Wstp. Warto przepływu to

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "Wstp. Warto przepływu to"

Transkrypt

1 177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze kanałów waga łuku odpowiada przepustowoci kanału; c(e)>0 dla kadego łuku e, wyróniamy dwa punkty: s ródło oraz t ujcie, w niniejszym wykładzie digraf sie

2 178 Wstp Def. Przepływem nazywamy funkcj f:v V R spełniajc warunki: 1. dla wszystkich u,v V f(u, c(u, (przepustowo) 2. dla wszystkich u,v V f(u, = f(v,u) (skona symetryczno) 3. dla kadego u V \ {s,t} f ( u, = 0 (zachowanie przepływu) Warto przepływu to f = f ( s,. Uwaga Przyjmujemy, e f X, Y ) = f ( x, y), gdzie X V, Y V. ( x X Def. Jeli f 1, f 2 s przepływami dla tej samej sieci, to sum przepływów f 1, + f 2 definiujemy jako ( f 1 + f 2 )(u, = f 1 (u, + f 2 (u,. y Y

3 179 Sie residualna Def. Niech bdzie dana sie G z funkcj wagow c oraz przepływ f dla G. Przepustowo residualn odpowiadajc f definiujemy jako c f (u, = c(u, f(u, dla wszystkich wierzchołków u,v grafu G. Sie residualna dla f to digraf G f taki, e V(G f ) = V(G) oraz E(G f ) = { u,v V V: c f (u,>0 }. Przykład 6(6) 2 4(4) 3(0) 2(0) 7(3) 5(2) 7(2) 4(2) 1(0) 5(5) 8(4) 3(3) 5(4) 9(6) 2(1) (1) 6 Graf G (etykieta krawdzi to c(f) ) Graf G f (etykiety to c f )

4 180 Suma przepływów Lemat Niech G, G f bd odpowiednio sieci oraz sieci residualn utworzon na podstawie przepływu f oraz niech f bdzie przepływem w sieci G f. Wówczas f + f jest przepływem w G o wartoci f + f. Dowód: Sprawdzamy czy f + f jest przepływem: 1. (przepustowo): (f + f )(u, = f(u, + f (u, f(u, + c f (u, = = c(u, c f (u, + c f (u, = c(u, 2. (skona symetryczno): (f + f )(u, = f(u, + f (u, = f(v,u) f (v,u) = = ( f(v,u) + f (v,u) ) = (f + f )(v,u) 3. (zachowanie przepływu): ( f + f ')( u, = ( f ( u, + f '( u, ) = f ( u, + f '( u, = = 0 Warto: f + f ' = ( f + f ')( s, = f ( s, + f '( s, = f + f '

5 181 cieka powikszajca Def.ciek powikszajc nazywamy dowoln ciek od ródła s do ujcia t w sieci residualnej G f. Przepustowoci residualncieki P jest liczba c f (P) = min{ c f (u,: (u, E(P) } Lemat Niech P bdzie ciek powikszajc dla przepływu f i sieci residualnej G f. Wówczas funkcja c f ( P) gdy ( u, E( P) fp ( u, = c f ( P) gdy ( v, u) E( P) 0 else jest przepływem w sieci G f takim, e f P =c f (P)>0. Ponadto dla przepływu f = f + f P zachodzi f > f. Wniosek Przy załoeniach z powyszego lematu mamy, e f + f p jest przepływem o wartoci wikszej ni f.

6 182 Przekroje Def. Przekrojem w digrafie G nazywamy par S, T tak, e s S, t T oraz S T = V i S T = jeli f jest przepływem, to przepływ netto przez przekrój (S,T) to f(s,t), przepustowo przekroju (S,T), to c(s,t). Lemat Jeli f jest przepływem w digrafie G, ze ródłem s i ujciem t, (S,T) jest przekrojem, to przepływ netto przez przekrój (S,T) wynosi f(s,t) = f. Wniosek Warto dowolnego przepływu f w sieci G nie moe by wiksza ni przepustowo dowolnego przekroju w G.

