POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji
|
|
- Stanisław Piasecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002
2 Wstęp. Ze względu na szczególną uwagę skierowaną obecnie na ekonomikę procesów technicznych, zagadnienia optymalizacji w technice cieplnej znajdują coraz szersze zastosowanie a sama analiza optymalizacyjna jest nieodzownym elementem każdego procesu projektowego. Metody optymalizacyjne znajdują ponadto zastosowanie do analizy jakościowej urządzeń i systemów pracujących w przemyśle od wielu lat, co do których istnieje podejrzenie, iż możliwe jest dokonanie poprawy sprawności tych urządzeń oraz ich ekonomiczności. Podstawowym warunkiem bez którego nie da się prowadzić analizy optymalizacyjnej jest dysponowanie matematycznym modelem - opisem analizowanego urządzenia czy procesu. Dla silnie rozbudowanych i skomplikowanych układów często nie jest możliwe uzyskanie analitycznego modelu matematycznego, bez wprowadzania daleko idących uproszczeń badanego systemu. Postęp technik komputerowych pozwala jednak na zastosowanie innych metod poszukiwania - formułowania modeli nawet złożonych układów i prowadzenie ich analizy optymalizacyjnej. 1 Cel ćwiczenia. Celem niniejszego ćwiczenia jest numeryczne wyznaczenie ekonomicznej średnicy rurociągu do przesyłania gorącej cieczy oraz optymalnej grubości izolacji rurociągu, z zastosowaniem metody gradientu prostego. Uzyskanie postawionego celu wymaga sformułowania matematycznego opisu procesu - funkcji kryterialnej oraz opracowania numerycznych procedur reprezentujących algorytm gradientu prostego i zastosowanie ich do sformułowanej funkcji kryterialnej. 2 Treść zadania. Wyznaczyć ekonomiczną średnicę oraz grubość izolacji rurociągu do przesyłania gorącej cieczy w ilości W [kg/s] o gęstości ρ [kg/m 3 ] i lepkości µ [kg/m s]. Rurociąg pracował będzie w ruchu ciągłym przez τ lat. Cena jednego metra rurociągu (wraz z armaturą, montażem i konstrukcją) zależy od zarówno od średnicy D rurociągu jak również grubości izolacji i wynosi: c r = A (D+2δ+2 ) n gdzie A i n są danymi wielkościami stałymi, natomiast δ jest grubością ścianki rurociągu. Zakłada się, że roczny koszt remontów i utrzymania rurociągu stanowi b% jego ceny. Dana jest cena c e [zł/j] energii elektrycznej zużytej do napędu pompy oraz sprawność η zespołu pompa - silnik. Obliczenia przeprowadzić dla rurociągu o długości L [m] i czasu T [lat]. 1
3 3 Sformułowanie funkcji kryterialnej. W celu znalezienia optymalnej średnicy oraz grubości izolacji rurociągu należy sformułować funkcję kryterialną, której jedynymi niewiadomymi będą poszukiwane przez nas parametry. Należy zatem sformułować zależność całkowitych kosztów sumarycznych K w funkcji poszukiwanej średnicy rurociągu D oraz grubości jego izolacji. Całkowite koszty przedstawiają się zatem następująco: K = K i + K e + K iz + K en (1) K i - koszty instalacji rurociągu, związana z zakupem armatury, montażem i konstrukcją rurociągu, K e - koszty eksploatacji rurociągu, związany z kosztami energii potrzebnej do napędu silnika pompy tłoczącej ciecz, K iz - koszt izolacji rurociągu, związany z zakupem materiału izolacyjnego K en - koszt strat energii cieplnej tłoczonego czynnika 3.1 Koszt instalacji rurociągu. Na podstawie danych przedstawionych w treści zadania, koszty inwestycyjne można wyrazić zależnością: ( ) 1 K i = + (0.01 b) A (D+2δ+2 ) n [zł/m] (2) τ τ - trwałość rurociągu, b, A, n - współczynniki, D - poszukiwana wewnętrzna średnica rurociągu, - poszukiwana grubość izolacji rurociągu, 2
