Temat: Algorytmy zachłanne
|
|
- Urszula Krawczyk
- 8 lat temu
- Przeglądów:
Transkrypt
1 Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi ona do globalnie optymalnego rozwizania. 1. Problem kasjera Problem Kasjer ma wyda reszt, bdc dowoln kwot midzy 0,01$ a 0,99$, przy uyciu minimalnej liczby monet. Rozwizanie oparte na algorytmie zachłannym Najpierw uywamy monety o najwikszej dopuszczalnej wartoci, redukujc w ten sposób problem do wypłacenia mniejszej kwoty. Przykład Aby wyda 0,94 $, kasjer wypłaci: - półdolarówk (zostawiajc do zapłacenia 0,44 $), nastpnie - wierdolarówk (zostaje 0,19 $), - dziesiciocentówk ( zostaje 0,09 $), - piciocentówk (zostaje 0,04 $) i w kocu - cztery jednocentówki W sumie kasjer wypłaci osiem monet. Jest to minimalna liczba i faktycznie algorytm zachłanny jest optymalny dla monet amerykaskich. Jak jest dla innych systemów monetarnych? (Sprawd!!!)
2 2. Problem wyboru zaj Problem = składajcy si z n proponowanych zaj, do których maj by przydzielone zasoby, takie jak na przykład sala wykładowa, w której moe si odbywa w danej chwili tylko jedno z tych zaj. Kade zajcia maj swój czas rozpoczcia s i oraz czas zakoczenia f i, takie, e Dany jest zbiór S { 1,2,...,n } s i f i. Jeeli zajcia o numerze i zostan wytypowane, to zajmuj zasób czasu s, f [ s i, f i ). Zajcia o numerze i oraz j s zgodne, jeli przedziały [ i f i ) s, i [ ) nie zachodz na siebie ( czyli si f j lub s j fi ). Problem wyboru zaj polega na wyborze najwikszego podzbioru parami zgodnych zaj. Rozwizanie Bez utraty ogólnoci zakładamy, e zajcia s uporzdkowane ze wzgldu na czas zakoczenia: f 1 f... Jeeli powysze załoenie nie jest spełnione, to przed realizacj algorytmu naley posortowa cig czasów zakoczenia (optymalny koszt sortowania O(nlogn). Type Tabs = array[1..n] of Word; Tabf = array[1..n] of Real; var s: Tabs; f: Tabf; procedure ACTIVITY_SELECTOR(s: Tabs; f: Tabf); var i, j: Word; begin A:={1}; j:=1; for i:=2 to n do if s[i] >= f[j] then begin A:=A {i}; j:=i; end; end; Wynikiem powyszej procedury jest zbiór A zawierajcy numery zaj. Zmienna j zawiera ostatnio dodane do A zajcia. 2 f n j j
3 Przykład i s i f i czas
4 Powyszy schemat ilustruje działanie procedury ACTIVITY_SELECTOR na 11- elementowym zbiorze zaj. Kady wiersz na rysunku odpowiada jednej iteracji ptli "for". Strzałka w lewo wskazuje zajcia odrzucone, strzałka w prawo - zajcia wybrane i dodane do zbioru A. Koszt czasowy Zakładajc, e dane wejciowe s uporzdkowane rosnco według czasów zakoczenia zaj, procedura ACTIVITY_SELECTOR dla n-elemen- towego zbioru zaj działa w czasie Θ(n). Zajcia wybierane procedur ACTIVITY_SELECTOR maj zawsze najwczeniejszy czas zakoczenia wród wszystkich zaj. Po wybraniu wszystkich zaj ze zbioru A pozostaje maksymalna ilo nie zajtego czasu. 3. Ogólne własnoci metody zachłannej Jak przekona si czy zastosowanie strategii zachłannej daje optymalne rozwizanie problemu? Problemy, dla których moe by zastosowana strategia zachłanna maj dwie cechy charakterystyczne: własno wyboru zachłannego, własno optymalnej podstruktury. a) Własno wyboru zachłannego Jeeli wybory "lokalne" s optymalne, to wybór "globalny" (ostateczny) jest optymalny. Rónica midzy strategi zachłann a programowaniem dynamicznym polega na tym, e w programowaniu dynamicznym w kadym kroku podejmowane s decyzje, których wybór zaley od rozwiza podproblemów. W algorytmie zachłannym wybory s podejmowane jako najlepsze (z punktu widzenia zadania) w danej chwili. Wybory podejmowane w algorytmie zachłannym nie s zalene od wyborów przeszłych, w przeciwiestwie do wyborów podejmowanych przy strategii programowania dynamicznego. Mona formalnie udowodni (stosujc metod indukcji), e dany problem ma własno wyboru zachłannego.
