O Odporności Estymatorów Parametrów. Modelu Logistycznego. i Koncepcji Głębi Regresyjnej

Wielkość: px
Rozpocząć pokaz od strony:

Download "O Odporności Estymatorów Parametrów. Modelu Logistycznego. i Koncepcji Głębi Regresyjnej"

Transkrypt

1 O Odpornośc Estymatorów Parametrów Modelu Logstycznego Koncepcj Głęb Regresyjnej Danel Kosorowsk Katedra Statystyk Unwersytet Ekonomczny w Krakowe Konferencja Aktuaralna, Warszawa 9-11 czerwca 2008 roku

2 Motywacje Wykorzystywane w wększośc przedsęborstw w Polsce metody statystyczne na ogół ne są odporne na występowane pośród danych jednostek odstających, złą specyfkację model stochastycznych generujących dane td. Wystarczy jedna obserwacja odstająca (np. błąd we wpsywanu danych) a procedura decyzyjna operająca sę o średną z próby, macerz kowarancj, autokorelację moŝe okazać sę bezuŝyteczna. Środk na rozwój płyną ne tam gdze są potrzebne. Absolwent ne otrzymuje kredytu gdyŝ jego ryzyko kredytowe zostaje przeszacowane. Portfel ubezpeczycela generuje straty. Reguła dagnostyczna wadlwe kwalfkuje pacjentów. 2

3 Plan referatu 1. Warunk określonośc estymatora najwększej warygodnośc (NW) parametrów modelu logstycznego. 2. Koncepcja głęb regresyjnej. 3. Zastosowane głęb regresyjnej do pomaru blskośc neokreślonośc estymatora NW parametrów modelu logstycznego. 4. Propozycja odpornego estymatora parametrów modelu logstycznego wykorzystującego głębę regresyjną. 3

4 I. Wprowadzene Regresję logstyczną wykorzystujemy do modelowana prawdopodobeństwa, Ŝe zdarzene zaleŝne od wektora zmennych objaśnających nastąp. Zdarzena mogą być nterpretowane jako sukcesy poraŝk. Obserwujemy (, x y) gdze x = ( x1,..., xp 1) jest wektorem zmennych objaśnających, y moŝe przyjmować wartośc 1 lub 0. MoŜna rozpatrywać x jako ustalony bądź losowy. Aby modelować zaleŝność y od x, zakładamy Ŝe Py= ( 1) zaleŝy od (,1) x β t dla p pewnego neznanego β= ( β1,..., β p ) R. 4

5 PonewaŜ Py= ( 1) [0,1] oraz (,1) x β t moŝe przyjąć kaŝdą wartość rzeczywstą, na ogół zakłada sę, Ŝe t Py ( = 1) = F((,1) x β), (1) gdze za tzw. funkcję wązana F berzemy dowolną cągłą dystrybuantę. JeŜel x traktujemy jako losowy zakłada sę Ŝe prawdopodobeństwa są warunkowe t Py ( = 1 x) = F((,1) x β), (1*) 5

6 Nech ( x 1, y1),,( x n, yn) będze próbą z modelu (1), gdze x1,..., x n są ustalone. Model logstyczny z wyrazem wolnym zakłada, Ŝe odpowedz y są realzacjam nezaleŝnych zmennych losowych Y, które mają rozkłady Bernoullego z prawdopodobeństwam sukcesu gdze rzędu. p t F(( x,1) β) (0,1), = 1,..., n, (2) β R jest neznane oraz zakładamy, Ŝe zbór wszystkch ( x,1) jest pełnego Jako funkcję wązana berze sę dystrybuantę rozkładu logstycznego 1 Fx ( ) = 1 + exp( x). (3) 6

7 II. Warunk stnena estymatora NW w modelu logstycznym Klasycznym estymatorem neznanego wektora parametrów modelu logstycznego jest estymator najwększej warygodnośc. Wprowadźmy oznaczene p( β) = F(( x,1) β). Obserwowane odpowedz y1,..., y n są realzacjam zmennej losowej przyjmującej wartośc 1 0 z prawdopodobeństwam odpowedno p( β ) oraz 1 p( β), stąd funkcja częstośc przyjmuje postać y py (, β) p ( β) (1 p( β)) 1 Logarytm warygodnośc Lβ ( ) próby dany jest jako n t y =, (5) log L( β) = [ ylog p( β) + (1 y)log(1 p( β)) ], (6) = 1 7

