Statystyka aktuarialna i teoria ryzyka, rozkłady szkód
|
|
- Alicja Szczepańska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Statystyka aktuarialna i teoria ryzyka, rozkłady szkód Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 7 1 / 16
2 ROZKŁADY WARTOŚCI SZKÓD Podstawowe własności: rozkłady skupione na dodatniej półosi X 0; rozkłady ciągłe, przy limicie odpowiedzialności rozkłady mieszane P(X = M) > 0, gdzie M limit odpowiedzialności; rozkłady prawostronnie asymetryczne, często z grubymi ogonami. Agata Boratyńska (SGH) SAiTR wykład 7 2 / 16
3 β Gamma(α, β) α x α 1 e βx α Γ(α, βx) Γ(α) β α, β > 0 x > 0 β IGamma α x α 1 e β x Γ(α, β ) β Γ(α) x α 1 α, β > 0 x > 0 TGamma β α τ Γ(α) x ατ 1 e βxτ Γ(α, βx τ ) Γ(α+ 1 τ ) Γ(α)β 1 τ α β 2 β 2 (α 1) 2 (α 2) EX 2 = Γ(α+ 2 τ ) Γ(α)β 2 τ α, β, τ > 0 x > 0 ( β LG(α, β) α (ln x) α 1 Γ(α, β ln x) β ) α ( β ) α ( x β+1 Γ(α) β 1 β 2 β ) 2α β 1 α, β > 0 x > 0 β > 1 β > 2 λ Pareto(θ, λ) θ θ 1 λθ λ (λ+x) θ+1 (λ+x) θ θ 1 λ, θ > 0 x > 0 θ > 1 θ > 2 Burr(θ, λ, τ) τθλ θ xτ 1 (λ+x τ ) θ+1 1 ( λ λ+x τ ) θ Γ(θ 1 τ )Γ(1+ 1 τ ) λ 1 τ Γ(θ) λ 2 θ (θ 1) 2 (θ 2) EX 2 = λ 2 τ Γ(θ 2 τ )Γ(1+ 2 τ Γ(θ) τ, λ, θ > 0 x > 0 τθ > 1 τθ > 2 Weibull(c, τ) cτx τ 1 e cxτ 1 e cxτ Γ(1+ τ 1 ) c 2/τ c, τ > 0 x > 0 Γ(θ+τ)λ θ x τ 1 c 1/τ Γ(1+ 2 τ ) Γ2 (1+ 1 τ ) λτ θ 1 λ 2 τ(θ+τ 1) (θ 1) 2 (θ 2) GPareto B(τ, θ, u) Γ(θ)Γ(τ)(λ+x) θ+τ (θ, λ, τ) u = x θ > 1 θ > 2 x+λ exp[ 1 2 ln x µ ( ) 2 ] σ xσ 2π ln x µ LN(µ, σ) Φ( ) e µ+ 1 2 σ2 e 2µ+σ2 (e σ2 1) σ µ R, σ > 0 x > 0 Agata Boratyńska (SGH) SAiTR wykład 7 3 / 16
4 ZALEŻNOŚCI MIĘDZY ROZKŁADAMI, funkcje od zmiennych losowych mnożenie przez stałą - parametr skali Y = cx PRZYKŁAD 1) X Ex(1) = Y = cx EX ( 1 c ) 2) X Gamma(α, 1) = Y = X β Gamma(α, β) 3) X Weibull(1, τ) = Y = X a Weibull(aτ, τ) przekształcenie wykładnicze Y = e X PRZYKŁAD X N(µ, σ 2 ) = Y = e X LN(µ, σ 2 ) przekształcenie potęgowe Y = X 1 τ τ > 0 - rozkład transformowany τ < 0 - rozkład odwrócony transformowany τ = 1 - rozkład odwrócony PRZYKŁAD 1. X Ex(θ) = Y = X 1 τ Weibull(θ, τ) 2. X Gamma(α, β). = Y = X 1 IGamma(α, β) 3. X Pareto(θ, λ) = Y = X 1 τ Burr, τ > 0 Agata Boratyńska (SGH) SAiTR wykład 7 4 / 16
5 Mieszanki rozkładów mieszanki dyskretne: f 1, f 2,..., f k - gęstości zmiennych X 1, x 2,..., X k p 1, p 2,..., p k > 0, p i = 1 - wagi Y zmienna o rozkładzie z gęstością f = p i f i mieszanki ciągłe - ryzyka heterogeniczne: f θ (x) = f (x θ), θ Π wtedy f (x) = Θ f θ (x)π(dθ) PRZYKŁAD: X Ex(γ) i γ Gamma(θ, λ) rozkład brzegowy X - Pareto(θ, λ) X Gamma(τ, β) i β Gamma(θ, λ) rozkład brzegowy X - GPareto(θ, λ, τ) Agata Boratyńska (SGH) SAiTR wykład 7 5 / 16
6 Średnia nadwyżka szkody ponad wartość d e(d) = E(X d X > d) = + d (x d)f (x)dx 1 F (d) + d (1 F (x))dx, 1 F (d) założenie EX < +. Duże e(d) dla dużych d świadczy o grubym ogonie. Estymator próbkowy x ê n (d) = j >d (x j d) {x j > d} Estymator w oparciu o szereg rozdzielczy: x>c ê n (c i ) = i (x c i ) n(1 F n (c i )) = j>i c j n j j>i n c i j Agata Boratyńska (SGH) SAiTR wykład 7 6 / 16
