Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej"

Transkrypt

1 Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33

2 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych redni wzgl dny bª d szacunku, testy t, testy F Testy statystyczne powtórzenie ze Statystyki 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 2 / 33

3 Plan prezentacji 1 Wprowadzenie 2 Ocena dopasowania 3 Ocena istotno±ci zmiennych 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 3 / 33

4 Problemy Dopasowanie do danych (2) Ekonometria 4 / 33

5 Problemy Istotno± zmiennej obja±niaj cej (2) Ekonometria 5 / 33

6 Problemy Dobór postaci funkcyjnej (2) Ekonometria 6 / 33

7 Plan prezentacji 1 Wprowadzenie 2 Ocena dopasowania 3 Ocena istotno±ci zmiennych 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 7 / 33

8 R-kwadrat Zadanie 2a (model cen wina) 1 Oce«jako± modelu cen wina pod k tem dopasowania tego do danych 2 Zinterpretuj wspóªczynnik determinacji (2) Ekonometria 8 / 33

9 R-kwadrat Wspóªczynnik dopasowania R-kwadrat (1) R 2 [0; 1] to udziaª zmienno±ci y t obja±nionej przez model w caªkowitej zmienno±ci y t : N (y i ȳ) 2 = N (ŷ i ȳ) 2 + N (y i ŷ i ) 2 R 2 = i=1 i=1 i=1 N (ŷ i ȳ) 2 i=1 N (y i ȳ) 2 i=1 (2) Ekonometria 9 / 33

10 R-kwadrat Wspóªczynnik dopasowania R-kwadrat (2) Im wy»szy, tym model lepiej dopasowany do danych (precyzyjniej: tym wy»szy udziaª wariancji obja±nionej przez model w caªkowitej wariancji zmiennej zale»nej) Interpretacja: w modelu obja±niono 296% wariancji zmiennej zale»nej (2) Ekonometria 10 / 33

11 Skorygowany R-kwadrat i kryteria informacyjne Zadanie 2b (model cen wina) 1 Oszacuj dwa modele obja±niaj ce ceny wina: 1 peªny (jak dotychczas) 2 taki, w którym usuni ta zostaªa zmienna zbiory_temp? 2 Porównaj oba modele przy u»yciu nast puj cych kryteriów: 1 wspóªczynnik determinacji 2 skorygowany wspóªczynnik determinacji 3 kryterium informacyjne Akaike, Schwarza i Hannana-Quinna 3 Czy mo»na u»ywaj c kryteriów (2a)-(2c) porówna model oszacowany w punkcie (1a) z modelem 1 o takim samym zestawie zmiennych obja±niaj cych, ale o zmiennej obja±nianej ln (cena)? 2 o takim samym zestawie zmiennych obja±niaj cych i takiej samej zmiennej obja±nianej, ale oszacowany na podstawie zakresu próby ? (2) Ekonometria 11 / 33

12 Skorygowany R-kwadrat i kryteria informacyjne Skorygowany R-kwadrat R k ( 2 = }{{} R 2 ) 1 R 2 N (k + 1) dopasowanie }{{} kara za nadmiar parametrów Im wy»szy, tym model lepiej dopasowany do danych przy uwzgl dnieniu faktu,»e nadmierna parametryzacja prowadzi do zawy»enia tego dopasowania Mo»e przyj warto±ci < 0 (2) Ekonometria 12 / 33

13 Skorygowany R-kwadrat i kryteria informacyjne Kryteria informacyjne k liczba szacowanych parametrów, T liczba obserwacji: AIC = ln 1 N SIC (BIC) = ln 1 N N ˆε 2 2k i + N N ˆε 2 i + i=1 i=1 HQC = ln 1 N ˆε 2 i N i=1 }{{} przy gorszym dopasowaniu + k ln(n) n 2k ln [ln (N)] N }{{} przy nadmiarze zmiennych Idea podobna do skorygowanego R-kwadrat Sªu» do porównywania konkurencyjnych modeli im ni»sze warto±ci odpowiednich kryteriów, tym lepiej (2) Ekonometria 13 / 33

14 Skorygowany R-kwadrat i kryteria informacyjne Zadanie (2) Ekonometria 14 / 33

15 Skorygowany R-kwadrat i kryteria informacyjne Niescentrowany R-kwadrat Je»eli w modelu nie ma staªej, nie mo»emy wªa±ciwie interpretowa R-kwadrat i obliczamy wspóªczynnik wedªug wzoru: N ˆε 2 RN 2 = 1 i i=1 N i=1 y 2 i (2) Ekonometria 15 / 33