8 RóŜnczkując (6) przyrównując do zera otrzymujemy równana warygodnośc n y p( β) ' t F( ( x,1 ) β) ( x,1) = 0, (7) p( β)(1 p( β) = 1 W przypadku regresj logstycznej moŝna pokazać, Ŝe F ' () y = Fy ()(1 Fy ()) stąd w przypadku rozkładu logstycznego równana warygodnośc przyjmują postać n t ( y p( β)) ( x,1) = 0. (8) = 1 Warto podkreślć, Ŝe estymator NW ne zawsze stneje. Warunk stnena estymatora NW badal Albert Anderson (1984) oraz Santner Duffy (1986). 8

9 JeŜel chcemy przewdywać wartośc zmennych objaśnających y na podstawe odpowadającego wektora x, to wymarzoną byłaby taka sytuacja w której mamy do czynena z całkowtym rozdzelenem ( ang. complete separaton) sukcesów poraŝek, tzn. gdy stneje p β R, taka Ŝe t (,1) x β > 0 jeŝel y = 1, t (,1) x β < 0 jeŝel y = 0, dla = 1,..., n. Zbór danych który ne jest całkowce rozdzelony jest quas całkowce rozdzelony p jeŝel stneje wektor β R \{0}, tak Ŝe t (,1) x β 0 jeŝel y = 1 oraz stneje j {1,..., n} tak, Ŝe (,1) x β = 0. t (,1) x β 0 jeŝel y = 0, dla = 1,..., n t 9

10 10

11 X1 X2 Y [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,]

12 Powemy, Ŝe w zborze danych występuje zachodzene (ang. overlap) jeŝel ne stneje całkowte an quas całkowte rozdzelene. Zarówno dla modelu logstycznego jak modelu probtowego Albert Anderson (1984) oraz Santner Duffy (1986) pokazal, Ŝe estymator NW wektora parametrów β stneje wtedy tylko wtedy, gdy w zborze danych występuje zachodzene. Geometryczna nterpretacja estymator NW stneje wtedy tylko wtedy, gdy ne stneje hperpłaszczyzna, która rozdzela sukcesy poraŝk, przy czym sama hperpłaszczyzna moŝe zawerać zarówno sukcesy jak poraŝk. 12

13 Fakt ten stanow problem z punktu wdzena poszukwana estymatorów odpornych. Wele estymatorów odpornych konstruuje sę w ten sposób, Ŝe punkty odstające są usuwane bądź stosowne zmnejsza sę ch wkład (waŝona metoda NW, M-estymatory). MoŜe sę zdarzyć, Ŝe w całym zborze występuje zachodzene lecz w zredukowanym zborze juŝ ne występuje. 13

14 Oznaczamy n overlap najmnejszą lczbę obserwacj, których usunęce nszczy zachodzene na sebe sukcesów poraŝek w zborze danych. Oznaczmy n complete najmnejszą lczba obserwacj, których usunęce prowadz do całkowtego rozdzelena. n complete = 1 ; n overlap = 1 n complete = 0 ; n overlap = 0 14

15 (!) Welkość n overlap często jest newelka, zwłaszcza w wyŝszych wymarach, tak Ŝe oszacowane modelu logstycznego często zaleŝy krytyczne zaledwe od klku obserwacj. ZauwaŜmy, Ŝe zastępując n overlap punktów poprzez nne n overlap punktów leŝących po t właścwej strone hperpłaszczyzny (,1) x β = 0, sprawmy, Ŝe estymator NW zmerza do neskończonośc. (!) Powemy, Ŝe punkt załamana estymatora NW w tym przypadku wynos noverlap n. (!) ZauwaŜmy, Ŝe punkty które zastępujemy n overlap punktam ne muszą być punktam odstającym. Fakt, Ŝe punkty, które prowadzą do załamana estymatora NW ne muszą być jednostkam ostającym zaobserwowal perws Croux, Flandre and Haesbreack (2002). 15