7 183 Przekroje Tw. Niech f bdzie przepływem w digrafie G ze ródłem s i ujciem t. Ponisze warunki s równowane: 1. przepływ f jest maksymalny, 2. sie residualna G f nie zawiera cieek powikszajcych, 3. dla pewnego przekroju (S,T), f = c(s,t). Szkic dowodu: (12) Jeli załoymy, e cieka powikszajca istnieje, to z wczeniejszego lematu otrzymujemy, e mona otrzyma wikszy przepływ. (23) Definiujemy zbiór S bdcy zbiorem wierzchołków osigalnych z s w sieci residualnej G f. Wówczas (S,V(G)\S) jest przekrojem. (31) Wynika z poprzedniego wniosku.

8 184 Algorytm G digraf procedure Fulkerson-Ford( G, s, t ) s ródło begin t ujcie for each (u, E(G) do begin f(u, := 0; f(v,u) := 0; end; while istnieje cieka powikszajc P w digrafie G f do begin c f (P) := min{ c f (u,: (u, E(P) }; for each (u, E(P) do begin f(u, := f(u, + c f (P); f(v,u) := f(v,u) c f (P); end; end end

9 185 Złoono czas wyszukiwania cieki w sieci residualnej to O( E(G f ) ) = O( E(G) ); kada iteracja ptli while jest wic wykonywana w czasie O( E(G) ); jeli przepustowoci s liczbami całkowitymi, to ptla while wykonuje co najwyej f max razy, gdzie f max jest wartoci maksymalnego przepływu; jeli przepustowoci s całkowite, to złoono wynosi O( E(G) f max ); jeli nie ma adnych ogranicze na przepustowoci (mog by dowolnymi liczbami rzeczywistymi), to moliwe jest, e algorytm bdzie działał w nieskoczono;

10 186 Implementacja Edmondsa-Karpa Uwaga Aby poprawi złoono algorytmu, w kadej iteracji ptli while, bdziemy szuka najkrótszej cieki powikszajcej (tutaj i w dalszej czci tego wykładu długo cieki to liczba nalecych do niej łuków). Niech d f (u, oznacza odległo pomidzy wierzchołkami u,v (=długo najkrótszej cieki pomidzy u i w sieci residualnej G f. Lemat Dana jest sie G ze ródłem s i ujciem t. Jeli w kadym przebiegu ptli while szukana jest najkrótsza cieka powikszajca w sieci G f, to dla kadego wierzchołka v V(G)\{s,t} odległo v od s w sieci residualnej G f nie maleje.

11 187 Złoono Tw. Dla danej sieci G ze ródłem s i ujciem t, liczba powiksze przepływu wynosi O( V(G) E(G) ). Szkic dowodu: łuk (u, na ciece powikszajcej P jest krytyczny jeli przepustowo residualna cieki P jest równa przepustowoci residualnej {u,v}; po zwikszeniu przepływu łuk krytyczny usuwany jest z sieci residualnej; z faktu, e cieka P jest najkrótsza wynika, e d f (s, = d f (s,u) + 1; łuk (u, pojawia si znowu w sieci residualnej, gdy pojawi si inna cieka powikszajca, która zawiera (v,u) jeli aktualnym wówczas przepływem jest f, to d f (s,u) = d f (s, + 1; z dwóch powyszych równoci i wczeniejszego lematu wynika, e d f (s,u) d f (s,u) + 2; odległo u od s ronie o co najmniej 2 od chwili, gdy (u, był krytyczny do chwili, gdy (u, staje si krytyczny ponownie std, kady łuk moe by krytyczny co najwyej O( V(G) ) razy

12 188 Najtaszy przepływ Załoenia: dany jest graf skierowany G; mamy wyrónione wierzchołki s i t ródło i ujcie; z kadym łukiem (u, w G s skojarzone dwie etykiety: c(u, przepustowo, d(u, koszt; Zadanie: znale najtaszy przepływ w sieci G, czyli znale przepływ f o zadanej wartoci F, który minimalizuje sum ( u, E( G) d( u, f ( u,

