PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1
|
|
- Antoni Wierzbicki
- 10 lat temu
- Przeglądów:
Transkrypt
1 Stanisław Heilpern Uniwersytet Ekonomiczny we Wrocławiu PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1 Wprowadzenie W pracy będzie rozpatrywany ciągły proces ryzyka, w którym okresy między poszczególnymi wypłatami mogą być zależnymi zmiennymi losowymi. W klasycznych procesach ryzyka, stanowiących podstawę teorii ruiny [Kaas et al. 2001; Ostasiewicz 2000; Rolski et al. 1999], przyjmuje się niezależność występujących procesów i zmiennych losowych. Założenie o niezależności jest wygodne z teoretycznego, matematycznego punktu widzenia, upraszcza rozważania, wiele faktów można udowodnić, jednak często jest zbyt idealistycznym podejściem. W praktyce okresy między wypłatami są zwykle w większym lub mniejszym stopniu zależne. Na badany proces wpływają często czynniki zewnętrzne, np. ekstremalne zjawiska, takie jak powodzie, pożary, trzęsienia ziemi, czy karambole na autostradach, kryzysy gospodarcze lub polityczne, wpływające jednocześnie na wszystkich uczestników procesu, powołując występowanie zależności. Proces ryzyka będzie badany ze względu na prawdopodobieństwo ruiny, ze szczególnym uwzględnieniem wpływu stopnia zależności okresów między wypłatami na to prawdopodobieństwo. Rozpatrzono przykład ścisłej zależności okresów oraz gdy struktura ich zależności jest opisana archimedesową funkcją łączącą (ang. copula). W obydwu założono, że zarówno okresy między wypłatami, jak i wypłaty mają rozkład wykładniczy. Pracę można traktować jako kontynuację artykułu [Heilpern 2010], w którym był rozpatrywany proces ryzyka z zależnymi wypłatami. Otrzymane tam wyniki wskazywały na istotną zależność wpływu stopnia zależności wypłat na 1 Praca naukowa finansowana ze środków na naukę w latach jako projekt badawczy nr 3361/B/H03/2010/38.
2 8 Stanisław Heilpern prawdopodobieństwo ruiny, osiągania największych i najmniejszych prawdopodobieństw ruiny, od wartości kapitału początkowego. Podobne wyniki zostały osiągnięte w niniejszej pracy. Obliczenia związane z wyznaczeniem prawdopodobieństwa ruiny zostały wykonane za pomocą programu Mathematica 6 oraz arkusza kalkulacyjnego Excel. 1. Proces ryzyka Podstawą rozważań będzie następujący ciągły proces ryzyka [Kaas et al. 2001; Ostasiewicz 2000]: () U(t) =u+ct X, gdzie u 0 jest kapitałem początkowym, c > 0 intensywnością napływu składki, N(t) = min{n 0: T n+1 > t} procesem liczącym wypłaty X i > 0, a T i momentem pojawienia się i-tej wypłaty. Przyjęto, że wypłaty są niezależne oraz mają ten sam rozkład z dystrybuantą F X (x) i wartością oczekiwaną m = E(X i ), oraz że proces N(t) generuje okresy między wypłatami W i = T i T i-1 o tym samym rozkładzie F W. W pracy tej mogą być one zależnymi zmiennymi losowymi. Ponadto założono, że zmienne X i, W i są nawzajem niezależne. W przypadku gdy okresy W i są niezależne, otrzymuje się tzw. model Sparre Andersena [Rolski et al. 1999]. Głównym tematem niniejszych rozważań będzie prawdopodobieństwo ruiny [Kaas et al. 2001; Ostasiewicz 2000]: gdzie T jest momentem zajścia ruiny ψ(u) =P(T < U(0) =u), T = min{t: U(t) < 0}, czyli zdarzenia, że proces ryzyka będzie ujemny w nieskończonym horyzoncie czasu. Prawdopodobieństwo ruiny można również wyznaczyć na podstawie znajomości nadwyżki wypłat Y i = X i cw i. Wtedy zachodzi zależność [Rolski et al. 1999]: ψ(u) =Pmax Y >u.