16 Chrstmann Rousseeuw (2004) pokazal, Ŝe pojęce głęb regresyjnej moŝe zostać wykorzystane do pomaru welkośc rozdzelena pomędzy sukcesam poraŝkam (zachodzena na sebe sukcesów poraŝek). 16

17 III. Koncepcja głęb regresyjnej W przypadku modelu regresj lnowej, rozpatruje sę zbór danych postac p Z = {( x,..., x, y); = 1,..., n} R, n,1 p, 1 Oznaczmy część x kaŝdego punktu danych przez,1 p, 1 p 1 x = ( x,..., x ) R. Naszym celem jest dopasować do y afnczną hperpłaszczyznę w p gdze b= ( b1,..., b p ) R. t = 1,1+ + p 1 p, 1+ p g(( x,1) b ) bx... b x b, p R, tzn. 17

18 p Defncja 1 : Wektor b= ( b1,..., b p ) R nazwemy nedopasowanem do Z n jeŝel stneje hperpłaszczyzna afnczna V w przestrzen x ów taka, Ŝe Ŝadne x ne naleŝy do V taka, Ŝe reszta r( b) = y g(( x,1) b ) > 0 dla wszystkch x leŝących w jednej z jej otwartych półprzestrzen, oraz r ( b ) < 0 dla wszystkch otwartej półprzestrzen. t x w drugej p Defncja 2 : Głęba regresyjna rdepth(, b Z n ) dopasowana b= ( b1,..., b p ) R względem zboru danych p Z R jest najmnejszą lczbą obserwacj, które naleŝy n usunąć, aby sprawć, Ŝe b będze nedopasowanem w sense defncj 1. 18

19 60 50 Estymator maksymalnej głęb regresyjnej - lna czerwona ; estymator NK - lna nebeska y= *x (rdepth=5) y y= *x (rdepth=0) 0-10 y= *x (rdepth=2) - est. NK x 19

20 Istneje zwązek pomędzy głębą regresyjną całkowtym rozdzelenem. Dla zboru danych Z = {( x,1,..., x, 1); = 1,..., n} z bnarną odpowedzą y n p rozwaŝmy afnczną hperpłaszczyznę daną przez dopasowane * b = (0,...,0,0.5). Okazuje sę, Ŝe * b jest nedopasowanem wtedy tylko wtedy, gdy n = 0, complete ogólnej n complete = rdepth( b, Z ). * n (!) Welkośc n complete oraz n overlap mogą być oblczane za pomocą algorytmu dla głęb regresyjnej dla danej hperpłaszczyzny. Stosowne algorytmy do oblczana tych welkośc proponują udostępnają na stronach projektu R - Chrstmann Rousseeuw. 20

21 Rysunek przedstawa dane dotyczące bankructw 50 przedsęborstw w zaleŝnośc od wartośc dwóch wskaźnków wartość sprzedaŝy jako procent wartośc aktywów (S/TA) oraz wartośc ksęgowej aktywów do wartośc ksęgowej zobowązań (BVE/BVL). Źródło: Oblczena własne, dane StatLb Wartość n complete w przypadku tego zboru danych wynos 9. Usunęce dzewęcu obserwacj prowadz do nestnena estymatora NW. 21

22 IV. Propozycja odpornego estymatora parametrów modelu logstycznego Głęba regresyjna dopasowana jest nezmenncza względem przekształceń monotoncznych w tym sense, Ŝe jeŝel zastąpmy y przez hy ( ), gdze h jest ścśle monotonczną funkcją oraz jeŝel funkcja wązana zostane w tym samym czase zastąpona przez h g, to głęba dopasowana sę ne zmen ( jest to prawdą ponewaŝ głęba regresyjna zaleŝy jedyne od zmennych objaśnających r( b )). x oraz od znaku reszt RozwaŜmy sytuację regresj bnarnej. MoŜna zdefnować głębę regresyjną dla zborów danych zwykle rozwaŝanych za pomocą regresj logstycznej w podobny sposób jak przedstawono powyŝej wykorzystujemy dystrybuantę rozkładu logstycznego F zamast funkcj g. 22

23 W procese estymacj moŝna potraktować odpowedź jako cągłą zmenną o modach 0 1 mnmalnej warancj wokół mód albo przejść na logty zastosować algorytm oblczenowy bezpośredno (szczegóły oblczenowe zawera Rousseuuw Hubert (1998). 23

24 PRZYKŁAD Zgłoszene szkody komunkacyjnej w zaleŝnośc od weku klenta towarzystwa ubezpeczenowego. Zgłoszene szkody komunkacyjnej w zaleŝnośc od standaryzowanego weku klenta towarzystwa ubezpeczenowego. x y [1,] 19 1 [2,] 27 0 [3,] 18 0 [4,] 23 1 [5,] 19 0 [6,] 25 0 [7,] 31 1 [8,] 19 0 [9,] 47 0 [10,] 50 1 x y [1,] [2,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [10,] Estymator NW : b 0 = ; b 1 = Estymator maksymalnej głęb : b 0 = ; b 1 = (n overlap = 3) 24

25 25

26 WŁASNOŚCI PROPOZYCJI Wynk symulacj wskazują, Ŝe proponowany estymator wektora parametrów modelu regresj logstycznej z wyrazem wolnym, w sytuacj gdy pośród danych ne występują jednostk ostające jest neobcąŝony, odznacza sę porównywalnym co estymator NW rozrzutem. W sytuacj występowana obserwacj odstających (np. wysoka norma wektora regresorów odpowedź 1, gdy tymczasem odpowedz 1 generowane są przez wektory regresorów o umarkowanych normach) proponowany estymator w przecweństwe do estymatora NW jest odporny. 26

27 PODSUMOWANIE Prezentowana w pracy metoda oceny jakośc oszacowana NW parametrów modelu logstycznego moŝe przyczynć sę do lepszego zarządzana ryzykem w dzałalnośc ubezpeczenowej. Proponowany odporny estymator maksymalnej głęb regresyjnej parametrów modelu logstycznego dobrze radz sobe ze skośnym oraz heteroskedastycznym rozkładam błędu. Wynk symulacj wskazują na neobcąŝoność zadowalającą efektywność estymatora maksymalnej głęb regresyjnej w porównanu z estymatorem NW. 27

28 Lteratura 1. Albert, A., Anderson J. A. (1984), On the exstence of maxmum lkelhood estmates n logstc regresson models, Bometrka, 71, Carroll, R. J. and Pederson, S. (1993), On robustness n the logstc regresson model, Journal of the Royal Statstcal Socety (B), 55, Chrstmann A., Rousseeuw P. J. (2001), Measurng Overlap n Bnary Regresson, Computatonal Statstcs & Data Analyss, Volume 37, Issue 1, Pages Kosorowsk D. (2007), O Odpornej Analze Regresj w Ekonom na Przykładze Koncepcj Głęb Regresyjnej, Statstcal Revew, vol. 1, p (n polsh) 5. Kosorowsk D. (2008), Robust Classcaton and Clusterng Based on the Projecton Depth Functon, Proceedngs of the 18 th Symposum n Computatonal Statstcs (COMPSTAT 2008), CD-ROM. 6. Krzyśko M. (2004), Statystyka Matematyzna, Wydawnctwo naukowe UAM, Poznań 7. Marona R. A., Martn R. D., Yoha V. J. (2006), Robust Statstcs Theory and Methods, John Wley & Sons, Chchester 28

29 8. Mzera I. (2002) On Depth and Deep Ponts: A Calculus, Annals of Statstcs 30, Rao R. C., Toutenburg Helge, (1999), Lnear Models Least Squares and Alternatves. Sprnger-Verlag, New York. 10. Rousseeuw P. J., Hubert M. (1998), Regresson Depth, J. Amer. Statst. Assoc., 94, Van Aelst, S., Rousseeuw, P. J. (2000), Robustness Propertes of Deepest Regresson, J. Multv. Analyss, 73, Zuo, Y., Serflng, R. (2000). General Notons of Statstcal Depth Functon. The Annals of Statstcs 28, p