5 b) Własno optymalnej podstruktury Problem ma własno optymalnej podstruktury, jeeli optymalne rozwizanie jest funkcj optymalnych rozwiza podproblemów. Ta własno jest równie spełniona dla problemów rozwizywalnych metod programowania dynamicznego. Na przykład dla problemu wyboru zaj własno optymalnej podstruktury polega na tym, e: Jeeli optymalne rozwizanie A tego problemu rozpoczyna si od zaj o numerze 1, to A' = A \{1} jest optymalnym rozwizaniem problemu optymalnego wyboru zaj dla zbioru S' = { i S : s i f 1 }. Przykład Dyskretny problem plecakowy Złodziej rabujcy sklep znalazł n przedmiotów; i-ty przedmiot ma warto c i złotych i way w i kilogramów, gdzie c i i w i s nieujemnymi liczbami całkowitymi. Dy on do zabrania jak najwartociowszego łupu, ale do swojego plecaka nie moe wzi wicej ni W kilogramów. Złodziej nie moe dzieli przedmiotów (zabra do plecaka tylko cz wybranego przedmiotu) ani wielokrotno przedmiotu. Interesuje nas odpowied na pytanie: Jakie przedmioty z puli n wybranych przedmiotów moe zabra złodziej, przy wymienionych wyej ograniczeniach. Dyskretny problem plecakowy nie moe by rozwizany metod zachłann. Czy dyskretny problem plecakowy ma własno wyboru zachłannego? Odpowied: NIE Kontrprzykład Dane: n=3. Zbiór wybranych przedmiotów składa si z nastpujcych elementów: - Przedmiot 1 o wadze 10 kg i wartoci 60 zł - Przedmiot 2 o wadze 20 kg i wartoci 100 zł - Przedmiot 3 o wadze 30 kg i wartoci 120 zł Plecak ma maksymaln pojemno 50 kg. Kryterium wyboru przy zastosowaniu metody zachłannej jest cena jednostkowa, czyli cena 1 kg przedmiotu. Według tego kryterium najwysz cen jednostkow ma :
6 - Przedmiot 1 (6 zł/kg), potem - Przedmiot 2 (5 zł/kg), w kocu - Przedmiot 3 (4 zł/kg). i to włanie Przedmiot 1 zostałby wybrany jako pierwszy. Nastpny wybrany byłby Przedmiot 2. Do plecaka nie trafiłby Przedmiot 3, poniewa wszystkie trzy przedmioty maj za du wag łczn (60 kg). Rozwizanie polegajce na wyborze Przedmiotu 1 i Przedmiotu 2 nie jest optymalne. Rozwizaniem optymalnym jest natomiast wybór Przedmiotu2 i Przedmiotu 3 (łczna waga wynosi 50 kg, łczna warto 220 zł). Czy dyskretny problem plecakowy ma własno optymalnej podstruktury? Odpowied: TAK. Dyskretny problem plecakowy wykazuje cech optymalnej podstruktury. Rozwamy najwartociowszy ładunek plecaka o masie nie wikszej ni W. Jeeli usuniemy z tego ładunku przedmiot j o wadze w j, to pozostajcy ładunek jest najwartociowszym zbiorem przedmiotów o wadze nie przekraczajcej W - w j, jakie złodziej moe wybra z n-1 oryginalnych przedmiotów z wyjtkiem j. Okazuje si, e dyskretny problem plecakowy mona rozwiza stosujc technik programowania dynamicznego. Cigły problem plecakowy Cigły problem plecakowy róni si od dyskretnego problemu plecakowego tym, e złodziej moe zabiera ułamkowe czci przedmiotów (przedmioty trzeba teraz raczej nazywa substancjami). Cigły problem plecakowy moe by rozwizany metod zachłann. Czy dyskretny problem plecakowy ma własno wyboru zachłannego? Odpowied: TAK Algorytm 1) Policzy cen jednostkow kadego przedmiotu. 2) Zabra najwiksz moliw ilo najbardziej wartociowej substancji.