3 Proces ryzyka z zależnymi okresami między wypłatami 9 W przypadku gdy zmienne W i są niezależne (model Sparre Andersena), a wypłaty X i mają rozkład wykładniczy z parametrem 1/m, to prawdopodobieństwo ruiny wyraża się wzorem [Rolski et al. 1999]: ψ(u) = (1 Rm)e, gdzie współczynnik dopasowania R jest nieujemnym rozwiązaniem równania m (s) =m (s)m ( cs) =1, a m (s) =E(e ) jest funkcją generującą momenty zmiennej losowej Y. Powyższy wzór na prawdopodobieństwo ruiny będzie wykorzystywany w dalszej części pracy. W klasycznym modelu ryzyka przyjmuje się, że proces liczący wypłaty N(t) jest procesem Poissona [Kaas et al. 2001; Ostasiewicz 2000; Rolski et al. 1999]. Wtedy okresy między wypłatami W i są niezależne i mają rozkład wykładniczy z parametrem λ, gdzie λ jest intensywnością procesu Poissona. W przypadku małej intensywności napływu składki c, tzn. gdy zachodzi warunek c λm, zajście ruiny jest zdarzeniem pewnym dla każdej wartości kapitału początkowego u, czyli otrzymujemy ψ(u) =1. Dla skrajnych wartości kapitału początkowego u, prawdopodobieństwa ruiny przyjmują prostą postać: ψ(0) = λm c,lim ψ(u) =ψ( ) =0. Dla dowolnych wartości kapitału początkowego u na ogół nie ma natomiast jawnych wzorów na prawdopodobieństwo ruiny. Jedynie w przypadku gdy wypłaty mają tzw. rozkład fazowy [Rolski et al. 1999] można podać konkretny wzór na to prawdopodobieństwo. Przykładowo, gdy wypłaty X i mają rozkład wykładniczy z parametrem 1/m (szczególny przypadek rozkładu fazowego), prawdopodobieństwo ruiny wyznaczamy stosując wzór: ψ(u) = λm c c λm exp cm u. Współczynnik dopasowania wynosi wtedy R =. Również w przypadku dyskretnych rozkładów wypłat istnieje kombinatoryczny wzór na prawdopo- dobieństwo ruiny [Kaas et al. 2001].
4 10 Stanisław Heilpern 2. Silna zależność Na początku rozpatrzmy skrajny przypadek, gdy okresy między wypłatami W i są silnie zależne. Opisane są one wtedy przez tą samą zmienną losową W. Dla ustalonej wartości w tej zmiennej otrzymujemy proces ryzyka U w (t) o stałych, deterministycznych okresach między wypłatami o długości w: [/] U (t) =u+ct X, gdzie [x] jest częścią całkowitą x. Prawdopodobieństwo ruiny w przypadku silnej zależności okresów między wypłatami wyznaczamy jako mieszankę: ψ(u) = ψ (u)df (w) prawdopodobieństw ruiny ψ (u) dla deterministycznych okresów. Pamiętając, że nierówność w pociąga za sobą ψ (u) =1, otrzymujemy: ψ(u) = ψ (u)df (w) +F m c. / Widzimy, że nawet dla nieskończenie dużego kapitału początkowego u, prawdopodobieństwo ruiny może być w tym przypadku dodatnie, równe ψ( ) =F, w przeciwieństwie do przypadku niezależnych okresów, gdzie otrzymujemy zerowe prawdopodobieństwo ruiny. Zajmijmy się teraz przypadkiem, gdy okresy między wypłatami są opisane tą samą zmienną losową W o rozkładzie wykładniczym z parametrem λ. Będzie to przeciwstawna sytuacja do klasycznego procesu ryzyka, gdy okresy te są niezależne. Jeśli dodatkowo przyjmiemy, że wypłaty są również wykładnicze z parametrem 1/m, to prawdopodobieństwo ruiny dla ustalonej wartości W = w jest określone wzorem: ψ (u) = (1 R m)e,
5 Proces ryzyka z zależnymi okresami między wypłatami 11 gdzie współczynnik dopasowania R w > 0 jest rozwiązaniem równania e -scw = 1 ms. Wtedy wzór na prawdopodobieństwo ruiny, gdy okresy między wypłatami są ściśle zależne o rozkładzie wykładniczym i wykładniczych wypłatach, przyjmuje postać: ψ(u) =λ (1 R m)e () dw +1 e /. / Dla nieskończenie dużego kapitału początkowego prawdopodobieństwo ruiny jest dodatnie, równe: ψ( ) =1 e /. Przykład 1. Niech wartość oczekiwana wypłat m = 2, intensywność napływu składki c = 3, a okresy między wypłatami mają rozkład wykładniczy z parametrem λ = 1. W tabeli 1 zostały podane wartości prawdopodobieństwa ruiny dla ściśle zależnych i niezależnych okresów między wypłatami oraz dla różnych wartości kapitału początkowego u. Prawdopodobieństwa te zostały również przedstawione na rysunku 1. Prawdopodobieństwa ruiny dla ściśle zależnych i niezależnych okresów między wypłatami Tabela 1 u niezależne silnie zal. u niezależne silnie zal. u niezależne silnie zal. 0 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,85E-08 0, Ponadto prawdopodobieństwo ruiny dla nieskończenie dużego kapitału początkowego i ściśle zależnych okresów między wypłatami wynosi ψ( ) = = 0,
6 12 Stanisław Heilpern 0,7 ψ(u) 0,6 0,5 0,4 0,3 0,2 0,1 niezależne silnie zal. 0 u Rys. 1. Prawdopodobieństwa ruiny dla ściśle zależnych i niezależnych okresów między wypłatami Widzimy, że dla zerowego i dla małego kapitału początkowego prawdopodobieństwo ruiny dla niezależnego przypadku jest większe niż dla ściśle zależnego. Dla większych wartości kapitału u otrzymujemy natomiast relację odwrotną. Przypadek ściśle zależnych okresów między wypłatami jest gorszy, daje nam większe prawdopodobieństwo ruiny. Ponadto różnice między prawdopodobieństwami ruiny dla różnych wartości kapitału początkowego są w tym przypadku niewielkie. 3. Archimedesowe funkcje łączące Rozpatrywany powyżej przypadek, gdy okresy między wypłatami są ściśle zależne, jest wybitnie skrajną i sztuczną sytuacją. W praktyce zależność między okresami nie jest tak duża. Stopień zależności, mierzony np. współczynnikami korelacji τ Kendalla, zwykle jest istotnie mniejszy od jedynki. W niniejszej pracy do modelowania pośrednich, bardziej realistycznych zależności, wykorzystano archimedesowe funkcje łączące. Funkcja łącząca C (ang. copula) jest łącznikiem między rozkładem łącznym a rozkładami brzegowymi [Nelsen 1999; Heilpern 2007]: P(W >w,,w >w ) =CF (w ),,F (w ),