4 3.2 Koszt eksploatacji rurociągu. Kolejnym składnikiem kosztów całkowitych K są koszty eksploatacyjne K e zwiazane z koniecznością tłoczenia czynnika w rurociągu a zatem koniecznością zakupu energii elektrycznej potrzebnej do napędu silnika pompy. Koszty te można zatem wyrazić zależnością: c e - cena energii elektrycznej, T - okres bilansowy, N - moc silnika pompy, L - długość rurociągu, K e = c e T N L [zł/m] (3) W zależności tej nie znana jest moc silnika N. Wielkość ta zależy m.in. od własności fizycznych transportowanego płynu, od rodzaju ruchu jakim się porusza a także od stanu (chropowatości) powierzchni wewnętrznej rurociągu. Wielkość ta wyznaczyć można z zależności: N = P W η ρ [W ] (4) P - spadek ciśnienia płynu na długości 1 m rurociągu, W - wydatek masowy płynu, η - sprawność układu pompa - silnik, ρ - gęstość czynnika, Nieznany w równaniu (4) spadek ciśnienia P płynu można wyznaczyć ze wzoru Darcy- Weisbacha w postaci: P = λ L D U 2 2 ρ [Pa] (5) λ- współczynnik strat przepływu, U - średnia prędkość liniowa przepływu, 3
5 przy czym dla przewodów o przekroju kołowym jest: U = 4 W π ρ L 2 [m/s] (6) D Niewiadomą wielkością w równaniu (5) jest ponadto współczynnik strat przepływu λ, który zależny jest od liczby Reynolds a Re: przy czym liczba Reynolds a określona jest zależnością λ = f(re) (7) Re = D U ρ = 4 W L (8) µ π µ D i jest wielkością charakteryzującą ruch tłoczonego czynnika. Wynika stąd bezpośrednio, że współczynnik strat λ jest zależny od poszukiwanej wartości średnicy D rurociągu. Należy tutaj zwrócić szczególną uwagę na fakt, iż zależność współczynnika λ od liczby Reynolds a jest różna dla różnych wartości liczby Re. Z tego stwierdzenia wynika zatem konieczność założenia charakteru przepływu i przyjęcia odpowiedniej postaci zależności (7) Zakładając, że przepływ w rurociągu ma charakter turbulentny można przyjąć zależność współczynnika λ od liczby Reynolds a w postaci: λ = Re 0.25 (9) co pozwala ostatecznie zapisać równanie (3) z uwzględnieniem zależności (4) (6) oraz (8) i (9) w postaci: 3.3 Koszty izolacji. K e = 8 8, 76 c e T W 3 π 2 ρ 2 η ( ) 0.25 (10) D 5 4 W π µ D Koszty te związane są jedynie z wydatkami ponoszonymi na zakup materiału izolacyjnego, zatem odniesione do jednego metra długości rurociągu można opisać zależnością: K iz = M F L L 1 τ = M 1 τ π ] [(D + 2δ + 2 ) 2 (D + 2δ) 2 4 F - pole przekroju warstwy izolacyjnej, M - cena 1 m 3 materiału izolacyjnego [zł/m 3 ], - poszukiwana grubość warstwy izolacyjnej, (11) 4
6 3.4 Koszty strat energii. Efektem różnicy temperatur pomiędzy otoczeniem i czynnikiem płynącym w rurociągu jest wymiana ciepła pomiędzy nimi, która powoduje powstawanie strat energii cieplnej podczas transportu czynnika w rurociągu. Koszt traconej energii cieplnej zależy od ilości oddawanego do otoczenia ciepła i jej ceny. Zatem koszt strat energii K en można wyrazić zależnością: K en = d e Q [zł/m] (12) d e - cena energii cieplnej Powstaje jednak pytanie, w jaki sposób wyznaczyć strumień ciepła przenikający przez ścianę rurociągu oraz izolację. Wiadomo, że zależy on od różnicy temperatur pomiędzy ośrodkami a także od rodzaju materiału przez który następuje przewodzenie ciepła. W ogólnym przypadku, dla przewodów o przekroju kołowym, strumień ciepła opisany jest związkiem: Q - strumień przekazywanego ciepła, Q - ciepło, τ - przyrost jednostkowy czasu, Q = Q τ = k π (t w t z ) [W/m] (13) t w - temperatura czynnika cieplejszego (wewnątrz rurociągu), t z - temperatura czynnika chłodniejszego (otoczenia), k - współczynnik przenikania ciepła, Proces przenikania ciepła, a zatem i postać współczynnika przenikania ciepła zależy od ilości przegród przez które następuje wymiana ciepła. Dla prostego przypadku z jedną przegrodą, przenikanie ciepła składa się z wnikania ciepła na styku czynnika cieplejszego i przegrody, przewodzenia ciepła w przegrodzie i wnikania ciepła na styku przegrody i czynnika chłodniejszego. W sytuacji bardziej złożonej, w której mamy do czynienia z większą liczbą przegród o różnych właściwościach fizycznych mamy równierz do czynienia ze zjawiskiem wnikania ciepła na styku sąsiadujących przegród. Pomijając jednak dla uproszczenia zjawiska zachodzące na styku przegród, w naszym przypadku materiału rury oraz izolacji, można zapisać współczynnik przenikania ciepła k w następującej postaci: 5
7 1 k = 1 i=n ln(d zi /d wi ) (14) α w d w1 2λ i=1 i α z d zn α w - współczynnik wnikania ciepła (czynnik cieplejszy ścianka rury), α z - współczynnik wnikania ciepła (izolacja powietrze), λ i - współczynnik przewodzenia ciepła i-tej warstwy, d wi - średnica wewnętrzna i-tej warstwy, d zi - średnica zewnętrzna i-tej warstwy, N - liczba warstw przegrody, 3.5 Koszty całkowite. Przedstawione powyżej związki pozwalają na zapisanie funkcji kryterialnej opisującej zależnośc całkowitych kosztów tylko od poszukiwanych wielkości średnicy rurociągu D oraz grubości izolacji. Zależność ta przedstawia się następująco: K = f(d, ) = = ( 1 + (0.01 b)) A (D+2δ+2 ) n c e T W 3 τ π 2 ρ 2 η [ (D + 2δ + 2 ) 2 (D + 2δ) 2] M 1 + π 4 + [ ] [ π (t w t z ) T s d e / α w D 2λ s ln ( D+2δ D ( D 5 4 W π µd ) + 1 2λ iz ln ( D+2δ+2 D+2δ ) (15) τ ) ] + 1 α z (D+2δ+2 ) Powyższe wyrażenie stanowi funkcję kryterialną, dla której - w celu wyznaczenia optymalnych wartości średnicy rurociągu i grubości izolacji - poszukuje się minimum bezwarunkowego, tzn.: min(k = { D = D opt K i ) (16) = opt 6
8 4 Metoda rozwiązania. Sformułowana w punkcie 3 funkcja kryterialna (15) umożliwia zastosowanie algorytmów optymalizacyjnych, które dla prostych funkcji kryterialnych nie wymagają stosowania narzędzi komputerowych. Algorytmy te dają się jednak zapisać w postaci kodu numerycznego przez co pozwalają uzyskiwać rozwiązania znacznie szybciej. Do tego typu funkcji kryterialnej (15) można np. zastosować metodę Gradientu prostego, która ze względu na swoją prostotę bardzo łatwo daje się zapisać w postaci kodu numerycznego a jednocześnie pozwala szybko uzyskać rozwiązanie. Metoda Gradientu prostego wykorzystuje kierunek K poszukiwania minimum, którym jest kierunek ujemnego gradientu funkcji S K = G (17) natomiast w przypadku poszukiwania maksimum obowiązuje zasada K = G (18) przy czym stały jest krok L z jakim poruszamy się w kierunku K. Rysunek 1: Zasada metody gradientu prostego. Algorytm tej metody można przedstawić w postaci kolejnych kroków: 1. Przyjąć punkt początkowy Y i oraz długość kroku l Y i = D i i (19) 2. Wyznaczyć wartość gradientu funkcji kryterialnej S w punkcie Y i 7
9 G i = S Y (20) Yi G i = G id G i S = Y Yi S D S (D i, i ) 3. Wyznaczyć wartość kierunku poszukiwań K i min(s) = K i = G i lub max(s) = K i = G i (21) 4. Wyznaczyć nową wartość Y i+1 Y i+1 = Y i + l K i (22) 5. Sprawdzić czy: S(Y i+1 ) S(Y i ) < ɛ (23) Algorytm powtarza się dopóki warunek (23) nie jest spełniony, przyjmując w kolejnej iteracji punkt Y i+1 jako punkt początkowy. 5 Różniczkowanie numeryczne. W celu numerycznego wyznaczenia gradientu G funkcji kryterialnej S w punkcie Y i skorzystać można z definicji pochodnej tzn. ilorazu różnicowego. Dla funkcji dwóch zmiennych zależność opisująca pochodną funkcji S w punkcie Y i = D i i przedstawia się następująco: S(D, ) = S(D i + h, i ) S(D i, i ) D h S(D, ) (Di, i ) (Di, i ) gdzie h stanowi krok numerycznego całkowania = S(D i, i + h) S(D i, i ) h (24) 8
10 6 Dane do zadania. τ = 10 lat - trwałość rurociągu n = współczynnik A = współczynnik b = 5 % - współczynnik d e = 36, [zł/j] - cena energii cieplnej T = 1 rok - okres bilansowy L = 1 m - długość rurociągu T s = T [s] - okres bilansowy W = 1000 [kg/s] - wydatek masowy przepływu ρ = 958 [kg/m 3 ] - gęstość tłoczonego płynu η = sprawność układu pompa - silnik µ = [P a s] - dynamiczny współczynnik lepkości płynu δ = [m] - grubość ścianki rurociągu M = 250 [zł/m 3 ] - cena materiału izolacyjnego t w = 100 [ C] - temperatura tłoczonego płynu t z = 10 [ C] - temperatura otoczenia c e = 0.4 [zł/kw h] - cena energii elektrycznej α w = 928 [W/m 2 K] - współczynnik wnikania ciepła (płyn rurociąg) α z = 4.6 [W/m 2 K] - współczynnik wnikania ciepła (izolacja otoczenie) λ s = 52 [W/mK] - współczynnik przewodzenia ciepła w stali λ iz = [W/mK] - współczynnik przewodzenia ciepła w izolacji 9
J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II
J. Szantyr Wykład nr 6 Przepływy w przewodach zamkniętych II W praktyce mamy do czynienia z mniej lub bardziej złożonymi rurociągami. Jeżeli strumień płynu nie ulega rozgałęzieniu, mówimy o rurociągu prostym.
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
Parametry układu pompowego oraz jego bilans energetyczny
Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
Instrukcja stanowiskowa
POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:
Laboratorium. Hydrostatyczne Układy Napędowe
Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
PRZENIKANIE CIEPŁA W CHŁODNICY POWIETRZNEJ
1. Wprowadzenie PRZENIKANIE CIEPŁA W CHŁODNICY POWIERZNEJ Ruch ciepła między dwoma ośrodkami gazowymi lub ciekłymi przez przegrodę z ciała stałego nosi nazwę przenikania ciepła. W pojęciu tym mieści się
Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia
Przykładowe kolokwium nr 1 dla kursu Grupa A Zad. 1. Określić różnicę temperatur zewnętrznej i wewnętrznej strony stalowej ścianki kotła parowego działającego przy nadciśnieniu pn = 14 bar. Grubość ścianki
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania
Zad 1. Obliczyć ilość ciepła potrzebnego do nagrzania stalowego pręta o promieniu r = 3cm długości l = 6m. C do temperatury t k
Zad 1. Obliczyć ilość ciepła potrzebnego do nagrzania stalowego pręta o promieniu r = 3cm i długości l = 6m od temperatury t 0 = 20 C do temperatury t k = 1250 C. Porównać uzyskaną wartość energii z energią
gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.
WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła):. PRZEWODZENIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.
WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH
WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz
Zadania przykładowe z przedmiotu WYMIANA CIEPŁA na II roku studiów IŚ PW
YMIANA CIEPŁA zadania przykładowe Zadania przykładowe z przedmiotu YMIANA CIEPŁA na II roku studiów IŚ P Zad. 1 Obliczyć gęstość strumienia ciepła, przewodzonego przez ściankę płaską o grubości e=10cm,
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego
Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k
Ermeto Original Rury / Łuki rurowe
Ermeto Original Rury / Łuki rurowe R2 Parametry rur EO 1. Gatunki stali, własności mechaniczne, wykonanie Rury stalowe EO Rodzaj stali Wytrzymałość na Granica Wydłużenie przy zerwaniu rozciąganie Rm plastyczności
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA
WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Politechnika Gdańska
Politechnika Gdańska Wybrane zagadnienia wymiany ciepła i masy Temat: Wyznaczanie współczynnika przejmowania ciepła dla rekuperatorów metodą WILSONA wykonał : Kamil Kłek wydział : Mechaniczny Spis treści.wiadomości
BADANIE WYMIENNIKÓW CIEPŁA
1.Wprowadzenie DNIE WYMIENNIKÓW CIEPŁ a) PŁSZCZOWO-RUROWEGO b) WĘŻOWNICOWEGO adanie wymiennika ciepła sprowadza się do pomiaru współczynników przenikania ciepła k w szerokim zakresie zmian parametrów ruchowych,
WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE
Ćwiczenie 1: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE 1. CEL ĆWICZENIA Celem ćwiczenia jest eksperymentalne wyznaczenie współczynnika wnikania ciepła podczas
Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4
Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel
Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie
Materiały pomocnicze z Aparatury Przemysłu Chemicznego
Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA
Straty przenikania ciepła w wodnych rurociągach ciepłowniczych część I
C iepłownictwo Straty przenikania ciepła w wodnych rurociągach ciepłowniczych część I Heat transfer losses in the district heating pipelines part I EWA KRĘCIELEWSKA Wstęp W latach 2013 2016 prowadzony
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy
Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy Opracowanie: mgr inż. Anna Dettlaff Obowiązkowa zawartość projektu:. Strona tytułowa 2. Tabela z punktami 3. Dane wyjściowe do zadania
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń
Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp
Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła
Przepływy laminarne - zadania
Zadanie 1 Warstwa cieczy o wysokości = 3mm i lepkości v = 1,5 10 m /s płynie równomiernie pod działaniem siły ciężkości po płaszczyźnie nachylonej do poziomu pod kątem α = 15. Wyznaczyć: a) Rozkład prędkości.
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA 1. Cel ćwiczenia Celem ćwiczenia jest doświadczalne zbadanie wymiany ciepła w przeponowym płaszczowo rurowym wymiennika ciepła i porównanie wyników z obliczeniami teoretycznymi.
OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH
ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczeń
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
Zastosowania Równania Bernoullego - zadania
Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,
Przenikanie ciepła obliczanie współczynników przenikania ciepła skrót wiadomości
obliczanie współczynników przenikania ciepła skrót wiadomości 10.09.2013 Systemy energetyki odnawialnej 1 Definicja ciepła Ciepło jest to forma energii przekazywana między dwoma układami (lub układem i
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych
Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Jednym z parametrów istotnie wpływających na proces odprowadzania ciepła z kolektora
Ćwiczenie nr 2 Wpływ budowy skraplacza na wymianę ciepła
Andrzej Grzebielec 2009-11-12 wersja 1.1 Laboratorium Chłodnictwa Ćwiczenie nr 2 Wpływ budowy skraplacza na wymianę ciepła 1 2 Wpływ budowy skraplacza na wymianę ciepła 2.1 Cel ćwiczenia Celem ćwiczenia
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski
OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów
Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w
Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w taki sposób, że dłuższy bok przekroju znajduje się
Metoda Elementów Skończonych
Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Metoda Elementów Skończonych Projekt zaliczeniowy: Prowadzący: dr. hab. T. Stręk prof. nadz. Wykonał: Łukasz Dłużak
Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.
Analiza wymiarowa Prof. dr hab. Małgorzata Jaros, prof. SGGW Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.
Zadania do ćwiczeń z tematyki podstawowej opory cieplne, strumienie, obliczanie oporów wielowarstwowych ścian, etc
Zadania do ćwiczeń z tematyki podstawowej opory cieplne, strumienie, oliczanie oporów wielowarstwowyc ścian, etc zad (rysunek nie oddaje skali układu cieplnego) papier laca ciepło Oliczyć równoważną przewodność
LABORATORIUM MECHANIKI PŁYNÓW
Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o
Podstawy projektowania cieplnego budynków
Politechnika Gdańsk Wydział Inżynierii Lądowej i Środowiska Podstawy projektowania cieplnego budynków Zadanie projektowe Budownictwo Ogólne, sem. IV, studia zaoczne ETAP I Współczynnik przenikania ciepła
WYZNACZANIE STRAT CIEPŁA PRZEWODÓW IZOLOWANYCH
Ćwiczenie 2: WYZNACZANIE STRAT CIEPŁA PRZEWODÓW IZOLOWANYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest porównanie wartości strat ciepła niezaizolowanego przewodu rurowego ze stratami ciepła przewodu pokrytego
Wymiennik ciepła. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2011
Henryk Bieszk Wymiennik ciepła Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2011 H. Bieszk, Wymiennik ciepła, projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO:
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości
LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK
Zadanie 1. Zadanie 2.
Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Instrukcja do laboratorium z fizyki budowli.
Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar współczynnika przewodzenia ciepła materiałów budowlanych Strona 1 z 5 Cel ćwiczenia Prezentacja metod stacjonarnych i dynamicznych pomiaru
Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Hydrostatyczne Układy Napędowe Laboratorium
Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL
Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.
Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś
WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu
1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome
1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,
MECHANIKA PŁYNÓW LABORATORIUM
MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
WYMIENNIK CIEPŁA TYPU RURA W RURZE - WYZNACZANIE WSPÓŁCZYNNIKÓW WNIKANIA I PRZENIKANIA CIEPŁA
WYMIENNIK CIEPŁA TYPU RURA W RURZE - WYZNACZANIE WSPÓŁCZYNNIKÓW WNIKANIA I PRZENIKANIA CIEPŁA 1. Wprowadzenie W przypadku gdy płynący przewode płyn ( gaz lub ciecz) a teperaturę różną od teperatury ściany
Wyznaczanie współczynnika przenikania ciepła lutni elastycznych. 1. Wstęp PROJEKTOWANIE I BADANIA
Wyznaczanie współczynnika przenikania ciepła lutni elastycznych dr inż. Marek Jedziniak Instytut Techniki Górniczej KOMAG Streszczenie: Przedstawiono budowę stanowiska badawczego oraz metodykę z procedurą
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21
POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 5. POMIARY NATĘŻENIA PRZEPŁYWU GAZÓW METODĄ ZWĘŻOWĄ 1. Cel ćwiczenia
KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY.