7 3) Jeli zapas tej substancji si wyczerpał, a w plecaku wci jest jeszcze wolne miejsce, złodziej wybiera nastpn pod wzgldem ceny jednostkowej substancj i wypełnia ni plecak. 4) Kroki 2 i 3 s powtarzane do momentu, gdy plecak bdzie ju pełen. Powyszy algorytm wymaga, aby substancje były posortowane według malejcej ceny jednostkowej. Przy tym załoeniu wybór okrelony w algorytmie ma własno wyboru zachłannego. Przykład Dane jak w przykładzie dla dyskretnego problemu plecakowego. Przypomnijmy: - Przedmiot 1 (Substancja 1) o wadze 10 kg i wartoci 60 zł (6 zł/kg) - Przedmiot 2 (Substancja 2) o wadze 20 kg i wartoci 100 zł (5 zł/kg) - Przedmiot 3 (Substancja 3) o wadze 30 kg i wartoci 120 zł (4 zł/kg) Plecak ma maksymaln pojemno 50 kg. Rozwizanie: Złodziej wkłada do plecaka : 10 kg Substancji 1 (warto 60 zł), 20 kg Substancji 2 (warto 100 zł), 20 kg Substancji 3 (warto 80 zł) Łczna warto wynosi: 60 zł zł + 80 zł = 240 zł. Czy cigły problem plecakowy ma własno optymalnej podstruktury? Odpowied: TAK. Jeeli usuniemy z optymalnego ładunku w kilogramów pewnej substancji j, to pozostajcy ładunek powinien by najwartociowszym ładunkiem o wadze co najwyej W-w, który złodziej moe skompletowa z n- 1 oryginalnych substancji, plus w j - w kilogramów substancji j. Koszt czasowy Sortowanie cigu substancji według kosztu jednostkowego jest realizowane kosztem optymalnym Θ(nlogn). Zasadniczy algorytm rozwizujcy cigły problem plecakowy ma koszt Θ(n). Zatem koszt
8 łczny wynosi Θ(nlogn). 4. Przykłady zastosowania strategii zachłannej - algorytm kompresji plików metod Huffmana - algorytm Kruskala wyznaczania minimalnego drzewa rozpinajcego grafu
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Ćwiczenie 3 Programowanie dynamiczne
Ćwiczenie 3 Programowanie dynamiczne [źródło: Wprowadzenie do algorytmów, T.H. Cormen, Ch.E. Leiserson, R.L.Rivest, Wyd. Naukowo-Techniczne Warszawa, 2001; ZłoŜoność obliczeniowa problemów kombinatorycznych,
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Algorytmy zachłanne. dr inż. Urszula Gałązka
Algorytmy zachłanne dr inż. Urszula Gałązka Algorytm zachłanny O Dokonuje wyboru, który w danej chwili wydaje się najkorzystniejszy. O Mówimy, że jest to wybór lokalnie optymalny O W rzeczywistości nie
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Szukanie najkrótszych dróg z jednym ródłem
Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek
Wektor o pocztku i kocu odpowiednio w punktach. Prosta zawierajca punkty p i q: pq Półprosta zaczynajca si w punkcie p i zawierajca punkt q:.
Temat: Geometria obliczeniowa, cz I. Podstawowe algorytmy geometryczne. Problem sprawdzania przynalenoci punktu do wielokta. Problem otoczki wypukłej algorytmy Grahama, i Jarvisa. 1. Oznaczenia Punkty
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
Planowanie adresacji IP dla przedsibiorstwa.
Planowanie adresacji IP dla przedsibiorstwa. Wstp Przy podejciu do planowania adresacji IP moemy spotka si z 2 głównymi przypadkami: planowanie za pomoc adresów sieci prywatnej przypadek, w którym jeeli
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA.
INFORMATYKA WYBRANE ALGORYTMY OPTYMALIZACYJNE KRYPTOLOGIA http://www.infoceram.agh.edu.pl Klasy metod algorytmicznych Metoda TOP-DOWN (zstępująca, analityczna) Metoda BOTTOM-UP (wstępująca, syntetyczna)
PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna
I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
stopie szaro ci piksela ( x, y)
I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016
IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Bazy danych. Plan wykładu. Metody organizacji pliku rekordów. Pojcie indeksu. Wykład 11: Indeksy. Pojcie indeksu - rodzaje indeksów
Plan wykładu Bazy Wykład 11: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Podejście zachłanne, a programowanie dynamiczne
Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Zastosowanie programu Microsoft Excel do analizy wyników nauczania
Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego
10.02.2005 r. Optymalizacja lokalizacji i rejonizacji w sieciach dystrybucji. cz. 2. Ustalenie optymalnego układu lokalizacyjnodystrybucyjnego dla wielu uczestników Przyczyn rozwizywania problemu wielu
Wstęp do programowania
Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub
Projektowanie i analiza algorytmów
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład
Bazy danych. Plan wykładu. Klucz wyszukiwania. Pojcie indeksu. Wykład 8: Indeksy. Pojcie indeksu - rodzaje indeksów
Plan wykładu Bazy Wykład 8: Indeksy Pojcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krtowska Katedra Oprogramowania e-mail: mmac@ii.pb.bialystok.pl
Wprowadzenie do algorytmów. START
1 / 15 ALGORYMIKA 2 / 15 ALGORYMIKA Wprowadzenie do algorytmów. SAR 1. Podstawowe okrelenia. Algorytmika dział informatyki, zajmujcy si rónymi aspektami tworzenia i analizowania algorytmów. we: a,b,c delta:=b
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC)
PROCEDURY REGULACYJNE STEROWNIKÓW PROGRAMOWALNYCH (PLC) W dotychczasowych systemach automatyki przemysłowej algorytm PID był realizowany przez osobny regulator sprztowy - analogowy lub mikroprocesorowy.
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego.
Projektowanie i analiza zadaniowa interfejsu na przykładzie okna dialogowego. Jerzy Grobelny Politechnika Wrocławska Projektowanie zadaniowe jest jednym z podstawowych podej do racjonalnego kształtowania
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
Algorytmy i Struktury Danych
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 9: Programowanie
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Dla ułatwienia pracy wydrukuj poni sz instrukcj
Dla ułatwienia pracy wydrukuj ponisz instrukcj Do pracy z formularzami mona uywa przegldarek Internet Explorer 7, 8, 9, Firefox, Opera i Chrome w najnowszych wersjach. UWAGA! nie mona zakłada 2 lub wicej
6.2. Baza i wymiar. V nazywamy baz-
62 Baza i wymiar V nazywamy baz- Definicja 66 Niech V bdzie przestrzeni, liniow, nad cia/em F Podzbiór B przestrzeni V, je2eli: () B jest liniowo niezale2ny, (2) B jest generuj,cy, tzn lin(b) =V Przyk/ady:
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów
Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
{Opracowała Małgorzata Roguska} Tematy lekcji:
Pascal {Opracowała Małgorzata Roguska} Tematy lekcji: c) Ogólne omówienie Pascala, d) rodowisko Borland Pascala 7.0 (BP 7.0), e) Struktura programu w Pascalu, a. identyfikatory b. słowa kluczowe c. literały
oraz spełnia warunki: (*) dla wszystkich wierzchołków
Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Sortowanie Shella Shell Sort
Sortowanie Shella Shell Sort W latach 50-tych ubiegłego wieku informatyk Donald Shell zauważył, iż algorytm sortowania przez wstawianie pracuje bardzo efektywnie w przypadku gdy zbiór jest w dużym stopniu
Strategia czy intuicja?
Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),
Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.
206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Laboratorium elektryczne. Falowniki i przekształtniki - I (E 14)
POLITECHNIKA LSKA WYDZIAŁINYNIERII RODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZDZE ENERGETYCZNYCH Laboratorium elektryczne Falowniki i przekształtniki - I (E 14) Opracował: mgr in. Janusz MDRYCH Zatwierdził:
Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych.
Plan wykładu azy danych Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Dokoczenie SQL Zalenoci wielowartociowe zwarta posta normalna Dekompozycja do 4NF Przykład sprowadzanie do
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.
!"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Zadanie 5 - Algorytmy genetyczne (optymalizacja)
Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania
Scenariusz lekcji. podać definicję metody zachłannej stosowanej w algorytmie; wymienić cechy algorytmów zachłannych;
Scenariusz lekcji 1 TEMAT LEKCJI: Algorytmy zachłanne. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicję metody zachłannej stosowanej w algorytmie; wymienić cechy algorytmów zachłannych; wymienić
Studium przypadku Case Study CCNA2-ROUTING
Na podstawie oryginału CISCO, przygotował: mgr in. Jarosław Szybiski Studium przypadku Case Study CCNA2-ROUTING Ogólne załoenia dla projektu Przegld i cele Podczas tego wiczenia uczestnicy wykonaj zadanie
Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty
Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne
Strategia "dziel i zwyciężaj"
Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1
Metody Informatyczne w Budownictwie Metoda Elementów Skoczonych ZADANIE NR 1 Wyznaczy wektor sił i przemieszcze wzłowych dla układu elementów przedstawionego na rysunku poniej (rysunek nie jest w skali!).
Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym w przypadku sezonowych zwyek
Optymalizacja zaangaowania kapitałowego 4.01.2005 r. w decyzjach typu make or buy. Magazyn czy obcy cz. 2. Cash flow projektu zakładajcego posiadanie własnego magazynu oraz posiłkowanie si magazynem obcym
Zapisów 17 ust. 4-6 nie stosuje si do przesuni midzy kategoriami wydatków, które s wynikiem przeprowadzenia procedury zamówie publicznych.
UMOWY O DOFINANSOWANIE PROJEKTÓW Zapisów 17 ust. 4-6 nie stosuje si do przesuni midzy kategoriami wydatków, które s wynikiem przeprowadzenia procedury zamówie publicznych. Przyjmuje si nastpujc interpretacj:
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Sortowanie danych. Jolanta Bachan. Podstawy programowania
Sortowanie danych Podstawy programowania 2013-06-06 Sortowanie przez wybieranie 9 9 9 9 9 9 10 7 7 7 7 7 10 9 1 3 3 4 10 7 7 10 10 10 10 4 4 4 4 4 4 3 3 3 3 2 2 2 2 2 2 2 3 1 1 1 1 1 1 Gurbiel et al. 2000
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO
Piotr Borowiec PREZENTACJA DZIAŁANIA KLASYCZNEGO ALGORYTMU GENETYCZNEGO Sporód wielu metod sztucznej inteligencji obliczeniowej algorytmy genetyczne doczekały si wielu implementacji. Mona je wykorzystywa
Bazy danych Podstawy teoretyczne
Pojcia podstawowe Baza Danych jest to zbiór danych o okrelonej strukturze zapisany w nieulotnej pamici, mogcy zaspokoi potrzeby wielu u!ytkowników korzystajcych z niego w sposóbs selektywny w dogodnym
PROWIZJE Menad er Schematy rozliczeniowe
W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo
Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu
Programowanie wspóªbie»ne
1 Programowanie wspóªbie»ne wiczenia 5 monitory cz. 1 Zadanie 1: Stolik dwuosobowy raz jeszcze W systemie dziaªa N par procesów. Procesy z pary s nierozró»nialne. Ka»dy proces cyklicznie wykonuje wªasnesprawy,
Przykªady problemów optymalizacji kombinatorycznej
Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:
Multipro GbE. Testy RFC2544. Wszystko na jednej platformie
Multipro GbE Testy RFC2544 Wszystko na jednej platformie Interlab Sp z o.o, ul.kosiarzy 37 paw.20, 02-953 Warszawa tel: (022) 840-81-70; fax: 022 651 83 71; mail: interlab@interlab.pl www.interlab.pl Wprowadzenie
Metoda podziału i ograniczeń
Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.