16 Plan prezentacji 1 Wprowadzenie 2 Ocena dopasowania 3 Ocena istotno±ci zmiennych 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 16 / 33

17 redni wzgl dny bª d szacunku, testy t, testy F Zadanie 2c (model cen wina) 1 Oblicz i zinterpretuj ±rednie wzgl dne bª dy szacunku dla zmiennych: rocznik i zbiory_opad 2 Oce«istotno± ka»dej ze zmiennych obja±niaj cych w modelu 3 Czy caªy zaproponowany zestaw zmiennych obja±niaj cych mo»na oceni jako przydatny, w kontek±cie obja±niania cen wina? 4 Czy wspóªczynnik determinacji R-kwadrat jest istotnie wy»szy od zera? 5 Czy mo»na pomin blok zmiennych zwi zanych z warunkami atmosferycznymi w okresie zbiorów (zbiory_opad, zbiory_temp)? (2) Ekonometria 17 / 33

18 redni wzgl dny bª d szacunku, testy t, testy F Macierz wariancji-kowariancji oszacowa«(k x k) ˆβ to estymator prawdziwej warto±ci parametru β; jest funkcj losowo dobranej próby próby, a wi c i warto±ci ˆβ mog by ró»ne (zmienna losowa) estymator jako zmienna losowa ma wariancj ˆβ = ˆβ 0 ˆβ 1 ˆβ 2 Var ˆβ = ˆβ ( k ) var ˆβ 0 cov ˆβ 0, ˆβ 1 ( cov ˆβ0, ˆβ ) 2 cov ˆβ 0, ˆβ 1 var ˆβ 1 ( cov ˆβ1, ˆβ ) 2 cov ˆβ 0, ˆβ 2 cov ˆβ 1, ˆβ 2 var ˆβ 2 var ˆβ k (2) Ekonometria 18 / 33

19 redni wzgl dny bª d szacunku, testy t, testy F Macierz wariancji-kowariancji oszacowa«(k x k) ˆβ to estymator prawdziwej warto±ci parametru β; jest funkcj losowo dobranej próby próby, a wi c i warto±ci ˆβ mog by ró»ne (zmienna losowa) estymator jako zmienna losowa ma wariancj ˆβ = ˆβ 0 ˆβ 1 ˆβ 2 Var ˆβ = ˆβ ( k ) var ˆβ 0 cov ˆβ 0, ˆβ 1 ( cov ˆβ0, ˆβ ) 2 cov ˆβ 0, ˆβ 1 var ˆβ 1 ( cov ˆβ1, ˆβ ) 2 cov ˆβ 0, ˆβ 2 cov ˆβ 1, ˆβ 2 var ˆβ 2 var ˆβ k (2) Ekonometria 18 / 33

20 redni wzgl dny bª d szacunku, testy t, testy F Macierz wariancji-kowariancji oszacowa«(k x k) ˆβ to estymator prawdziwej warto±ci parametru β; jest funkcj losowo dobranej próby próby, a wi c i warto±ci ˆβ mog by ró»ne (zmienna losowa) estymator jako zmienna losowa ma wariancj ˆβ = ˆβ 0 ˆβ 1 ˆβ 2 Var ˆβ = ˆβ ( k ) var ˆβ 0 cov ˆβ 0, ˆβ 1 ( cov ˆβ0, ˆβ ) 2 cov ˆβ 0, ˆβ 1 var ˆβ 1 ( cov ˆβ1, ˆβ ) 2 cov ˆβ 0, ˆβ 2 cov ˆβ 1, ˆβ 2 var ˆβ 2 var ˆβ k (2) Ekonometria 18 / 33

21 redni wzgl dny bª d szacunku, testy t, testy F Precyzja szacunku parametrów Wariancja skªadnika losowego (skalar): ˆσ 2 = 1 N (k+1) T ε 2 t t=1 zmiennych w modelu nie licz c staªej, N wielko± próby) Wariancja estymatora KMNK (macierz): Var ˆβ = ˆσ 2 ( X T X ) 1 [di,j ] (k+1) (k+1) (k liczba Bª dy szacunku parametrów: s ˆβ0 = d 1,1 s ˆβ1 = d 2,2 s ˆβ2 = d 3,3 (ang standard errors, SE) Obliczanie bª du szacunku 1 oszacuj warto±ci parametrów, 2 oblicz warto±ci skªadnika losowego, 3 oszacuj wariancj skªadnika losowego, 4 oblicz macierz wariancji estymatora KMNK, 5 oblicz bª d szacunku poszczególnych parametrów jako pierwiastek z jej diagonalnych elementów (2) Ekonometria 19 / 33

22 redni wzgl dny bª d szacunku, testy t, testy F Wzgl dny bª d szacunku parametru s( ˆβ i) ˆβ i o ile % warto±ci oszacowania mo»emy si przeci tnie myli, szacuj c dany parametr? (2) Ekonometria 20 / 33

23 redni wzgl dny bª d szacunku, testy t, testy F Testy istotno±ci zmiennych Test t-studenta H 0 : β i = 0, tzn i-ta zmienna obja±niaj ca nie wywiera istotnego wpªywu na zmienn obja±nian y H 1 : β i 0, tzn i-ta zmienna obja±niaj ca wywiera istotny wpªyw na zmienn obja±nian y Statystyka testowa: t = ˆβ i s( ˆβ ma rozkªad t (N k 1) 1) p-value<α odrzucamy H 0 p-value>α nie odrzucamy H 0 przy czym standardowo przyjmuje si α = 0, 01 albo α = 0, 05 albo α = 0, 1 (2) Ekonometria 21 / 33

24 redni wzgl dny bª d szacunku, testy t, testy F Zadanie ŷ t = 53, 8 + 5, 4x 1t + 6, 0x 2t t=1,2,, 14 (2) Ekonometria 22 / 33

25 redni wzgl dny bª d szacunku, testy t, testy F Zbiór wszystkich zmiennych: uogólniony test Walda Uogólniony test Walda H 0 : β 1 = β 2 = = β k = 0, tzn»adna zmienna obja±niaj ca nie wywiera istotnego wpªywu na zmienn obja±nian y H 1 : i β i 0, przynajmniej 1 zmienna obja±niaj ca wywiera istotny wpªyw na zmienn obja±nian y R Statystyka testowa: F = 2 /k (1 R 2 ma rozkªad )/(N k 1) F (k, N k 1) (2) Ekonometria 23 / 33

26 redni wzgl dny bª d szacunku, testy t, testy F Test pomini tych/zb dnych zmiennych Test pomini tych/zb dnych zmiennych H 0 : β k h, β k = 0 w modelu sªusznie nie uwzlg dniono zmiennych x k h, x k H 1 : ww zmienne powinny zosta uwzgl dnione w modelu Wariant testu Walda! Tutaj w hipotezie zerowej nie wszystkie, a jedynie wybrane wspóªczynniki przyrównane do zera; reszta wykonywana tak samo Gretl: w oknie modelu wybieramy Testy Test pomini tych zmiennych (2) Ekonometria 24 / 33

27 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: H 0 i H 1 testy statystyczne sªu» do werykacji rozmaitych hipotez zwi zanych z ocen jako±ci modelu ekonometrycznego hipoteza zerowa: H 0 : x = m hipoteza alternatywna dwustronna:h 1 : x m jednostronna:h 1 : x > m (2) Ekonometria 25 / 33

28 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: bª dy mo»liwe dwa rodzaje bª dów: bª d I rodzaju: odrzucenie prawdziwej hipotezy zerowej bª d II rodzaju: nieodrzucenie faªszywej hipotezy zerowej testujemy przy zaªo»eniu prawdziwo±ci H 0 ; niektóre testy s sªabe (niska moc testu), co oznacza,»e trudno im odrzuci hipotez zerow i prawdopodobie«stwo bª du II rodzaju jest wysokie dlatego mo»liwe 2 decyzje: odrzucamy H 0 nie odrzucamy H 0 (a nie: przyjmujemy H 0!), tzn próba statystyczna nie zawiera wystarczaj cych dowodów na to,»e zaªo»enie o prawdziwo±ci H 0 byªo bª dne (2) Ekonometria 26 / 33

29 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: bª dy mo»liwe dwa rodzaje bª dów: bª d I rodzaju: odrzucenie prawdziwej hipotezy zerowej bª d II rodzaju: nieodrzucenie faªszywej hipotezy zerowej testujemy przy zaªo»eniu prawdziwo±ci H 0 ; niektóre testy s sªabe (niska moc testu), co oznacza,»e trudno im odrzuci hipotez zerow i prawdopodobie«stwo bª du II rodzaju jest wysokie dlatego mo»liwe 2 decyzje: odrzucamy H 0 nie odrzucamy H 0 (a nie: przyjmujemy H 0!), tzn próba statystyczna nie zawiera wystarczaj cych dowodów na to,»e zaªo»enie o prawdziwo±ci H 0 byªo bª dne (2) Ekonometria 26 / 33

30 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: bª dy mo»liwe dwa rodzaje bª dów: bª d I rodzaju: odrzucenie prawdziwej hipotezy zerowej bª d II rodzaju: nieodrzucenie faªszywej hipotezy zerowej testujemy przy zaªo»eniu prawdziwo±ci H 0 ; niektóre testy s sªabe (niska moc testu), co oznacza,»e trudno im odrzuci hipotez zerow i prawdopodobie«stwo bª du II rodzaju jest wysokie dlatego mo»liwe 2 decyzje: odrzucamy H 0 nie odrzucamy H 0 (a nie: przyjmujemy H 0!), tzn próba statystyczna nie zawiera wystarczaj cych dowodów na to,»e zaªo»enie o prawdziwo±ci H 0 byªo bª dne (2) Ekonometria 26 / 33

31 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: decyzja trade-o mi dzy bª dem I i II rodzaju w praktyce: wybieramy maksymalne dopuszczalne prawdopodobie«stwo bª du I rodzaju: poziom istotno±ci (signicance level) α =0,10 α =0,05 α =0,01 porównujemy go z empirycznym poziomem istotno±ci (p-value) p > α: nie odrzucamy H 0 p < α: odrzucamy H 0 (2) Ekonometria 27 / 33

32 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: decyzja trade-o mi dzy bª dem I i II rodzaju w praktyce: wybieramy maksymalne dopuszczalne prawdopodobie«stwo bª du I rodzaju: poziom istotno±ci (signicance level) α =0,10 α =0,05 α =0,01 porównujemy go z empirycznym poziomem istotno±ci (p-value) p > α: nie odrzucamy H 0 p < α: odrzucamy H 0 (2) Ekonometria 27 / 33

33 Testy statystyczne powtórzenie ze Statystyki Testy statystyczne: decyzja trade-o mi dzy bª dem I i II rodzaju w praktyce: wybieramy maksymalne dopuszczalne prawdopodobie«stwo bª du I rodzaju: poziom istotno±ci (signicance level) α =0,10 α =0,05 α =0,01 porównujemy go z empirycznym poziomem istotno±ci (p-value) p > α: nie odrzucamy H 0 p < α: odrzucamy H 0 (2) Ekonometria 27 / 33

34 Plan prezentacji 1 Wprowadzenie 2 Ocena dopasowania 3 Ocena istotno±ci zmiennych 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 28 / 33

35 Test RESET Zadanie 2d (model cen wina) 1 Zwerykuj hipotez o poprawnej specykacji modelu cen wina 2 Czy wynik testu RESET zale»y od jego wariantu? (2) Ekonometria 29 / 33

36 Test RESET Test RESET Test RESET H 0 : brak pomini tych zmiennych, poprawna posta funkcyjna, wªa±ciwa specykacja dynamiczna H 1 : niewªa±ciwa specykacja Uwzgl dnione pot gi warto±ci teoretycznych w regresji testowej (powinny okaza si nieistotne!): 1 ŷ 2 np 2 ŷ 2 ŷ 3 3 ŷ 2 ŷ 3 ŷ 4 Gretl: w oknie modelu wybieramy Testy - Test specykacji Ramsey's RESET (2) Ekonometria 30 / 33

37 Plan prezentacji 1 Wprowadzenie 2 Ocena dopasowania 3 Ocena istotno±ci zmiennych 4 Dobór postaci funkcyjnej 5 Zadania (2) Ekonometria 31 / 33

38 Zadania przekrojowe Zadanie E1 (2) Ekonometria 32 / 33

39 Zadania przekrojowe Dodatkowe zadania 21, 22, 24, 25, 212, 213 (2) Ekonometria 33 / 33

Wykªad 1+2: Klasyczny model regresji liniowej. Podstawy R

Wykªad 1+2: Klasyczny model regresji liniowej. Podstawy R Wykªad 1+2: Klasyczny model regresji liniowej Podstawy R Ekonometria Stosowana SGH KMNK i R 1 / 45 Plan wykªadu 1 Informacje organizacyjne 2 Wprowadzenie do ekonometrii Ekonometria Dane i postacie funkcyjne

Bardziej szczegółowo

Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 3 Autokorelacja, heteroskedastyczno±, wspóªliniowo± (3) Ekonometria 1 / 29 Plan wicze«1 Wprowadzenie 2 Normalny rozkªad 3 Autokorelacja 4 Heteroskedastyczno± Test White'a Odporne bª

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan

Bardziej szczegółowo

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria

Bardziej szczegółowo

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13

Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for regression) / 13 Elementarna statystyka Wnioskowanie o regresji (Inference for regression) Alexander Bendikov Uniwersytet Wrocªawski 2 czerwca 2016 Elementarna statystyka Wnioskowanie o regresji (Inference 2 czerwca for

Bardziej szczegółowo

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 8 Modele zmiennej jako±ciowej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 8 Modele zmiennej jako±ciowej (8) Ekonometria 1 / 25 Plan wicze«1 Modele zmiennej jako±ciowej 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3 Predykcja

Bardziej szczegółowo

Wst p do ekonometrii II

Wst p do ekonometrii II Wst p do ekonometrii II Wykªad 1: Modele ADL. Analiza COMFAC. Uogólniona MNK (1) WdE II 1 / 36 Plan wykªadu 1 Restrykcje COMFAC w modelach ADL ADL(1,1) ADL(2,2) 2 Uogólniona MNK Idea UMNK Znajdowanie macierzy

Bardziej szczegółowo

In»ynierskie zastosowania statystyki wiczenia

In»ynierskie zastosowania statystyki wiczenia Uwagi: 27012014 poprawiono kilka literówek, zwi zanych z przedziaªami ufno±ci dla wariancji i odchylenia standardowego In»ynierskie zastosowania statystyki wiczenia Przedziaªy wiarygodno±ci, testowanie

Bardziej szczegółowo

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 5 i 6 Modelowanie szeregów czasowych. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 5 i 6 Modelowanie szeregów czasowych (5-6) Ekonometria 1 / 30 Plan prezentacji 1 Regresja pozorna 2 Testowanie stopnia zintegrowania szeregu 3 Kointegracja 4 Modele dynamiczne (5-6)

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 6: Bayesowskie ª czenie wiedzy (6) Ekonometria Bayesowska 1 / 21 Plan wykªadu 1 Wprowadzenie 2 Oczekiwana wielko± modelu 3 Losowanie próby modeli 4 wiczenia w R (6) Ekonometria

Bardziej szczegółowo

Egzamin z ekonometrii - wersja ogólna

Egzamin z ekonometrii - wersja ogólna Egzamin z ekonometrii - wersja ogólna 27-0-202 Pytania teoretyczne. Dlaczego w modelu nie powinno si umieszcza staªej i wszystkich zmiennych zero-jedynkowych, zwi zanych z poziomami zmiennej dyskretnej?

Bardziej szczegółowo

Modele wielorównaniowe. Estymacja parametrów

Modele wielorównaniowe. Estymacja parametrów Modele wielorównaniowe. Estymacja parametrów Ekonometria Szeregów Czasowych SGH Estymacja 1 / 47 Plan wykªadu 1 Po±rednia MNK 2 Metoda zmiennych instrumentalnych 3 Podwójna MNK 4 Estymatory klasy k 5 MNW

Bardziej szczegółowo

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 7 Modele nieliniowe. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Ekonometria wiczenia 7 Modele nieliniowe (7) Ekonometria 1 / 19 Plan wicze«1 Nieliniowo± : co to zmienia? 2 Funkcja produkcji Cobba-Douglasa 3 Nieliniowa MNK (7) Ekonometria 2 / 19 Plan prezentacji 1 Nieliniowo±

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Wykªad 6: Model logitowy

Wykªad 6: Model logitowy Wykªad 6: Model logitowy Ekonometria Stosowana SGH Model logitowy 1 / 18 Plan wicze«1 Modele zmiennej jako±ciowej idea 2 Model logitowy Specykacja i interpretacja parametrów Dopasowanie i restrykcje 3

Bardziej szczegółowo

Ekonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Weryfikacja liniowego modelu jednorównaniowego. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Weryfikacja liniowego modelu jednorównaniowego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 2 Weryfikacja liniowego modelu jednorównaniowego 1 / 28 Agenda 1 Estymator

Bardziej szczegółowo

Ekonometria - wykªad 1

Ekonometria - wykªad 1 Ekonometria - wykªad 1 0. Wprowadzenie Barbara Jasiulis-Goªdyn 28.02.2014 2013/2014 Ekonometria Literatura [1] B. Borkowski, H. Dudek, W. Szczesny, Ekonometria. Wybrane Zaganienia, PWN, Warszawa 2003.

Bardziej szczegółowo

Modele wielorównaniowe. Problem identykacji

Modele wielorównaniowe. Problem identykacji Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach EGZAMIN MAGISTERSKI, 12.09.2018r Matematyka w ekonomii i ubezpieczeniach Zadanie 1. (8 punktów) O rozkªadzie pewnego ryzyka S wiemy,»e: E[(S 20) + ] = 8 E[S 10 < S 20] = 13 P (S 20) = 3 4 P (S 10) = 1

Bardziej szczegółowo

Elementarna statystyka Test Istotno±ci (Tests of Signicance)

Elementarna statystyka Test Istotno±ci (Tests of Signicance) Elementarna statystyka Test Istotno±ci (Tests of Signicance) Alexander Bendikov Uniwersytet Wrocªawski 16 kwietnia 2016 Elementarna statystyka Test Istotno±ci (Tests of Signicance) 16 kwietnia 2016 1 /

Bardziej szczegółowo

I Kolokwium z Ekonometrii. Nazwisko i imi...grupa...

I Kolokwium z Ekonometrii. Nazwisko i imi...grupa... ZESTAW A1 I Kolokwium z Ekonometrii Nazwisko i imi...grupa... 1. Model teoretyczny ma posta: z t = α 0 + α 1 x t + α 2 p t + ξ t, (t = 1, 2,..., 28) (1) gdzie: z t - koszty produkcji w mln z, p t - wielko

Bardziej szczegółowo

Podstawy statystycznego modelowania danych - Wykªad 7

Podstawy statystycznego modelowania danych - Wykªad 7 Podstawy statystycznego modelowania danych - Wykªad 7 Tomasz Suchocki ANOVA Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne i przykªady zastosowania 3. ANOVA w pakiecie R Tomasz

Bardziej szczegółowo

Matematyka z elementami statystyki

Matematyka z elementami statystyki Matematyka z elementami statystyki Šukasz Dawidowski Instytut Matematyki, Uniwersytet l ski Korelacja Zale»no± funkcyjna wraz ze wzrostem jednej zmiennej nast puje ±ci±le okre±lona zmiana druiej zmiennej.

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y

Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y Zadanie 1 Rozpatrujemy próbę 4877 pracowników fizycznych, którzy stracili prace w USA miedzy rokiem 1982 i 1991. Nie wszyscy bezrobotni, którym przysługuje świadczenie z tytułu ubezpieczenia od utraty

Bardziej szczegółowo

Egzamin z ekonometrii - wersja IiE, MSEMAT

Egzamin z ekonometrii - wersja IiE, MSEMAT Egzamin z ekonometrii - wersja IiE, MSEMAT 7-02-2013 Pytania teoretyczne 1. Porówna zastosowania znanych Ci kontrastów ze standardowym sposobem rozkodowania zmiennej dyskretnej. 2. Wyprowadzi estymator

Bardziej szczegółowo

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie

Bardziej szczegółowo

Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t

Metody statystyczne w biologii - Wykªad 8. Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Metody statystyczne w biologii - Wykªad 8 Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Regresja logistyczna 1. Podstawy teoretyczne i przykªady zastosowania

Bardziej szczegółowo

Metody Ekonometryczne

Metody Ekonometryczne Metody Ekonometryczne Goodness of fit i wprowadzenie do wnioskowania statystycznego Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Metody Ekonometyczne Wykład 2 Goodness of fit i wprowadzenie do wnioskowania

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Model ekonometryczny Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między poziomem wykształcenia a wysokością zarobków Wykształcenie a zarobki Hipoteza badawcza: Istnieje zależność między

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Elementarna statystyka Test Istotno±ci

Elementarna statystyka Test Istotno±ci Elementarna statystyka Test Istotno±ci Alexander Bendikov Uniwersytet Wrocªawski 27 kwietnia 2017 Alexander Bendikov (UWr) Elementarna statystyka Test Istotno±ci 27 kwietnia 2017 1 / 24 Wnioskowanie statystyczne:

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16 Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

Modele ARIMA prognoza, specykacja

Modele ARIMA prognoza, specykacja Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji

Bardziej szczegółowo

Pakiety statystyczne - Wykªad 8

Pakiety statystyczne - Wykªad 8 Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne

Bardziej szczegółowo

Metody probablistyczne i statystyka stosowana

Metody probablistyczne i statystyka stosowana Politechnika Wrocªawska - Wydziaª Podstawowych Problemów Techniki - 011 Metody probablistyczne i statystyka stosowana prowadz cy: dr hab. in». Krzysztof Szajowski opracowanie: Tomasz Kusienicki* κ 17801

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 1 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Rozdziaª 5. Modele wektorowej autoregresji

Rozdziaª 5. Modele wektorowej autoregresji Rozdziaª 5. Modele wektorowej autoregresji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 5) Modele VAR 1 / 32 Wielowymiarowe modele szeregów czasowych Modele VAR uwzgl dniaj wzajemne powi zania mi

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.

Bardziej szczegółowo

Ekonometria Przestrzenna

Ekonometria Przestrzenna Ekonometria Przestrzenna Wykªad 4: Model autoregresji przestrzennej. Dane GIS: punkty i siatki (4) Ekonometria Przestrzenna 1 / 24 Plan wykªadu 1 Model czystej autoregresji przestrzennej (pure SAR) Specykacja

Bardziej szczegółowo

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych

Rozdziaª 4. Jednowymiarowe modele szeregów czasowych Rozdziaª 4. Jednowymiarowe modele szeregów czasowych MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 4) Modele ARMA 1 / 24 Jednowymiarowe modele szeregów czasowych Jednowymiarowe modele szeregów czasowych:

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach

5. (8 punktów) EGZAMIN MAGISTERSKI, r Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach ( Niezale»ne szkody maja rozkªady P (X i = k) = exp( 1)/k!, P (Y i = k) = 4+k ) k (1/3) 5 (/3) k, k = 0, 1,.... Niech S = X 1 +... + X 500 + Y 1 +... + Y 500. Skªadka

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

5. Model sezonowości i autoregresji zmiennej prognozowanej

5. Model sezonowości i autoregresji zmiennej prognozowanej 5. Model sezonowości i autoregresji zmiennej prognozowanej 1. Model Sezonowości kwartalnej i autoregresji zmiennej prognozowanej (rząd istotnej autokorelacji K = 1) Szacowana postać: y = c Q + ρ y, t =

Bardziej szczegółowo

Ekonometria. Zajęcia

Ekonometria. Zajęcia Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

t y x y'y x'x y'x x-x śr (x-x śr)^2

t y x y'y x'x y'x x-x śr (x-x śr)^2 Na podstawie:w.samuelson, S.Marks Ekonomia menedżerska Zadanie 1 W przedsiębiorstwie toczy się dyskusja na temat wpływu reklamy na wielkość. Dział marketingu uważa, że reklama daje wysoce pozytywne efekty,

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Ekonometria Przestrzenna

Ekonometria Przestrzenna Ekonometria Przestrzenna Wykªad 8: w modelach przestrzennych (8) Ekonometria Przestrzenna 1 / 23 Plan wykªadu 1 Modele proste Modele zªo»one 2 Wnioskowanie statystyczne dla mno»ników przestrzennych i ±rednich

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Egzamin z ekonometrii wersja IiE, MSEMAT

Egzamin z ekonometrii wersja IiE, MSEMAT Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.

Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora. imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie

Bardziej szczegółowo

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Biostatystyka, # 5 /Weterynaria I/

Biostatystyka, # 5 /Weterynaria I/ Biostatystyka, # 5 /Weterynaria I/ dr n. mat. Zdzisªaw Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowa«Matematyki i Informatyki ul. Gª boka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość?

Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Zadanie 1 1. Czy wykresy zmiennych sugerują, że zmienne są stacjonarne. Czy występuje sezonowość? Wykres stopy bezrobocia rejestrowanego w okresie 01.1998 12.2008, dane Polskie 22 20 18 16 stopa 14 12

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Ekonometria Szeregów Czasowych

Ekonometria Szeregów Czasowych Ekonometria Szeregów Czasowych Zaj cia 1: Ekonometria klasyczna powtórzenie dr Karolina Konopczak Katedra Ekonomii Stosowanej Kontakt karolina.konopczak@sgh.waw.pl konsultacje: czwartki g. 8.45 (p. 10/DS

Bardziej szczegółowo

MODELE LINIOWE i MIESZANE

MODELE LINIOWE i MIESZANE MODELE LINIOWE i MIESZANE WYKŠAD 5 13 kwiecie«2018 1 / 48 Plan wykªadu 1. Metody Monte Carlo we wnioskowaniu statystycznym 2. Pakiet R 2 / 48 Metody Monte Carlo we wnioskowaniu statystycznym 3 / 48 Zaªó»my,»e

Bardziej szczegółowo

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku.

e) Oszacuj parametry modelu za pomocą MNK. Zapisz postać modelu po oszacowaniu wraz z błędami szacunku. Zajęcia 4. Estymacja i weryfikacja modelu model potęgowy Wersja rozszerzona W pliku Funkcja produkcji.xls zostały przygotowane przykładowe dane o produkcji, kapitale i zatrudnieniu dla 27 przedsiębiorstw

Bardziej szczegółowo

Rozwini cia asymptotyczne dla mocy testów przybli»onych

Rozwini cia asymptotyczne dla mocy testów przybli»onych Rozwini cia asymptotyczne dla mocy testów przybli»onych Piotr Majerski, Zbigniew Szkutnik AGH Kraków Wisªa 2010 P. Majerski, Z. Szkutnik, AGH () Rozwini cia mocy testów przybli»onych Wisªa 2010 1 / 22

Bardziej szczegółowo

Efekty przestrzenne w konwergencji polskich podregionów

Efekty przestrzenne w konwergencji polskich podregionów Efekty przestrzenne w konwergencji polskich podregionów Mikoªaj Herbst EUROREG UW Piotr Wójcik WNE UW Konferencja Ministerstwa Rozwoju Regionalnego Budowanie spójno±ci terytorialnej i przeciwdziaªanie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1

E k o n o m e t r i a S t r o n a 1 E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH

STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH STATYSTYCZNE MODELOWANIE DANYCH BIOLOGICZNYCH WYKŠAD 4 03 listopad 2014 1 / 47 Plan wykªadu 1. Testowanie zaªo»e«o proporcjonalnym hazardzie w modelu Cox'a 2. Wybór zmiennych do modelu Cox'a 3. Meta analiza

Bardziej szczegółowo

Ćwiczenia IV

Ćwiczenia IV Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie

Bardziej szczegółowo

Interpolacja Lagrange'a, bazy wielomianów

Interpolacja Lagrange'a, bazy wielomianów Rozdziaª 4 Interpolacja Lagrange'a, bazy wielomianów W tym rozdziale zajmiemy si interpolacj wielomianow. Zadanie interpolacji wielomianowej polega na znalezieniu wielomianu stopnia nie wi kszego od n,

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Ekonometria Przestrzenna

Ekonometria Przestrzenna Ekonometria Przestrzenna Wykªad 3: Testowanie obecno±ci procesów przestrzennych (3) Ekonometria Przestrzenna 1 / 25 Plan wykªadu 1 Testowanie efektów przestrzennych 2 Testy ogólne Test Morana I Globalne

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 5: Narz dzia wnioskowania w ekonometrii bayesowskiej (5) Ekonometria Bayesowska 1 / 8 Plan wykªadu 1 Przedziaªy ufno±ci HPDI Werykacja hipotez podej±cie bayesowskie 3 Werykacja

Bardziej szczegółowo

Ekonometria Przestrzenna

Ekonometria Przestrzenna Ekonometria Przestrzenna Wykªad 6: Zªo»one modele regresji przestrzennej (6) Ekonometria Przestrzenna 1 / 21 Plan wykªadu 1 Modele zªo»one 2 Model SARAR 3 Model SDM (Durbina) 4 Model SDEM 5 Zadania (6)

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Stanisław Cihcocki. Natalia Nehrebecka

Stanisław Cihcocki. Natalia Nehrebecka Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach

Bardziej szczegółowo