30 Dodatek głęba Tukeya USD/PLN(t) vs.usd/pln(t-1) n 2007 year ; bvarate Tukey's depth y(t) 2,5242 2,513 2,6285 2,7853 2,7619 2,7989 2,827 2,8241 2,9521 3,0016 2,883 Tukey medan Outlers 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3,0 3,1 y(t-1) 30

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Jak analzować dane o charakterze uporządkowanym? Dane o charakterze uporządkowanym Wybór jednej z welkośc na uporządkowanej skal Skala ne ma nterpretacj

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 6 Mkołaj Czajkowsk Wktor Budzńsk 'Netypowe' zmenne objaśnane Problemy mkroekonometryczne często zmenna objaśnana ne jest cągła lub jej wartość ne ma bezpośrednej nterpretacj loścowej Zmenną

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM

Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM SVM Wprowadzene Support vector machnes (maszyny wektorów wsperających, maszyny wektorów nośnych) SVM służy do: w wersj podstawowej klasyfkacj bnarnej w wersj z rozszerzenam regresj wyboru najważnejszych

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

WYBRANE STATYSTYKI ODPORNE

WYBRANE STATYSTYKI ODPORNE Grażyna Trzpot Unwersytet Ekonomczny w Katowcach WYBRANE STATYSTYKI ODPORNE Wprowadzene Obserwacje oddalone (outlers) są takm obserwacjam w próbe, które mogą powodować zakłócena w ocene relacj w próbe.

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:

1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń: .. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Prawdopodobieństwo geometryczne

Prawdopodobieństwo geometryczne Prawdopodobeństwo geometryczne Przykład: Przestrzeń zdarzeń elementarnych określona jest przez zestaw punktów (x, y) na płaszczyźne wypełna wnętrze kwadratu [0 x ; 0 y ]. Znajdź p-stwo, że dowolny punkt

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

ZAJĘCIA X. Zasada największej wiarygodności

ZAJĘCIA X. Zasada największej wiarygodności ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na

Bardziej szczegółowo

Nieparametryczne Testy Istotności

Nieparametryczne Testy Istotności Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH

V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

Funkcje i charakterystyki zmiennych losowych

Funkcje i charakterystyki zmiennych losowych Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych

Bardziej szczegółowo

EKONOMETRIA ECONOMETRICS 2(48) 2015

EKONOMETRIA ECONOMETRICS 2(48) 2015 EKONOMETRIA ECONOMETRICS 2(48) 2015 Wydawnctwo Unwersytetu Ekonomcznego we Wrocławu Wrocław 2015 Redakcja wydawncza: Anna Grzybowska Redakcja technczna: Barbara Łopusewcz Korekta: Barbara Cbs Łamane: Małgorzata

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Analiza regresji modele ekonometryczne

Analiza regresji modele ekonometryczne Analza regresj modele ekonometryczne Klasyczny model regresj lnowej - przypadek jednej zmennej objaśnającej. Rozpatrzmy klasyczne zagadnene zależnośc pomędzy konsumpcją a dochodam. Uważa sę, że: - zależność

Bardziej szczegółowo

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim

5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim 5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego.

Ćw. 1. Wyznaczanie wartości średniego statycznego współczynnika tarcia i sprawności mechanizmu śrubowego. Laboratorum z Podstaw Konstrukcj Maszyn - 1 - Ćw. 1. Wyznaczane wartośc średnego statycznego współczynnka tarca sprawnośc mechanzmu śrubowego. 1. Podstawowe wadomośc pojęca. Połączene śrubowe jest to połączene

Bardziej szczegółowo

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 Metody estymacji. Estymator największej wiarygodności Zad. 1 Pojawianie się spamu opisane jest zmienną losową y o rozkładzie zero-jedynkowym

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe

Bardziej szczegółowo

p Z(G). (G : Z({x i })),

p Z(G). (G : Z({x i })), 3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W

Bardziej szczegółowo

Analiza korelacji i regresji

Analiza korelacji i regresji Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11

Stanisław Cichocki. Natalia Nehrebecka. Wykład 11 Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych

Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa

Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości

( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,

Bardziej szczegółowo