13 189 Szkic algorytmu w digafie G szukamy najtasz drog z s do t; przez najtasz drog rozumiemy najkrótsz wzgldem funkcji wagowej d; przesyłamy t drog moliwie najwicej jednostek przepływu; jeli liczba przesłanych jednostek przekracza F, to najtaszy przepływ został znaleziony i obliczenia s przerywane; jeli liczba przesłanych jednostek jest mniejsza ni F, to modyfikujemy odpowiednio sie; powtarzamy powysze kroki dla zmodyfikowanej sieci;

14 190 Modyfikacja sieci dana jest sie G, funkcje c,d oraz pewien przepływ f, zmodyfikowana sie ma identyczny zbiór wierzchołków i krawdzi, jej nowe funkcje oznaczamy odpowiednio przez c,d, Niech łuk (u, ma niezerowy przepływ w sieci G. Wówczas: 1. c (v,u) := f(u, [dodanie pozornego łuku] 2. d (v,u) := d(u, 3. c (u, := c(u, f(u, jeli f(v,u)=0 i c(u, > f(u, 4. d (u, := d(u, jeli f(v,u)=0 i c(u, > f(u, 5. c (u, := 0 jeli f(v,u)=0 i c(u, = f(u, 6. d (u, := + jeli f(v,u)=0 i c(u, = f(u, Uwaga Dalej piszc G mamy na myli digraf G z funkcjami wagowymi c,d.

15 191 Algorytm Busackera i Gowena procedure BG( G, c, d ) begin G := G; while ( f < F ) and (istnieje droga z s do t w G ) do begin znajd najkrótsz ciek P łczc s i t w G ; if cieka P nie istnieje then koniec ; zmodyfikuj przepływ f wykorzystujc P przesyłajc maksymaln liczb jednostek wzdłu P (jeli uzyskany przepływ jest wikszy ni F, to przesyłamy jedynie tak liczb jednostek, która daje przepływ o wartoci F; wyznacz zmodyfikowan sie G ; end end Złoono: O(n 2 F)

Szukanie najkrótszych dróg z jednym ródłem

Szukanie najkrótszych dróg z jednym ródłem Szukanie najkrótszych dróg z jednym ródłem Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.

Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór

Bardziej szczegółowo

oraz spełnia warunki: (*) dla wszystkich wierzchołków

oraz spełnia warunki: (*) dla wszystkich wierzchołków Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =

Bardziej szczegółowo

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2

Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2 Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.

Bardziej szczegółowo

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.

Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting. Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek

Bardziej szczegółowo

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach

c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach 12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Algorytmiczna teoria grafów Przepływy w sieciach.

Algorytmiczna teoria grafów Przepływy w sieciach. Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków 240 Kolorowanie wierzchołków Def. Niech G bdzie grafem prostym. Przez kolorowanie wierzchołków rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, e ssiednie wierzchołki otrzymuj róne liczby

Bardziej szczegółowo

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.

Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =

Bardziej szczegółowo

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.

Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów

Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów Przeszukiwanie przestrzeni stanów Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia Inynierskie Przestrze stanów jest to czwórka uporzdkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków

Bardziej szczegółowo

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.

Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla

Bardziej szczegółowo

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } )

Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } ) 1 Pojcie grafu Def. Graf prosty G=(V,E) jest uporzdkowan par dwóch elementów: zbioru wierzchołków V oraz zbioru krawdzi E V V. Krawd pomidzy wierzchołkami u oraz v oznaczamy {u,v}. Graf prosty nie zawiera

Bardziej szczegółowo

Nieklasyczne modele kolorowania grafów

Nieklasyczne modele kolorowania grafów 65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G

Bardziej szczegółowo

Temat: Algorytmy zachłanne

Temat: Algorytmy zachłanne Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.

Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data

Bardziej szczegółowo

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.

Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów

Bardziej szczegółowo

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:

Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów

Bardziej szczegółowo

Lab. 02: Algorytm Schrage

Lab. 02: Algorytm Schrage Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania

WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie

Bardziej szczegółowo

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna

I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna I Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 10 kwietnia 2013 grupa elektryczno-elektroniczna (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 6 zada. Zadania

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.

.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty. !"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009

Drzewa Gomory-Hu Wprowadzenie. Drzewa Gomory-Hu. Jakub Š cki. 14 pa¹dziernika 2009 Wprowadzenie Drzewa Gomory-Hu Jakub Š cki 14 pa¹dziernika 2009 Wprowadzenie 1 Wprowadzenie Podstawowe poj cia i fakty 2 Istnienie drzew Gomory-Hu 3 Algorytm budowy drzew 4 Problemy otwarte Wprowadzenie

Bardziej szczegółowo

Izolacja Anteny szerokopasmowe i wskopasmowe

Izolacja Anteny szerokopasmowe i wskopasmowe Izolacja Anteny szerokopasmowe i wskopasmowe W literaturze technicznej mona znale róne opinie, na temat okrelenia, kiedy antena moe zosta nazwana szerokopasmow. Niektórzy producenci nazywaj anten szerokopasmow

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne

Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Podstawy matematyki dla informatyków

Podstawy matematyki dla informatyków Podstawy matematyki dla informatyków Wykªad 6 10 listopada 2011 W poprzednim odcinku... Zbiory A i B s równoliczne (tej samej mocy ), gdy istnieje bijekcja f : A 1 1 B. Piszemy A B lub A = B. na Moc zbioru

Bardziej szczegółowo

Zapisów 17 ust. 4-6 nie stosuje si do przesuni midzy kategoriami wydatków, które s wynikiem przeprowadzenia procedury zamówie publicznych.

Zapisów 17 ust. 4-6 nie stosuje si do przesuni midzy kategoriami wydatków, które s wynikiem przeprowadzenia procedury zamówie publicznych. UMOWY O DOFINANSOWANIE PROJEKTÓW Zapisów 17 ust. 4-6 nie stosuje si do przesuni midzy kategoriami wydatków, które s wynikiem przeprowadzenia procedury zamówie publicznych. Przyjmuje si nastpujc interpretacj:

Bardziej szczegółowo

Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych

Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych 1. Problem komiwojaera Wejcie: Graf G = pełny, zorientowany z dodatnimi wagami; w - funkcja wag grafu Wyjcie: Najtaszy

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

Programowanie sieciowe. Tadeusz Trzaskalik

Programowanie sieciowe. Tadeusz Trzaskalik Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Program Sprzeda wersja 2011 Korekty rabatowe

Program Sprzeda wersja 2011 Korekty rabatowe Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...

Bardziej szczegółowo

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B

Bazy danych. Plan wykładu. Zalenoci funkcyjne. Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania A B Plan wykładu Bazy danych Wykład 4: Relacyjny model danych - zalenoci funkcyjne. SQL - podzapytania Definicja zalenoci funkcyjnych Klucze relacji Reguły dotyczce zalenoci funkcyjnych Domknicie zbioru atrybutów

Bardziej szczegółowo

PROWIZJE Menad er Schematy rozliczeniowe

PROWIZJE Menad er Schematy rozliczeniowe W nowej wersji systemu pojawił si specjalny moduł dla menaderów przychodni. Na razie jest to rozwizanie pilotaowe i udostpniono w nim jedn funkcj, która zostanie przybliona w niniejszym biuletynie. Docelowo

Bardziej szczegółowo

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych.