Projektowanie algorytmów rekurencyjnych
C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i
Algorytmy i struktury danych
Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie
Programowanie od pierwszoklasisty do maturzysty. Grażyna Koba
Programowanie od pierwszoklasisty do maturzysty Grażyna Koba Krąg trzydziestolecia nauki programowania C++, Java Scratch, Baltie, Logo, Python? 2017? Informatyka SP, GIMN, PG 1987 Elementy informatyki
Programowanie wspóªbie»ne
1 Zadanie 1: Bar Programowanie wspóªbie»ne wiczenia 6 monitory cz. 2 Napisz monitor Bar synchronizuj cy prac barmana obsªuguj cego klientów przy kolistym barze z N stoªkami. Ka»dy klient realizuje nast
import java.util.locale; import java.util.scanner; public class Plecak {
import java.util.locale; import java.util.scanner; public class Plecak { static double wybierz_zachlannie(double wagi[], double wartosci[], int liczba_towarow, double pojemnosc){ int korzystna = 0; //na
INSTRUKCJA WYPEŁNIENIA KARTY PROJEKTU W KONKURSIE NA NAJLEPSZY PROJEKT
INSTRUKCJA WYPEŁNIENIA KARTY PROJEKTU W KONKURSIE NA NAJLEPSZY PROJEKT Rubryka 1 Nazwa programu operacyjnego. W rubryce powinien zosta okrelony program operacyjny, do którego składany jest dany projekt.
Bazy danych. Plan wykładu. Przetwarzanie zapyta. Etapy przetwarzania zapytania. Wykład 12: Optymalizacja zapyta. Etapy przetwarzanie zapytania
Plan wykładu Bazy danych Wykład 12: Optymalizacja zapyta Etapy przetwarzanie zapytania Implementacja wyrae algebry relacji Reguły heurystyczne optymalizacji zapyta Kosztowa optymalizacja zapyta Małgorzata
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Instrukcja obsługi programu MechKonstruktor
Instrukcja obsługi programu MechKonstruktor Opracował: Sławomir Bednarczyk Wrocław 2002 1 1. Opis programu komputerowego Program MechKonstruktor słuy do komputerowego wspomagania oblicze projektowych typowych
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 22/23 Outline Programowanie zachłanne Programowanie zachłanne Rodzaje kodów Programowanie zachłanne Kody stałej długości (np. ASCII). Kody zmiennej
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
Izolacja Anteny szerokopasmowe i wskopasmowe
Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z grupowania danych - Rough k-medoids Liczba osób realizuj cych projekt: 1 osoba 1. Wczytanie danych w formatach
CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC?
CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC? Artykuł omawia zalety podatkowe umownego ustanowienia pomidzy pracodawc i pracownikiem współwłasnoci samochodu osobowego Cel słubowy, cel prywatny droga pod górk
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. 1. x y x y
Nr zadania Nr czynnoci Przykadowy zestaw zada nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Etapy rozwizania zadania. Podanie dziedziny funkcji f: 6, 8.. Podanie wszystkich
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa