6. Zmodyfikuj wagi wg zale)noci: 7. Wró* do punktu 2. h h w = w + h j y h i
3 Wady backpropagationa Nie mo)na zagwarantowa*, i) proces uczenia doprowadzi do odnalezienia minimum globalnego funkc miary b"#du - cz#sto zdarza, )e odnalezione zostaje minimum lokalne, Wybranie niew"aciwego punktu startowego czyli niew"aciwy dobór wartoci pocz'tkowych wag oraz nieodpowiedniej drogi mo)e spowodowa* wejcie w minimum lokalne, którego algorytm nie b#dzie w stanie opuci*. Funkcja miary b"#du jest funkcj' wielokrotnie symetryczn' w wielowymiarowej przestrzeni wag, co powoduje wyst#powanie wielu minimów globalnych i lokalnych. Klasyczna metoda wstecznej propagac b"#dów wymaga du)ej liczby iterac by osi'gn'* zbie)no* oraz jest wra)liwa na wyst#powanie minimów lokalnych. Podstawowy algorytm BP mo)e si# okaza* zbyt wolny, je)eli przyjmie si# za ma"y wspó"czynnik uczenia, z kolei zbyt du)a warto* wspó"czynnika grozi wyst'pieniem oscylac.
4 Poprawa efektywnoci metody BP Na popraw# efektywnoci procesu uczenia mo)e mie* wp"yw wiele czynników: wagi pocz'tkowe - nie mog' by* zbyt du)e; zaleca si# losowy wybór wag, by sygna" wyjciowy nieliniowej cz#ci neuronu by" nieco mniejszy od jednoci. korzystnie wp"ywa kilkukrotne powtarzanie uczenia, rozpoczynaj'ce si# od ró)nych wartoci wag. kolejno* podawania wektorów ucz'cych - zaleca si# podawanie wektorów wzorcowych w losowej kolejnoci. Przedstawione powy)ej propozycje mog' w pewnym stopniu zapobiec problemom pojawiaj'cym si# w trakcie uczenia sieci. Najlepszym rozwi'zaniem jest dokonanie modyfikac samego algorytmu wstecznej propagac b"#dów tak, aby przyspieszy* zbie)no* procesu uczenia oraz unikn'* minimów lokalnych.
5 Wsteczna propagacja bdów z momentum Jednym z rozwi'za7 umo)liwiaj'cych bezpieczne zwi#kszenie efektywnego tempa uczenia bez pogarszania stabilnoci procesu jest zastosowanie momentowej metody wstecznej propagac b"#du - MBP (ang. Momentum BackPropagation).
6 Metoda BP z momentum Istot' metody jest wprowadzenie do procesu uaktualniania wagi pewnej bezw"adnoci tzw. "momentu", proporcjonalnego do zmiany tej wagi w poprzedniej iterac: w ( ) ( t) = w ( t ) + ( t ) y ( t ) + µ w ( t ) w ( t 2) j i Momentum µ (-0,] - wspó"czynnik momentu. Dwa pierwsze sk"adniki po prawej stronie wyra)enia s' identyczne, jak w zwyk"ej metodzie BP, natomiast ostatni uwzgl#dnia poprzedni' zmian# wagi i jest niezale)ny od aktualnej wartoci gradientu.
7 Sk"adnik momentu wp"ywa pozytywnie w sytuacjach gdy: wyst#puj' du)e p"askie odcinki funkc b"#du, kolejne gradienty s' przeciwnie skierowane, uczenie przebiega przez minimum lokalne funkc b"#du, wyst#puj' na powierzchni funkc b"#du tzw. w'wozy (w'skie obszary o stromych cianach bocznych i g"#bokich dnach). Zmiany gradientu o wysokiej cz#stotliwoci (oscylacje w poprzek cian w'wozu) s' eliminowane, a wzmacniany jest sk"adnik gradientu wymuszaj'cy ruch w stron# dna. Sk"adnik momentu nie powinien zdominowa* procesu uczenia, poniewa) grozi to jego niestabilnoci' - aby zapobiec temu kontroluje si# warto* funkc b"#du w trakcie uczenia, doprowadzaj'c do jej wzrostu jedynie w ograniczonym zakresie np. o k procent.
8 Modyfikacje BP ze zmiennymi wspóczynnikami uczenia i momentu Waciwy dobór wspóczynnika uczenia oraz wspóczynnika momentum µ ma duy wpyw na zbieno procesu uczenia. Optymalne wartoci wspó"czynników uczenia i momentu mog' by* ró)ne dla ró)nych iterac, a nawet dla ka)dej z wag danej iterac. Wartoci wspó"czynników uczenia i momentu przyj#te na pocz'tku procesu uczenia sieci mog' okaza* si# niew"aciwe. Znacznie zmniejsza to efektywno* uczenia, a w skrajnym przypadku prowadzi do rozbie)noci procesu uczenia. Rozwi'zanie tego problemu mo)e by* zmiana wspó"czynnika uczenia i momentu w trakcie procesu uczenia sieci.
9 Techniki zmian wspóczynników uczenia i momentum: zastosowanie wi#kszych wartoci oraz µ na pocz'tku uczenia i zmniejszanie ich w miar# zbli)ania si# funkc b"#du do minimum, przyj#ci na pocz'tku procesu uczenia ma"ych wartoci wspó"czynnika uczenia (ewentualnie równie) wspó"czynnika momentu µ). Gdy proces uczenia nabierze tempa wspó"czynniki s' zwi#kszane, by w ko7cowej fazie ponownie ich zmniejszy*, uzale)nienie wspó"czynnika uczenia od wartoci funkc b"#du redniokwadratowego gdy b"'d maleje mo)na zwi#kszy* wspó"czynnik uczenia, gdy ronie nale)y go zmniejszy*. Badania wykazuj', )e dobrze jest zwi#ksza* wspó"czynnik uczenia o warto* sta"', a zmniejsza* go geometrycznie.
10 Metoda przyspieszonej wstecznej propagac Quickprop Algorytm zosta" opracowany przez S.E. Fahlmana w 988 W metodzie tej zak"ada si#, )e funkcja b"#du jest lokalnie paraboloidalna Algorytm modyfikac wag przebiega nast#puj'co: w ( t) ( k) ( ( )) E w k = + wij µ ij wij ( ) ( k) + ( k) w ( t ) w ( t 2) wspó"czynnik prowadzi do zmniejszania wag, nie pozwalaj'c na ich zbyt du)y wzrost. Typowe wartoci s' niewielkie. Wspó"czynnik uczenia mo)e przyjmowa* dwie wartoci: warto* sta"' na starcie uczenia albo warto* zerow'. Wspó"czynnik momentu µ dostosowuje si# adaptacyjnie do aktualnych post#pów w uczeniu. Algorytm Quickprop powoduje du)e przyspieszenie procesu uczenia. Zabezpiecza on przed utkni#ciem w p"ytkim minimum lokalnym
11 Algorytm RPROP Algorytm zosta" opracowany przez M. Riedmillera i H. Brauna (Riedmillera, Brauna 992). Jego nazwa pochodzi od nazwy angielskiej Resilent backpropagation. Istot' metody jest uwzgl#dnienie w procesie aktualizac wagi tylko znaku sk"adowej gradientu (jej warto* jest pomijana): w ( t) = ( ( )) E w k sgn wij Wspó"czynnik uczenia jest uzale)niony od zmian wartoci gradientu. Jeli w obu kolejnych iteracjach znak gradientu jest taki sam nast#puje wzrost, w przeciwnym przypadku zachodzi jego redukcja. Algorytm RPROP powoduje znaczne przyspieszenie procesu uczenia zwaszcza w obszarach o niewielkim nachyleniu funkc b"#du.
12 Metoda Newtona Alternatywne podejcie do zagadnienia minimalizac funkc b"#du polega na próbie osi'gni#cia po"o)onego najni)ej punktu powierzchni b"#du w jednym kroku - co jest osi'galne przy za"o)eniu, )e znany jest kszta"t jej powierzchni. Przyjmuj'c, )e wektor w jest wektorem wszystkich wag (w ca"ej sieci) mo)na wyrazi* warto* gradientu funkc kryterium w otoczeniu pewnego punktu w 0 w postaci szeregu Taylora: 0 w0 E( w ) = E( w ) + H( w ) +... gdzie H jest macierz' drugich pochodnych (hesjanem) funkc b"#du E. dalszych wyrazów szeregu nie uwzgl#dniamy, zak"adaj'c, )e funkcja b"#du ma kszta"t funkc kwadratowej (paraboloidy). W punkcie w, w którym funkcja E(w) osi'ga minimum warto* gradientu wynosi 0, przeto w"anie w = w 0 H E ( w) H hesjan funkc celu - gradient funkc celu
13 W praktyce funkcja b"#du prawie nigdy nie ma kszta"tu paraboloidy, dlatego zwykle nie udaje si# trafi* w punkt rzeczywistego minimum jednym strza"em, oznacza to konieczno* iterowania rozwi'zania zgodnie ze wzorem: w ( t ) = w( t ) H E( w( t ) ) Metoda ta jest bardzo kosztowna numerycznie, poniewa) w ka)dym kroku stosowania algorytmu nale)y odwróci* macierz drugich pochodnych. metoda Newtona bywa niestabilna numerycznie, zw"aszcza w przypadku, gdy punkt startowy nie jest po"o)ony dostatecznie blisko poszukiwanego rozwi'zania
14 Algorytm Levenberga - Marquardta (LM) Jest on jednym z najbardziej efektywnych algorytmów do uczenia sieci jednokierunkowych. K'czy w sobie zbie)no* algorytmu Gaussa - Newtona blisko minimum, z metod' najszybszego spadku, która bardzo szybko zmniejsza b"'d, gdy rozwi'zanie jest dalekie. Wzór opisuj'cy ten algorytm wygl'da nast#puj'co: ( t) = ( H + I E( w( t ) ) w ) paramet Marquardta zmniejsza si# podczas uczenia do 0 du)e (daleko od minimum) metoda najwi#kszego spadku ma"e (blisko od minimum) metoda Newtona H hesjan funkc celu I macierz jednostkowa
15 Warstwy sieci nieliniowej Sie* jednowarstwowa tworzy w przestrzeni wej* lini# prost', która dzieli ow' przestrze7 na dwa obszary. W jednym z nich s' punkty reprezentuj'ce obiekty akceptowane przez neuron, w drugim za - odrzucane. Sie dwuwarstwowa wyznacza w przestrzeni wej wypuky i spójny obszar, w którym znajduj# si$ punkty odpowia-daj#ce akceptowanym przez sie obiektom wejciowym Sie trójwarstwowej wyznacza taki obszar pozytywnej odpo-wiedzi, który nie musi by ani spójny, ani wypuky Sie trójwarstwowa moe rozwi#za kady rodzaj zadania. Rónice mi$dzy sieciami o rónej liczbie warstw wyst$puj# tylko w sieciach nieliniowych. Sie liniowa zawsze, niezalenie od iloci warstw, dzieli obszar przestrze) wej lini# prost#.
16 Rozmiary warstw sieci W warstwie wejciowej liczba neuronów musi by* równa d"ugoci wektora ucz'cego (iloci podawanych na sie* jednoczenie sygna"ów) Liczba neuronów w warstwie wyjciowej musi by* równa iloci rozró)nialnych przez sie* klas Iloci neuronów w warstwie ukrytej nie mo)na precyzyjnie okreli*! l = nm l = log2 s s liczba rozró)nianych klas n ilo* wej* sieci m ilo* wyj* sieci
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23
Bardziej szczegółowoPOPRAWA EFEKTYWNOŚCI METODY WSTECZNEJ
Nowoczesne techniki informatyczne - Ćwiczenie 6: POPRAWA EFEKTYWNOŚCI METODY BP str. 1 Ćwiczenie 6: UCZENIE SIECI WIELOWARSTWOWYCH. POPRAWA EFEKTYWNOŚCI METODY WSTECZNEJ PROPAGACJI BŁĘDU WYMAGANIA 1. Sztuczne
Bardziej szczegółowoUczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Bardziej szczegółowoWYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Bardziej szczegółowoUczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Bardziej szczegółowoZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ
ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Bardziej szczegółowoElementy Sztucznej Inteligencji
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe wykład Elementy Sztucznej Inteligencji - wykład Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł
Bardziej szczegółowoElementy Sztucznej Inteligencji
Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe Plan Wzorce biologiczne. Idea SSN - model sztucznego neuronu. Perceptron prosty i jego uczenie reguł delta Perceptron wielowarstwowy i jego uczenie
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Bardziej szczegółowoPlanowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
Bardziej szczegółowoWidzenie komputerowe
Widzenie komputerowe Uczenie maszynowe na przykładzie sieci neuronowych (3) źródła informacji: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym, WNT 1996 Zdolność uogólniania sieci neuronowej R oznaczenie
Bardziej szczegółowoSztuczna Inteligencja Tematy projektów Sieci Neuronowe
PB, 2009 2010 Sztuczna Inteligencja Tematy projektów Sieci Neuronowe Projekt 1 Stwórz projekt implementujący jednokierunkową sztuczną neuronową złożoną z neuronów typu sigmoidalnego z algorytmem uczenia
Bardziej szczegółowoTemat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =
Bardziej szczegółowoWYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Bardziej szczegółowoElementy inteligencji obliczeniowej
Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego
Bardziej szczegółowoTemat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Bardziej szczegółowoAlgorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta
Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa
Bardziej szczegółowoWektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:.
Temat: Geometria obliczeniowa, cz I. Podstawowe algorytmy geometryczne. Problem sprawdzania przynalenoci punktu do wielokta. Problem otoczki wypukłej algorytmy Grahama, i Jarvisa. 1. Oznaczenia Punkty
Bardziej szczegółowoKLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy
Bardziej szczegółowoTemat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Bardziej szczegółowoIMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Bardziej szczegółowoWstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Bardziej szczegółowoROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Bardziej szczegółowoElementy pneumatyczne
POLITECHNIKA LSKA W GLIWICACH WYDZIAŁ INYNIERII RODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZDZE ENERGETYCZNYCH Elementy pneumatyczne Laboratorium automatyki (A 3) Opracował: dr in. Jacek Łyczko Sprawdził:
Bardziej szczegółowoUczenie sieci radialnych (RBF)
Uczenie sieci radialnych (RBF) Budowa sieci radialnej Lokalne odwzorowanie przestrzeni wokół neuronu MLP RBF Budowa sieci radialnych Zawsze jedna warstwa ukryta Budowa neuronu Neuron radialny powinien
Bardziej szczegółowoKolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
Bardziej szczegółowoInteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe
Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska
Bardziej szczegółowoTechniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I
Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:
Bardziej szczegółowoAUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING
AUTO-ENKODER JAKO SKŠADNIK ARCHITEKTURY DEEP LEARNING Magdalena Wiercioch Uniwersytet Jagiello«ski 3 kwietnia 2014 Plan Uczenie gª bokie (deep learning) Auto-enkodery Rodzaje Zasada dziaªania Przykªady
Bardziej szczegółowoProjektowanie algorytmów rekurencyjnych
C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2
Bardziej szczegółowoANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Bardziej szczegółowoKADD Minimalizacja funkcji
Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego
Bardziej szczegółowoUkªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Bardziej szczegółowo1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Bardziej szczegółowoNurkowanie z butl? i nurkowanie na wstrzymanym oddechu tego samego dnia wytyczne DAN.
Nurkowanie z butl? i nurkowanie na wstrzymanym oddechu tego samego dnia wytyczne DAN. Jakie s? obecne wytyczne DAN dotycz?ce wykonywania nurkowania z butl? i nurkowania na wstrzymanym oddechu (freedivingu)
Bardziej szczegółowoSieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, Spis treści
Sieci neuronowe do przetwarzania informacji / Stanisław Osowski. wyd. 3. Warszawa, 2013 Spis treści Przedmowa 7 1. Wstęp 9 1.1. Podstawy biologiczne działania neuronu 9 1.2. Pierwsze modele sieci neuronowej
Bardziej szczegółowo1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Bardziej szczegółowoPROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC)
PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) W dotychczasowych systemach automatyki przemysłowej algorytm PID był realizowany przez osobny regulator sprztowy - analogowy lub mikroprocesorowy.
Bardziej szczegółowoMATERIA&!'WICZENIOWY Z MATEMATYKI
Materia!"wiczeniowy zawiera informacje prawnie chronione do momentu rozpocz#cia diagnozy. Materia! "wiczeniowy chroniony jest prawem autorskim. Materia u nie nale$y powiela" ani udost#pnia" w $adnej innej
Bardziej szczegółowo2.4. Algorytmy uczenia sieci neuronowych
2.4. Algorytmy uczenia sieci neuronowych Prosta struktura sieci jednokierunkowych sprawia, że są najchętniej stosowane. Ponadto metody uczenia ich należą również do popularnych i łatwych w realizacji.
Bardziej szczegółowoRynek motoryzacyjny 2011 Europa vs Polska
Rynek motoryzacyjny 2011 Europa vs Polska Rynek cz!"ci motoryzacyjnych nierozerwalnie #$czy si! z parkiem samochodowym, dlatego te% podczas oceny wyników sprzeda%y samochodowych cz!"ci zamiennych nie mo%na
Bardziej szczegółowo1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Bardziej szczegółowoZrównoleglona optymalizacja stochastyczna na dużych zbiorach danych
Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie
Bardziej szczegółowo8. Neuron z ciągłą funkcją aktywacji.
8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i
Bardziej szczegółowoMetody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Bardziej szczegółowoProblem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
Bardziej szczegółowoSieci samoorganizujce si. Jacek Bartman
Sieci samoorganizujce si Po raz pierwszy opracowania na temat sieci samoorganizujcych z konkurencj i ssiedztwem pojawiy si w latach 70-tych. Ich autorem by fi"ski uczony Kohonen sieci Kohonena. Istota
Bardziej szczegółowoPodstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Uczenie maszynowe Sztuczne sieci neuronowe Plan na dziś Uczenie maszynowe Problem aproksymacji funkcji Sieci neuronowe PSZT, zima 2013, wykład 12
Bardziej szczegółowoWprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Bardziej szczegółowoPrzycisk pracy. Przycisk stopu/kasowanie
RUN STOP/RST ELEMENT KLWAIARTURY PRZYCISK RUN PRZYCISK STOP/RST POTENCJOMETR min-max PRZEŁCZNIK NPN/PNP PRZEŁCZNIK 4-KIERUNKOWY FUNKCJA Przycisk pracy Przycisk stopu/kasowanie Czstotliwo Wybór Przycisk
Bardziej szczegółowoRasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa. Rysowanie linii (1) Rysowanie piksela. Rysowanie linii: Kod programu
Rasteryzacja (ang. rasterization or scan-conversion) Grafika rastrowa Rados!aw Mantiuk Wydzia! Informatyki Zachodniopomorski Uniwersytet Technologiczny Zamiana ci!g"ej funkcji 2D na funkcj# dyskretn! (np.
Bardziej szczegółowoArkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.
Ukad graficzny CKE 2013 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. WPISUJE ZDAJCY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN
Bardziej szczegółowoDaniel Kierepka. Kompresja obrazów za pomoc sztucznych sieci neuronowych
Daniel Kierepka Kompresja obrazów za pomoc sztucznych sieci neuronowych We współczesnym wiecie do duym problemem jest przesyłanie danych o znacznej wielkoci w sieciach telekomunikacyjnych. W tej pracy
Bardziej szczegółowoKADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Bardziej szczegółowoZastosowania sieci neuronowych
Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką
Bardziej szczegółowoI Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna
I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania
Bardziej szczegółowoCash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek
Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym
Bardziej szczegółowoWstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka ADALINE.
Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka ADALINE. Maja Czoków, Jarosław Piersa, Andrzej Rutkowski Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 218-1-15/22 Projekt pn.
Bardziej szczegółowoOCENIANIE ARKUSZA POZIOM ROZSZERZONY
Numer zadania... Etapy rozwizania zadania Przeksztacenie wzoru funkcji do danej postaci f ( x) lub f ( x) x x. I sposób rozwizania podpunktu b). Zapisanie wzoru funkcji w postaci sumy OCENIANIE ARKUSZA
Bardziej szczegółowoWymierne korzyci wynikajce z analizy procesów
Wymierne korzyci wynikajce z analizy procesów Analiza procesu jest narzdziem do osignicia wyszej efektywnoci organizacji (midzy innymi). Wymaga ona zbudowania modelu procesu biznesowego bdcego opisem funkcjonowania
Bardziej szczegółowostopie szaro ci piksela ( x, y)
I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.
Bardziej szczegółowoNumeryczne zadanie wªasne
Rozdziaª 11 Numeryczne zadanie wªasne W tym rozdziale zajmiemy si symetrycznym zadaniem wªasnym, tzn. zadaniem znajdowania warto±ci i/lub wektorów wªasnych dla macierzy symetrycznej A = A T. W zadaniach
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja
Bardziej szczegółowoprzewidywania zapotrzebowania na moc elektryczn
do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)
Bardziej szczegółowoODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y
Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich
Bardziej szczegółowoMetody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element dwuwymiarowy liniowy : belka
etody komputerowe i obliczeniowe etoda Elementów Skoczonych Element dwuwymiarowy liniowy : belka Jest to element bardzo podobny do prta: współrzdne lokalne i globalne jego wzłów s takie same nie potrzeba
Bardziej szczegółowoWprowadzenie do Sieci Neuronowych Laboratorium 05 Algorytm wstecznej propagacji błędu
Wprowadzenie do Sieci Neuronowych Laboratorium Algorytm wstecznej propagacji błędu Maja Czoków, Jarosław Piersa --7. Powtórzenie Perceptron sigmoidalny Funkcja sigmoidalna: σ(x) = + exp( c (x p)) () Parametr
Bardziej szczegółowo6. Perceptron Rosenblatta
6. Perceptron Rosenblatta 6-1 Krótka historia perceptronu Rosenblatta 6-2 Binarne klasyfikatory liniowe 6-3 Struktura perceptronu Rosenblatta 6-4 Perceptron Rosenblatta a klasyfikacja 6-5 Perceptron jednowarstwowy:
Bardziej szczegółowoRozdziaª 13. Przykªadowe projekty zaliczeniowe
Rozdziaª 13 Przykªadowe projekty zaliczeniowe W tej cz ±ci skryptu przedstawimy przykªady projektów na zaliczenia zaj z laboratorium komputerowego z matematyki obliczeniowej. Projekty mo»na potraktowa
Bardziej szczegółowoMetody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).
Bardziej szczegółowoAlgorytm propagacji wstecznej
Algorytm propagacji wstecznej M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-16 Powtórzenie Architektury sieci Dlacezgo MLP? W sieciach
Bardziej szczegółowowiedzy Sieci neuronowe (c.d.)
Metody detekci uszkodzeń oparte na wiedzy Sieci neuronowe (c.d.) Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Metody detekci uszkodzeń oparte na wiedzy Wprowadzenie
Bardziej szczegółowoWstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra
Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów
Bardziej szczegółowoMetody Obliczeniowe w Nauce i Technice
9 - Rozwiązywanie układów równań nieliniowych Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec
Bardziej szczegółowoKlonowanie MAC adresu oraz TTL
1. Co to jest MAC adres? Klonowanie MAC adresu oraz TTL Adres MAC (Media Access Control) to unikalny adres (numer seryjny) kadego urzdzenia sieciowego (jak np. karta sieciowa). Kady MAC adres ma długo
Bardziej szczegółowoTemat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi
Bardziej szczegółowoUczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0
Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm
Bardziej szczegółowoWstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Bardziej szczegółowowiczenie 5 Woltomierz jednokanaowy
wiczenie 5 Woltomierz jednokanaowy IMiO PW, LPTM, wiczenie 5, Woltomierz jednokanaowy -2- Celem wiczenia jest zapoznanie si# z programow% obsug% prostego przetwornika analogowo-cyfrowego na przykadzie
Bardziej szczegółowoKONKURENCJA DOSKONA!A
KONKURENCJA OSKONA!A Bez wzgl"du na rodzaj konkurencji, w jakiej uczestniczy firma, jej celem gospodarowania jest maksymalizacja zysku (minimalizacja straty) w krótkim okresie i maksymalizacja warto"ci
Bardziej szczegółowoMATERIAŁ WICZENIOWY Z MATEMATYKI
Miejsce na naklejk POZNA MATERIAŁ WICZENIOWY Z MATEMATYKI STYCZE 010 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdajcego 1. Sprawd, czy arkusz zawiera 16 stron (zadania 1 9). Ewentualny brak
Bardziej szczegółowoKonspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce
mgr Tomasz Grbski Konspekt lekcji matematyki klasa 4e Liceum Ogólnokształcce Temat: Dyskusja nad liczb rozwiza równania liniowego i kwadratowego z wartoci bezwzgldn i parametrem. Czas trwania: 45 minut.