Sprawdzanie warunków cieplno-wilgotnościowych projektowanych przegród budowlanych (wymagania formalne oraz narzędzie: BuildDesk Energy Certificate PRO) Opracowanie: BuildDesk Polska Nowe Warunki Techniczne
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
PRZYCHODNIA W GRĘBOCICACH GRĘBOCICE ul. Zielona 3działki nr 175/7, 175/4, 705 PROJEKT BUDOWLANY BUDOWY BUDYNKU PRZYCHODNI CZĘŚĆ SANITARNA
5. OBLICZENIA 5.1. BILANS CIEPŁA 5.1.1. Sumaryczne zapotrzebowanie ciepła kotłowni Moc zainstalowanych urządzeń odbiorczych kotłowni określono na podstawie danych wynikających z projektów branżowych wchodzących
Politechnika Poznańska. Metoda Elementów Skończonych
Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Gr. M-5 Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Damian Woźniak Michał Walerczyk 1 Spis treści 1.Analiza zjawiska
Zadania rachunkowe z termokinetyki w programie Maxima
Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Przygotowanie zadania sterowania do analizy i syntezy zestawienie schematu blokowego
Modele matematyczne procesów, podobieństwo i zmiana skali
Modele matematyczne procesów, podobieństwo i zmiana skali 20 kwietnia 2015 Zadanie 1 konstrukcji balonu o zadanej sile oporu w ruchu. Obiekt do konstrukcji (Rysunek 1) opisany jest następującą F = Φ(d,
Politechnika Poznańska
Poznań, 19.01.2013 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Semestr 7 METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: dr
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar
Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.
Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Widerowski Karol Wysocki Jacek Wydział: Budowa Maszyn i Zarządzania Kierunek:
Metoda Elementów Skończonych
Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:
OGRZEWNICTWO. 5.Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego. Spadek ciśnienia w prostoosiowych odcinkach rur (5.1)
70 5.Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego Spadek ciśnienia w prostoosiowych odcinkach rur gdzie: λ - współczynnik tarcia U średnia prędkość przepływu L długość rury d średnica rury
WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU WYMIANY CIEPŁA W PRZEGRODZIE BUDOWLANEJ WYKONANEJ Z PUSTAKÓW STYROPIANOWYCH
Budownictwo o Zoptymalizowanym Potencjale Energetycznym 2(18) 2016, s. 35-40 DOI: 10.17512/bozpe.2016.2.05 Paweł HELBRYCH Politechnika Częstochowska WYKORZYSTANIE METODY ELEMENTÓW SKOŃCZONYCH W MODELOWANIU
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III POZIOM PODSTAWOWY
25P3 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - III Hydrostatyka Gazy Termodynamika Elektrostatyka Prąd elektryczny stały POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych
Obliczenie natężenia promieniowania docierającego do powierzchni absorpcyjnej
Kolektor słoneczny dr hab. inż. Bartosz Zajączkowski, prof. uczelni Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych email: bartosz.zajaczkowski@pwr.edu.pl
Statyka płynów - zadania
Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły
Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4
Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz
Opory przepływu powietrza w instalacji wentylacyjnej
Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane
METODA ELEMENTÓW SKOŃOCZNYCH Projekt
METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.
Aerodynamika I Efekty lepkie w przepływach ściśliwych.
Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie
RURA GRZEWCZA WIELOWARSTWOWA
KARTA TECHNICZNA IMMERLAYER PE-RT/AL/PE-RT RURA GRZEWCZA WIELOWARSTWOWA Podstawowe dane rury grzewczej IMMERLAYER PE-RT/AL/PE-RT Kod Średnica Ø Grubość ścianki Ilość rury w krążku Maksymalne ciśnienie
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA PODCZAS SKRAPLANIA PARY
Polskie Stowarzyszenie Wykonawców Izolacji Przemysłowych ul. Augustówka Warszawa
Polskie Stowarzyszenie Wykonawców Izolacji Przemysłowych ul. Augustówka 24 02-981 Warszawa www.pswip.pl Podstawowym zadaniem techniki izolacyjnej jest zmniejszenie gęstości strumienia ciepła przepływającego
PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE
PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE dr inż. Andrzej Dzięgielewski 1 OZNACZENIA I SYMBOLE Q - ciepło, energia, J, kwh, (kcal) Q - moc cieplna, strumień ciepła, J/s, W (kw), (Gcal/h) OZNACZENIA I SYMBOLE