7 Proces ryzyka z zależnymi okresami między wypłatami 13 gdzie F (w) =1 F (w) jest funkcją przetrwania zmiennej losowej W. Funkcję łączącą można zdefiniować za pomocą dystrybuant, a nie funkcji przetrwania jak w tym przypadku, jednak dla nas postać ta jest wygodniejsza. Należy też pamiętać, że funkcja łącząca nie zależy od rozkładów brzegowych i gdy rozkłady brzegowe są ciągłe, jest ona jednoznacznie wyznaczona. Archimedesowe funkcje łączące są indukowane jednowymiarowym generatorem g i przyjmują prostą, quasi-addytywną postać [Nelsen 1999; Heilpern 2007]: C(u 1,, u n ) = g -1 (g(u 1 ) + + g(u n )). Generator g: (0, 1] R + jest malejącą funkcją ciągłą taką, że lim g(u) =,g(1) =0. Funkcją g -1 odwrotna do generatora powinna być całkowicie monotoniczną funkcją, tzn. spełniać warunek: (-1) k (g -1 ) (k) (t) 0, gdzie f (k) jest pochodną k-tego rzędu funkcji f, dla każdego k = 0, 1, 2, oraz t > 0. Jest więc transformatą Laplace a pewnej nieujemnej zmiennej losowej Θ o dystrybuancie F Θ [Nelsen 1999]. Można pokazać [Frees i Valdez 1998; Heilpern 2007], że dla ustalonej wartości θ indukowane przez archimedesową funkcję łączącą C zmiennej Θ zmienne losowe W i są warunkowo niezależne, tzn. zachodzi zależność: P(W 1 > w 1,, W n > w n Θ = θ) = P(W 1 > w 1 Θ = θ) P(W n > w n Θ = θ). Jest to pożyteczna własność. Umożliwia ona stosowanie dla ustalonej wartości indukowanej zmiennej losowej Θ znanych metod klasycznej teorii ruiny opartej na niezależności. Zmienna ta generuje wtedy warunkowe zmienne losowe W i Θ o funkcji przetrwania [Frees i Valdez 1998; Heilpern 2007]: i wartości oczekiwanej: która jest malejącą funkcją θ. F(w θ) =exp( θg(f (w))) EW = F(w θ)dw,
8 14 Stanisław Heilpern Dla ustalonej wartości θ indukowanej zmiennej losowej Θ otrzymujemy warunkowy proces ryzyka U θ z niezależnymi wypłatami X i i niezależnymi okresami między wypłatami W i Θ, czyli proces Sparee Andersena. Warunkowe prawdopodobieństwo ruiny tak określonego procesu ryzyka będziemy oznaczać symbolem ψ (u). Wtedy bezwarunkowe prawdopodobieństwo ruiny możemy wyznaczyć korzystając z mieszanki warunkowych prawdopodobieństw ruiny ze zmienną mieszającą Θ: ψ(u) = ψ(u θ)df (θ). Niech θ 0 spełnia zależność cew =m, wtedy dla θ θ 0 warunkowa ruina jest zdarzeniem pewnym, tzn. ψ (u) =1, a bezwarunkowe prawdopodobieństwo ruiny jest określone wzorem: ψ(u) = ψ(u θ)df (θ) +F (θ ). Widzimy, że gdy F (θ ) >0, to nawet dla nieskończenie dużego kapitału początkowego prawdopodobieństwo ruiny jest dodatnie, podobnie jak w przypadku ścisłej zależności okresów. Rozpatrzmy teraz przypadek, gdy zarówno wypłaty W i, jak i okresy między wypłatami W i mają rozkład wykładniczy. Ponadto założymy, że struktura zależności okresów W i jest opisana funkcją łączącą Claytona, określoną wzorem: C (u,,u ) =(u + +u ) /, gdzie α > 0. Jej generatorem jest funkcja g(u) = u -α 1, a parametr α oddaje stopień zależności. Współczynnik korelacji τ Kendalla jest w tym przypadku określony prostym wzorem [Nelsen 1999]: τ= α α+2. W granicy, gdy parametr α dąży do zera otrzymujemy niezależność, a gdy dąży do nieskończoności ścisłą zależność. Wraz ze wzrostem wartości tego parametru rośnie natomiast stopień zależności.