Bazy danych. Plan wykładu. Podzapytania - wskazówki. Podzapytania po FROM. Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Plan wykładu azy danych Wykład 5: Zalenoci wielowartociowe. Sprowadzanie do postaci normalnych. Dokoczenie SQL Zalenoci wielowartociowe zwarta posta normalna Dekompozycja do 4NF Przykład sprowadzanie do

Bardziej szczegółowo

Funkcje, wielomiany. Informacje pomocnicze

Funkcje, wielomiany. Informacje pomocnicze Funkcje, wielomiany Informacje pomocnicze Przydatne wzory: (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 a 2 b 2 = (a + b)(a

Bardziej szczegółowo

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016

IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 IV Powiatowy Konkurs Matematyka, Fizyka i Informatyka w Technice Etap finałowy 1 kwietnia 2016 (imi i nazwisko uczestnika) (nazwa szkoły) Arkusz zawiera 8 zada. Zadania 1 i 2 bd oceniane dla kadego uczestnika,

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Konkursy w województwie podkarpackim w roku szkolnym 006/007 fdsrterdgdf Kod ucznia Kod szkoły... piecztka WKK Dzie Miesic Rok D A T A U R O D Z E N I A U C Z N I A KONKURS PRZEDMIOTOWY MATEMATYCZNY DLA

Bardziej szczegółowo

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.

Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz

Bardziej szczegółowo

CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC?

CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC? CZY WARTO MIE AUTO NA SPÓŁK Z PRACODAWC? Artykuł omawia zalety podatkowe umownego ustanowienia pomidzy pracodawc i pracownikiem współwłasnoci samochodu osobowego Cel słubowy, cel prywatny droga pod górk

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy

Bardziej szczegółowo

WHILE (wyrażenie) instrukcja;

WHILE (wyrażenie) instrukcja; INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while

Bardziej szczegółowo

Program do konwersji obrazu na cig zero-jedynkowy

Program do konwersji obrazu na cig zero-jedynkowy Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska

Grafy. Andrzej Jastrz bski. Akademia ET I. Politechnika Gda«ska Andrzej Jastrz bski Akademia ET I Graf Grafem nazywamy par G = (V, E), gdzie V to zbiór wierzchoªków, E zbiór kraw dzi taki,»e E {{u, v} : u, v V u v}. Wierzchoªki v, u V s s siaduj ce je±li s poª czone

Bardziej szczegółowo

Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony.

Iteracje. Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracje Algorytm z iteracją to taki, w którym trzeba wielokrotnie powtarzać instrukcję, aby warunek został spełniony. Iteracja inaczej zwana jest pętlą i oznacza wielokrotne wykonywanie instrukcji. Iteracje

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Multipro GbE. Testy RFC2544. Wszystko na jednej platformie

Multipro GbE. Testy RFC2544. Wszystko na jednej platformie Multipro GbE Testy RFC2544 Wszystko na jednej platformie Interlab Sp z o.o, ul.kosiarzy 37 paw.20, 02-953 Warszawa tel: (022) 840-81-70; fax: 022 651 83 71; mail: interlab@interlab.pl www.interlab.pl Wprowadzenie

Bardziej szczegółowo

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP

Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP Spotkania z Pythonem Cz ± 1 - podstawy - rozwi zania zada«michaª Alichniewicz Studenckie Koªo Automatyków SKALP Gda«sk 2014 Dzi kuj za uwag! Na licencji Creative Commons Attribution-NonCommercial-ShareAlike

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Interpolacja funkcjami sklejanymi

Interpolacja funkcjami sklejanymi Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Kompresja danych - wprowadzenie. 1. Konieczno kompresji 2. Definicja, typy kompresji 3. Modelowanie 4. Podstawy teorii informacji 5.

Kompresja danych - wprowadzenie. 1. Konieczno kompresji 2. Definicja, typy kompresji 3. Modelowanie 4. Podstawy teorii informacji 5. Kompresja danych - wprowadzenie. Konieczno kompresji. Definicja, typy kompresji. Modelowanie 4. Podstawy teorii informacji 5. Kodowanie Konieczno kompresji danych Due rozmiary danych Niewystarczajce przepustowoci

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH

PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH %!%*+,-.*+,/ 0103 6'7 PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH zadanie odpowied punkty 1 A D 3 D 4 E 5 C 6 A 7 A 8 B 9 6 10 zadania 6 11 otwarte 6 1 maksymalna moliwa łczna liczba punktów 6 40 strona 1