7 PRZYKŁADY X Ex(λ), wtedy e(d) = 1 λ X Pareto(θ, λ) wtedy e(d) = λ+d θ 1 X LN(µ, σ 2 ) wtedy ( ) e(d) = exp (µ + 1 ) 1 Φ ln d µ σ 2 2 σ2 σ ) d 1 Φ ( ln d µ σ Agata Boratyńska (SGH) SAiTR wykład 7 7 / 16
8 Modele z niekompletnymi danymi, dane ucięte i okrojone dane obcięte - brak obserwacji z pewnego zakresu dane okrojone - znana jest liczba obserwacji z pewnego zakresu ale nie znane są konkretne wartości Agata Boratyńska (SGH) SAiTR wykład 7 8 / 16
9 PRZYKŁADY X - szkoda 1. limit odpowiedzialności Y = { X gdy X < M M gdy X M próbka Y 1, Y 2,..., Y n - dane okrojone 2. franszyza warunkowa płatność dla szkody { 0 gdy X < d Y = X gdy X d próbka Y 1, Y 2,..., Y n - dane okrojone ale często ubezpieczyciel nie ma informacji o szkodach mniejszych niż d płatność ubezpieczyciela V = X gdy X > d próbka V 1, V 2,..., V m - dane obcięte Agata Boratyńska (SGH) SAiTR wykład 7 9 / 16
10 PRZYKŁADY, cd 3. franszyza bezwarunkowa płatność dla szkody Y = { 0 gdy X < d X d gdy X d próbka Y 1, Y 2,..., Y n - dane okrojone ale często ubezpieczyciel nie ma informacji o szkodach mniejszych niż d płatność ubezpieczyciela V = X d gdy X > d próbka V 1, V 2,..., V m - dane obcięte 4. Płatność reasekuratora przy płatności ubezpieczyciela do limitu odpowiedzialności M płatność dla szkody { 0 gdy X < M Z = X M gdy X M próbka Z 1, Z 2,..., Z n - dane okrojone ale często reasekurator nie ma informacji o szkodach mniejszych niż M płatność reasekuratora W = X M gdy X > M próbka W 1, W 2,..., W m - dane obcięte Agata Boratyńska (SGH) SAiTR wykład 7 10 / 16
11 Funkcja wiarogodności i wartość oczekiwana - dane okrojone i obcięte X zmienna o dystrybuancie F i gęstości f 1. limit odpowiedzialności { X gdy X < M Y = M gdy X M próbka Y 1, Y 2,..., Y n - dane okrojone, k liczba obserwacji o wartości M funkcja wiarogodności m L(y 1, y 2,..., y m, k) = f (y i ) (1 F (M)) k EY = E(X M) = M Współczynnik eliminacji szkody 0 i=1 xf (x)dx + M(1 F (M)) = LER X (M) = E(X M) EX M 0 (1 F (x))dx Agata Boratyńska (SGH) SAiTR wykład 7 11 / 16
12 Przykład. X Ex( 1 µ ), obserwujemy próbkę Y 1, Y 2,..., Y n - dane okrojone, k liczba obserwacji o wartości M. Wyznacz ENW (µ) Agata Boratyńska (SGH) SAiTR wykład 7 12 / 16
13 Franszyza bezwarunkowa Y = { 0 gdy X < d X d gdy X d dane okrojone: próbka Y 1, Y 2,..., Y m - większe od 0, k - liczba obserwacji o wartości 0 funkcja wiarogodności m L(y 1, y 2,..., y m, k) = f (y i + d)f (d) k EY = + d i=1 (x d)f (x)dx = e X (d)(1 F (d)) Jeśli dane obcięte V 1, V 2,..., V m czyli dotyczące zmiennej V = X d gdy X > d, to funkcja wiarogodności m i=1 L(v 1, v 2,..., v m ) = f (v i + d) (1 F (d)) m + (x d)f (x)dx d EV = = e X (d) 1 F (d) Agata Boratyńska (SGH) SAiTR wykład 7 13 / 16
14 Przykład 1. X Ex( 1 µ ). Obserwujemy próbkę Y 1, Y 2,..., Y n - dane okrojone, k liczba obserwacji o wartości 0. Wyznacz ENW (µ) Obserwujemy próbkę V 1, V 2,..., V m dane obcięte, wyznacz ENW (µ). 2. X Pareto(λ, θ). Wyznacz rozkład zmiennej V = X d gdy X > d. Agata Boratyńska (SGH) SAiTR wykład 7 14 / 16
15 Franszyza warunkowa Z = { 0 gdy X < d X gdy X d dane okrojone - próbka Z 1, Z 2,..., Z m większe od 0, k - liczba obserwacji o wartości 0 funkcja wiarogodności m L(z 1, z 2,..., z m, k) = f (z i )F (d) k EZ = + d i=1 xf (x)dx = (e X (d) + d)(1 F (d)) Jeśli dane obcięte V 1, V 2,..., V m czyli dotyczące zmiennej V = X gdy X > d, to funkcja wiarogodności m L(z 1, z 2,..., z m) i=1 = f (z i ) (1 F (d)) m + EZ xf (x)dx d = = e X (d) + d 1 F (d) Agata Boratyńska (SGH) SAiTR wykład 7 15 / 16
16 Przykład X Ex( 1 µ ). Obserwujemy próbkę Z 1, Z 2,..., Z n - dane okrojone, k liczba obserwacji o wartości 0. Wyznacz ENW (µ) Obserwujemy próbkę Z 1, Z 2,..., Z m dane obcięte, wyznacz ENW (µ). Agata Boratyńska (SGH) SAiTR wykład 7 16 / 16
Statystyka aktuarialna i teoria ryzyka
Statystyka aktuarialna i teoria ryzyka Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 1 i 2 1 / 34 Warunki zaliczenia 1 Dwa kolokwia (prawdopodobnie 7.12.2018 i ostatnie ćwiczenia),
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Statystyka aktuarialna i teoria ryzyka
Agata Boratyńska Statystyka aktuarialna... 1 Statystyka aktuarialna i teoria ryzyka LITERATURA Bowers N. i in. (1986 lub 1997) Actuarial mathematics, Hossak J.B., Pollard J.H. (1983 lub 1990), Introductory
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone
Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 Statystyka aktuarialna i teoria ryzyka LITERATURA Bowers N. i in. (1986 lub 1997) Actuarial mathematics, Hossak J.B., Pollard J.H. (1983 lub 1990), Introductory
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie
METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
Estymatory nieobciążone
Estymatory nieobciążone Zadanie 1. Pobieramy próbkę X 1,..., X n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ. Szacujemy p 0 = e λ za pomocą estymatora ˆp 0 = e X, gdzie X jest
Testowanie hipotez statystycznych.
Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.
Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 3 - model statystyczny, podstawowe zadania statystyki matematycznej Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 3 1 / 8 ZADANIE z rachunku
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
STATYSTYKA MATEMATYCZNA WYKŁAD grudnia 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 10 14 grudnia 2009 PARAMETRY POŁOŻENIA Przypomnienie: Model statystyczny pomiaru: wynik pomiaru X = µ + ε 1. ε jest zmienną losową 2. E(ε) = 0 pomiar nieobciążony, pomiar
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Wybrane metody szacowania rezerw techniczno-ubezpieczeniowych
Wybrane metody szacowania rezerw techniczno-ubezpieczeniowych Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) Rezerwy 1 / 24 Plan 1 Co to są rezerwy techniczno-ubezpieczeniowe? 2 Rezerwa składek
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
f(x)dx gdy a, b (0, 100), f(x) = exp( 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA 1 i 2. 1. Właściciel domu określa wartość swojego majątku na 100j. Obawia się losowej straty spowodowanej pożarem. Doświadczenie agenta
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Numeryczne aproksymacje prawdopodobieństwa ruiny
Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Hipotezy proste. (1 + a)x a, dla 0 < x < 1, 0, poza tym.
Hipotezy proste Zadanie 1. Niech X ma funkcję gęstości f a (x) = (1 + a)x a, dla 0 < x < 1, Testujemy H 0 : a = 1 przeciwko H 1 : a = 2. Dysponujemy pojedynczą obserwacją X. Wyznaczyć obszar krytyczny
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
Matematyka ubezpieczeń majątkowych 1.10.2012 r.
Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 2 autorzy: A. Gonczarek, J.M. Tomczak Metody estymacji ML Zad. 1 Pojawianie się spamu opisane jest zmienną losową x o rozkładzie dwupunktowym
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Zadanie 5. Niech N będzie zmienną losową o rozkładzie Poissona taką, że P (N 1) = 8 9P (N = 2). Obliczyć EN. Odp. 3. p0, dla k = 0, e λ 1 λk
Zadanie 1. W urnie znajduje się dziesięć kul białych i dziesięć i czarnych. Wybieramy z urny kolejno bez zwracania po jednej kuli aż do momentu wyciągnięcia po raz pierwszy kuli czarnej. Wyznaczyć wartość
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym
STATYSTYKA MATEMATYCZNA WYKŁAD października 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ
Rozkłady prawdopodobieństwa
Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład
Ważne rozkłady prawdopodobieństwa
Część V Dodatki 59 Dodatek A Ważne rozkłady prawdopodobieństwa Rozkład DWUMIANOWY X Bin(n, p) Funkcja prawdopodobieństwa: f(k) = P(X = k) = ( ) n p k ( p) n k, k (k = 0,,..., n). Momenty: EX = np, VarX
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)
MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości
Estymacja parametrów rozkładu cechy
Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Rozpoznawanie obrazów
Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
Metoda momentów i kwantyli próbkowych. Wrocław, 7 listopada 2014
Metoda momentów i kwantyli próbkowych Wrocław, 7 listopada 2014 Metoda momentów Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa. Momenty zmiennych losowych X 1, X 2,..., X n - próba losowa.
Detekcja rozkładów o ciężkich ogonach
Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
1.1 Wstęp Literatura... 1
Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
Wykład 3 Równania rózniczkowe cd
7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy
Centralne twierdzenie graniczne
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 4 Ważne uzupełnienie Dwuwymiarowy rozkład normalny N (µ X, µ Y, σ X, σ Y, ρ): f XY (x, y) = 1 2πσ X σ Y 1 ρ 2 { [ (x ) 1
Modele długości trwania
Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego
O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE
Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Próbkowe odpowiedniki wielkości populacyjnych
Część I Podstawy 11 Rozdział 1 Próbkowe odpowiedniki wielkości populacyjnych 1.1 Rozkład empiryczny Statystyka matematyczna opiera się na założeniu, że dane są wynikiem pewnego doświadczenia losowego.
1 Gaussowskie zmienne losowe
Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Oznacza to, że chcemy znaleźć minimum, a właściwie wartość najmniejszą funkcji
Wykład 11. Metoda najmniejszych kwadratów Szukamy zależności Dane są wyniki pomiarów dwóch wielkości x i y: (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ). Przypuśćmy, że nanieśliśmy je na wykres w układzie
Szeregi czasowe, analiza zależności krótkoi długozasięgowych
Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Matematyka ubezpieczeń majątkowych r. ma złożony rozkład Poissona. W tabeli poniżej podano rozkład prawdopodobieństwa ( )
Zadanie. Zmienna losowa: X = Y +... + Y N ma złożony rozkład Poissona. W abeli poniżej podano rozkład prawdopodobieńswa składnika sumy Y. W ejże abeli podano akże obliczone dla k = 0... 4 prawdopodobieńswa
Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego
Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową
Rozkłady łaczne wielu zmiennych losowych
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 3 Motywacje Przykłady sytuacji z kilkoma zmiennymi losowymi: Antropometria: wzrost, waga ciała i grubość skóry przedramienia
Agata Boratyńska. WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 2017
1 Agata Boratyńska WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ (II rok WNE) Warszawa 017 Agata Boratyńska Wykłady ze statystyki matematycznej Literatura W. Niemiro Rachunek prawdopodobieństwa i statystyka matematyczna,
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,