9 Proces ryzyka z zależnymi okresami między wypłatami 15 Funkcja łącząca Claytona indukuje zmienną losową Θ o rozkładzie gamma Ga(1/α, 1). Warunkowe rozkłady okresów między wypłatami są wtedy określone funkcją przetrwania postaci: F(w θ) =exp θe 1. Warunkowe prawdopodobieństwa ruiny są natomiast określone wzorem: ψ (u) = (1 R m)e, gdzie współczynnik dopasowania R θ > 0 jest rozwiązaniem równania: 1 ms= e df(w θ). Przykład 2 (cd. przykładu 1). Niech struktura zależności jest opisana funkcją łączącą Claytona. W tabeli 2 są podane prawdopodobieństwa ruiny dla różnych wartości kapitału początkowego u i pięciu wartości parametru α: 0; 0,2; 2; 10 oraz. Odpowiadają one wartością współczynnika korelacji τ Kendalla równym: 0 (niezależność); 0,091; 0,5; 0,833 oraz 1 (ścisła zależność). Tabela 2 Prawdopodobieństwa ruiny dla wybranych wartości parametru α i kapitału początkowego u u niezależne 0, ściśle zal , , , , , ,4241 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,523388
10 16 Stanisław Heilpern cd. tabeli , , , , , , , , , , , , , , , ,85E-08 0, , , , , , , , Skrajne wartości, największe i najmniejsze, zostały wyróżnione w tabeli. Można zaobserwować brak regularności, monotoniczności. Położenie skrajnych wartości prawdopodobieństwa ruiny zależy istotnie od wartości kapitału początkowego u. Największe prawdopodobieństwo ruiny nigdy nie jest osiągalne dla skrajnych przypadków zależności, niezależności oraz ścisłej zależności okresów między wypłatami. Najmniejsze prawdopodobieństwa ruiny zachodzą natomiast wyłącznie dla skrajnych przypadków. Dla małych wartości kapitału początkowego, mniejszych od 0,4241, najmniejsze prawdopodobieństwo ruiny otrzymujemy dla ściśle zależnych okresów między wypłatami, a dla wartości u > 0,4241 dla niezależnych okresów. Prawdopodobieństwa ruiny są również przedstawione na rysunku 2. 0,8 0,7 0,6 ψ(u) niezależne 0,091 0,5 0,833 ściśle. zal. 0,5 0,4 0,3 0,2 0,1 0 u Rys. 2. Prawdopodobieństwo ruiny dla różnych wartości u i τ
11 Proces ryzyka z zależnymi okresami między wypłatami 17 Na rysunkach 3 i 4 są odpowiednio przedstawione wykresy prawdopodobieństwa ruiny dla zerowego oraz nieskończenie dużego kapitału początkowego i różnych wartości stopnia zależności okresów między wypłatami, mierzonych współczynnikiem τ Kendalla. Widzimy, że dla zerowej wartości kapitału początkowego prawdopodobieństwo ruiny najpierw rośnie wraz ze wzrostem stopnia zależności, osiąga maksimum dla współczynnika korelacji Kendalla przyjmującego wartość około 0,091, a następnie powoli maleje, przyjmując minimum w przypadku ścisłej zależności między wypłatami. 0,72 0,7 0,68 0,66 0,64 0,62 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Rys. 3. Prawdopodobieństwo ruiny dla u = 0 0,5 0,4 0,3 0,2 0, ,2 0,4 0,6 0,8 1 Rys. 4. Prawdopodobieństwo ruiny dla u =
12 18 Stanisław Heilpern W przypadku nieskończenie dużego kapitału początkowego sytuacja jest trochę inna. Najmniejsza wartość prawdopodobieństwa ruiny, równa zero, jest osiągana dla niezależnych okresów między wypłatami. Następnie prawdopodobieństwo to rośnie wraz ze wzrostem stopnia zależności i osiąga maksimum dla τ = 0,706. Dla większych wartości współczynnika korelacji Kendalla prawdopodobieństwo ruiny nieznacznie spada. Podobna sytuacja zachodzi dla pośrednich większych niż 0,4241, wartości kapitału początkowego. Jedynie maksimum prawdopodobieństwa ruiny jest osiągane dla mniejszych stopni zależności. Przykładowo, dla u = 5 największe prawdopodobieństwo ruiny otrzymujemy dla współczynnika Kendalla przyjmującego wartość około 0,5. Podsumowanie W pracy przeprowadzono analizę wpływu stopnia zależności okresów między wypłatami na prawdopodobieństwo ruiny. Przyjęto bardziej realistyczne założenie, że badane okresy mogą być zależne w odróżnieniu od klasycznych założeń przyjmujących ich niezależność. Pokazano, że wartości stopnia zależności okresów, dla których są osiągane skrajne wartości prawdopodobieństwa ruiny, istotnie zależą od wielkości kapitału początkowego. Prawidłowość tę wyraźnie widać zwłaszcza w przypadku największych wartości prawdopodobieństwa ruiny. Wartości te są osiągane dla pośrednich wartości stopnia zależności, a nie dla wartości skrajnych, dotyczących niezależności, czy silnej zależności. Praca jest kontynuacją artykułu [Heilpern 2010], w którym były rozpatrywane zależne wypłaty oraz była badana zależność prawdopodobieństwa ruiny od wielkości stopnia zależności wypłat. Następne prace autora związane z tą tematyką będą poświęcone procesowi ryzyka, w których mogą być zależne zarówno wypłaty, jak i okresy między nimi oraz badaniu zależności prawdopodobieństwa ruiny od stopnia zależności oraz od intensywności napływu składki. Literatura Frees E.W., Valdez E.A. (1998): Understanding Relationships using Copulas. North Amer. Actuarial Journal, No. 2. Heilpern S. (2007): Funkcje łączące. Wydawnictwo AE, Wrocław. Heilpern S. (2010): Wyznaczanie prawdopodobieństwa ruiny, gdy struktura zależności wypłat opisana jest Archimedesowi funkcją łączącą. W: Zagadnienia Aktuarialne. Teoria i Praktyka. Red. W. Otto. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
13 Proces ryzyka z zależnymi okresami między wypłatami 19 Kaas R., Goovaerts M., Dhaene J., Denuit M. (2001): Modern Actuarial Risk Theory. Kluwer, Boston. Nelsen R.B. (1999): An Introduction to Copulas. Springer, New York. Ostasiewicz W., red. (2000): Modele aktuarialne. Wydawnictwo AE, Wrocław. Rolski T., Schmidli H., Schmidt V., Teugels J.L. (1999): Stochastic Processes for Insurance and Finance. Willey, New York. RISK PROCESS WITH DEPENDENT INTERCLAIM TIMES ANALYSIS OF PROBABILITY OF RUIN Summary The paper is devoted to the risk process with dependent interclaim times. The influence of degree of dependence of interclaims on the probability of ruin is investigated. The case of the strict dependence and the case when the dependence structure is described by the Archimedean copula is studied. The localization of the extreme values of the probability of ruin essentially depends on the value of initial capital. The most values of the probability of ruin are attain for the middle values of degree of dependence.
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
UBEZPIECZENIA GRUPOWE MAŁŻEŃSTW UWZGLĘDNIAJĄCE ZALEŻNOŚCI *
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 283-8611 Nr 297 216 Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Katedra Statystyki
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X
Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q
Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky
Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
MIARY ZALEŻNOŚCI OPARTE NA KOPULACH
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 246 2015 Współczesne Finanse 3 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno-Przyrodniczy.
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:
Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: E X 20 8 oraz znamy następujące charakterystyki dotyczące przedziału 10, 20 : 3 Pr
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
Wykład 4 Przebieg zmienności funkcji. Badanie dziedziny oraz wyznaczanie granic funkcji poznaliśmy na poprzednich wykładach.
Wykład Przebieg zmienności funkcji. Celem badania przebiegu zmienności funkcji y = f() jest poznanie ważnych własności tej funkcji na podstawie jej wzoru. Efekty badania pozwalają naszkicować wykres badanej
Zadanie 1. są niezależne i mają rozkład z atomami: ( ),
Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:
01. dla x 0; 1 2 wynosi:
Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy
LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III
Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI
1-2011 PROBLEMY EKSPLOATACJI 89 Franciszek GRABSKI Akademia Marynarki Wojennej, Gdynia STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI Słowa kluczowe Bezpieczeństwo, procesy semimarkowskie,
Ubezpieczenia majątkowe
Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień
UBEZPIECZENIA MAŁŻEŃSKIE UWZGLĘDNIAJĄCE ZALEŻNOŚCI 1
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 331 2017 Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Katedra Statystyki
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:
Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:
Modelowanie komputerowe
Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Ekonometria Finansowa II EARF. Michał Rubaszek
Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Matematyka ubezpieczeń majątkowych 6.04.2009 r.
Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba
poprzez reasekurację proporcjonalną w modelu Jan Matuszewski Uniwersytet Warszawski
Minimalizacja prawdopodobieństwa ruiny poprzez reasekurację proporcjonalną w modelu Sparre Andersena Jan Matuszewski Uniwersytet Warszawski Prezentacja powstała w oparciu o wyniki uzyskane w pracy magisterskiej
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
SZEREGI LICZBOWE I FUNKCYJNE
Mając dowolny ciąg można z niego utworzyć nowy ciąg sum częściowych: Ten nowy rodzaj ciągu nazywamy szeregiem liczbowym, a jeśli to mamy do czynienia z nieskończonym szeregiem liczbowym, który oznaczany
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Ryzyko w ubezpieczeniach Risk in insurances Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia
Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009
Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta
Zmienne losowe ciągłe i ich rozkłady
Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości
System bonus-malus z mechanizmem korekty składki
System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1
Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:
Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14
ZESTAW A IMIȨ I NAZWISKO: Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2/4 Data: 224 Egzaminar: Ryszard Szekli INSTRUKCJE: Rozwiązując test zakreślamy literką X POPRAWNE ODPOWIEDZI W TABELCE
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Pochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)
Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
ŚLĄSKI PRZEGLĄD STATYSTYCZNY
Polskie Towarzystwo Statystyczne Oddział we Wrocławiu ŚLĄSKI Silesian Statistical Review Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu Wrocław 2012 RADA NAUKOWA Walenty Ostasiewicz Tadeusz Bednarski,
lim Np. lim jest wyrażeniem typu /, a
Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona
ANALIZA WIELOWYMIAROWEJ STRUKTURY ZALEŻNOŚCI ZASTOSOWANIE W RODZINNYCH UBEZPIECZENIACH NA ŻYCIE 1
Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 301 2016 Stanisław Heilpern Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
W3 - Niezawodność elementu nienaprawialnego
W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego
FUNKCJA LINIOWA - WYKRES
FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych
Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych
Zmienne losowe. dr Mariusz Grządziel Wykład 12; 20 maja 2014
Zmienne losowe dr Mariusz Grządziel Wykład 2; 20 maja 204 Definicja. Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje
Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji
Wynik pomiaru jako zmienna losowa
Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 1 / William Feller. wyd. 6, dodr. 4. Warszawa, 2012 Spis treści Od Wydawnictwa 5 Z przedmowy autora do wydania pierwszego 7 Z przedmowy autora do wydania drugiego
Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2018 Wstęp Stabilność O układzie możemy mówić, że jest stabilny jeżeli jego odpowiedź na wymuszenie (zakłócenie)
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak
Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Pochodne wyższych rzędów definicja i przykłady
Pochodne wyższych rzędów definicja i przykłady Pochodne wyższych rzędów Drugą pochodną funkcji nazywamy pochodną pochodnej tej funkcji. Trzecia pochodna jest pochodną drugiej pochodnej; itd. Ogólnie, -ta
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych
Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:
Granice ciągów liczbowych
Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi
Dopasowanie prostej do wyników pomiarów.
Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych
Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji
Modelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Systemy masowej obsługi
Systemy masowej obsługi Celem niniejszego ćwiczenia jest: zapoznanie się z podstawowymi właściwościami najprostszego systemu analizowanego w ramach teorii masowej obsługi, systemu M/M/ zapoznanie się z
Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008
Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Metoda simpleks. Gliwice
Sprowadzenie modelu do postaci bazowej Sprowadzenie modelu do postaci bazowej Przykład 4 Model matematyczny z Przykładu 1 sprowadzić do postaci bazowej. FC: ( ) Z x, x = 6x + 5x MAX 1 2 1 2 O: WB: 1 2
Wybrane rozkłady zmiennych losowych. Statystyka
Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1