Bardziej szczegółowowiedzy Sieci neuronowe
Metody detekcji uszkodzeń oparte na wiedzy Sieci neuronowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Wprowadzenie Okres kształtowania się teorii sztucznych sieci
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
Bardziej szczegółowoRys1. Schemat blokowy uk adu. Napi cie wyj ciowe czujnika [mv]
Wstp Po zapoznaniu si z wynikami bada czujnika piezoelektrycznego, ramach projektu zaprojektowano i zasymulowano nastpujce ukady: - ródo prdowe stabilizowane o wydajnoci prdowej ma (do zasilania czujnika);
Bardziej szczegółowoSZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWI ZA ZADA W ARKUSZU II
Nr zadania.1.. Przemiany gazu.. SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIZA ZADA W ARKUSZU II PUNKTOWANE ELEMENTY ODPOWIEDZI Za czynno Podanie nazwy przemiany (AB przemiana izochoryczna) Podanie nazwy
Bardziej szczegółowoTemat: Sieci neuronowe oraz technologia CUDA
Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w
Bardziej szczegółowo1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Bardziej szczegółowoWst p do sieci neuronowych, wykªad 05a Algorytm wstecznej propagacji bª du
Wst p do sieci neuronowych, wykªad 05a M. Czoków, J. Piersa Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika w Toruniu 2012-11-14 Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w
Bardziej szczegółowoProjektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania
Bardziej szczegółowoSztuczne Sieci Neuronowe
Kernel. 2004 nr 1 s. 16 19 Sztuczne Sieci Neuronowe Dr Zdzisław Stgowski Wydział Fizyki i Techniki Jdrowej, AGH Wstp W artykule tym chciałbym przybliy czytelnikowi pojcie Sztuczne Sieci Neuronowe (w skrócie
Bardziej szczegółowoWYKŁAD 9. Wzorce projektowe czynnociowe Observer Visitor
WYKŁAD 9 Wzorce projektowe czynnociowe Observer Visitor Behavioral Design Pattern: Observer [obj] Okrela relacj jeden-do-wielu midzy obiektami. Gdy jeden z obiektów zmienia stan, wszystkie obiekty zalene
Bardziej szczegółowoAmortyzacja rodków trwałych
Amortyzacja rodków trwałych Wydawnictwo Podatkowe GOFIN http://www.gofin.pl/podp.php/190/665/ Dodatek do Zeszytów Metodycznych Rachunkowoci z dnia 2003-07-20 Nr 7 Nr kolejny 110 Warto pocztkow rodków trwałych
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Bardziej szczegółowoMAJ Czas pracy: 170 minut. do uzyskania: pobrano z Miejsce na naklejk z kodem KOD. liczby. punktów. pióra z czarnym tuszem
Arkusz zawiera informacje prawnie chronione do momentu rozpoczcia egzaminu. Ukad graficzny CKE 03 WPISUJE ZDAJCY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY.
Bardziej szczegółowoWprowadzenie do algorytmów. START
1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b
Bardziej szczegółowoSieci jednokierunkowe wielowarstwowe typu sigmoidalnego
Sieci jednokierunkowe wielowarstwowe typu sigmoidalnego Sieć jednowarstwowa Rys.1 Schemat sieci jednowarstwowej 2 Sieć jednowarstwowa Cechy sieci jednowarstwowej: Tworzą ją neurony ułożone w jednej warstwie,
Bardziej szczegółowoGramatyki regularne i automaty skoczone
Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja
Bardziej szczegółowo