Bardziej szczegółowo

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty

Plan wykładu. Reguły asocjacyjne. Przykłady asocjacji. Reguły asocjacyjne. Jeli warunki to efekty. warunki efekty Plan wykładu Reguły asocjacyjne Marcin S. Szczuka Wykład 6 Terminologia dla reguł asocjacyjnych. Ogólny algorytm znajdowania reguł. Wyszukiwanie czstych zbiorów. Konstruowanie reguł - APRIORI. Reguły asocjacyjne

Bardziej szczegółowo

6.2. Baza i wymiar. V nazywamy baz-

6.2. Baza i wymiar. V nazywamy baz- 62 Baza i wymiar V nazywamy baz- Definicja 66 Niech V bdzie przestrzeni, liniow, nad cia/em F Podzbiór B przestrzeni V, je2eli: () B jest liniowo niezale2ny, (2) B jest generuj,cy, tzn lin(b) =V Przyk/ady:

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)

Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B) Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na. Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da

Bardziej szczegółowo

RACHUNEK ZBIORÓW 2 A B = B A

RACHUNEK ZBIORÓW 2 A B = B A RCHUNEK ZIORÓW 2 DZIŁNI N ZIORCH Sum (uni ) zbiorów i nazywamy zbiór, którego elementami s wszystkie elementy nale ce do zbioru lub do zbioru. = {x : x x } ZDNIE = = = Wyznacz sumy:,, C, D, E, D E dla

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

SUPLEMENT SM-BOSS WERSJA 6.15

SUPLEMENT SM-BOSS WERSJA 6.15 SUPLEMENT SM-BOSS WERSJA 6.15 Spis treci Wstp...2 Pierwsza czynno...3 Szybka zmiana stawek VAT, nazwy i PKWiU dla produktów...3 Zamiana PKWiU w tabeli PKWiU oraz w Kartotece Produktów...4 VAT na fakturach

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne

Bardziej szczegółowo

Napd i sterowanie hydrauliczne i pneumatyczne

Napd i sterowanie hydrauliczne i pneumatyczne Napd i sterowanie hydrauliczne i pneumatyczne Hydraulika wykład 13 Klasyfikacja olejów smarowych pod wzgldem składu chemicznego Oleje parafinowe, Oleje naftenowe, Oleje aromatyczne, Oleje mieszane (Jeeli

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Sposoby przekazywania parametrów w metodach.

Sposoby przekazywania parametrów w metodach. Temat: Definiowanie i wywoływanie metod. Zmienne lokalne w metodach. Sposoby przekazywania parametrów w metodach. Pojcia klasy i obiektu wprowadzenie. 1. Definiowanie i wywoływanie metod W dotychczas omawianych

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T ) Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca

Bardziej szczegółowo

Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d.

Grafy i Zastosowania. 11: Twierdzenia Minimaksowe. c Marcin Sydow. Wst p: Tw. Halla. Dualno± Zbiory niezale»ne. Skojarzenia c.d. 11: Twierdzenia Minimaksowe Spis zagadnie«wst p: Kojarzenie Maª»e«stw i i twierdzenia minimaksowe i pokrycia (Tw. Gallai) w grafach (tw. Berge'a) w grafach dwudzielnych (tw. Königa, ) Pokrycia macierzy

Bardziej szczegółowo

Grafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin:

Grafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin: Grafem skierowanym D (inaczej digrafem) nazywamy parę(v, A), gdzie V jest skończonym zbiorem wierzchołków, A jest zbiorem par uporządkowanych(u, v) o elementach ze zbioru V. Elementy zbioru A nazywamy

Bardziej szczegółowo

Najkrótsze drogi w grafach z wagami

Najkrótsze drogi w grafach z wagami Najkrótsze drogi w grafach z wagami Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania

Bardziej szczegółowo

Ukªady równa«liniowych

Ukªady równa«liniowych dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo