Czarna dziura Schwarzschilda

Wielkość: px
Rozpocząć pokaz od strony:

Download "Czarna dziura Schwarzschilda"

Transkrypt

1 Czarna dziura Schwarzschilda Mateusz Szczygieł Wydział Fizyki Uniwersytet Warszawski 19 listopada / 32

2 Plan prezentacji 1. Sferycznie symetryczne, statyczne rozwiązanie równań Einsteina. 2. Przesunięcie ku czerwieni. 3. Trajektorie w geometrii Schwarzschilda. 4. Precesja orbity. 5. Soczewkowanie grawitacyjne. 6. Horyzont zdarzeń. 7. Rozszerzenie Kruskala-Szekersa. Na początku omówimy metrykę Schwarzschilda oraz zjawiska fizyczne w niej zachodzące. Następnie przejdziemy do procesów zachodzących w pobliżu czarnej dziury. Na koniec postaramy się zrozumieć co się dzieje we wnętrzu czarnej dziury przy pomocy zmiany układu współrzędnych. 2 / 32

3 Równania Einsteina Równania Einsteina (przyjmujemy G = c = 1): G µν = 8πT µν, gdzie G µν = R µν 1 2 R g µν. Alternatywna postać równań to ( R µν = 8π T µν 1 ) 2 T g µν. Interesuje nas statyczne, sferycznie symetryczne rozwiązanie równania próżniowego. Sprowadza się to do: R µν = 0, gdzie R µν jest tensorem Ricciego, który wyraża się przez metrykę i jej pochodne. 3 / 32

4 Rozwiązanie Schwarzschilda Rozwiązaniem powyższych równań jest metryka (1916 Karl Schwarzschild) ( g = 1 + C ) ( dt C ) 1 dr 2 + +r 2 (dθ 2 + sin 2 θdφ 2 ). r r Stałą C ustalamy poprzez porównanie z granicą nierelatywistyczną g 00 = 1 2V (r). Dostajemy metrykę Schwarzschilda ( g = 1 2m r ) ( dt m r ) 1 dr 2 + +r 2 (dθ 2 + sin 2 θdφ 2 ), gdzie m jest masą ciała wytwarzającego pole grawitacyjne. 4 / 32

5 Przesunięcie ku czerwieni Rozważmy nadajnik sygnału świetlnego w ustalonym punkcie przestrzeni o współrzędnych (t N, r N, θ N, φ N ) oraz odbiornik w punkcie (t O, r O, θ O, φ O ). Można pokazać, że dla dwóch sygnałów mamy t N t (1) N t(2) N = t(1) O t(2) O t O. Co pozwala wyznaczyć przedział czasu własnego τ N/O = ( 1 2m ) 1 2 t r N/O. N/O Częstotliwość jest odwrotnie proporcjonalna do czasu pomiędzy dwoma sygnałami, dostajemy wiec: ( ) 1 ν O 1 2m/rN 2 = ν N 1 2m/r O 5 / 32

6 Przesunięcie ku czerwieni geodetyka zerowa (t O, r O, θ O, φ O ) (t N, r N, θ N, φ N ) (r N, θ N, φ N ) (r O, θ O, φ O ) 6 / 32

7 Przesunięcie ku czerwieni Dla dużych odległości od centrum grawitacji dostajemy wzór ( ν O m 1 ). ν N r O r N Przesunięcie względne ν ν N = ν O ν N ν N ( 1 m 1 ). r O r N Jeżeli r N < r O to dostaniemy ν < 0, więc widmo przesunie się ku czerwieni. Zjawisko to zostało potwierdzone eksperymentalnie w pobliżu Ziemi (1960) oraz badając widmo wodoru wypuszczonego przez rakietę (1979). 7 / 32

8 Pola Killinga Są one matematyczną manifestacją symetrii metryki. Spełniają równanie: α ξ β + β ξ α = 0, gdzie ξ jest polem Killinga. Jest to warunek znikania pochodnej Liego metryki wzdłuż tych pól wektorowych. Jeżeli u α jest wektorem stycznym do linii geodezyjnej to u α ξ α jest stałe wzdłuż niej. Skorzystamy z tego faktu przy szukaniu trajektorii w geometrii Schwarzschilda. Przypomnienie równania linii geodezyjnej u α α u β = 0. Równanie to wyraża stałość wektora stycznego do linii geodezyjnej wzdłuż niego samego. 8 / 32

9 Trajektorie w geometrii Schwarzschilda W rozważanej metryce mamy symetrię θ π θ. Z tego powodu linia geodezyjna przecinająca płaszczyznę równikową i mająca wektor styczny w tym miejscu leżący w tej płaszczyźnie, musi w niej pozostać. Rozważmy więc ruch ograniczony do tej płaszczyzny. Parametr geodezyjnej oznaczmy przez τ. Wektor styczny to u µ = ẋ µ. Mamy: ( κ = g νµ ẋ ν ẋ µ = 1 2m r ) ( ṫ m r gdzie κ = 1 dla linii czasowych i κ = 0 dla zerowych. ) 1 ṙ 2 + r 2 φ2, 9 / 32

10 Trajektorie w geometrii Schwarzschilda Skorzystamy z faktu, że t oraz φ są wektorami Killinga (metryka nie zależy od tych współrzędnych). Dostajemy dwie całki pierwsze E = ( 1 2m r ) ṫ, L = r 2 φ. Równanie linii geodezyjnej upraszcza się do postaci 2ṙ ( 1 2m ) ( L 2 ) 2 r r 2 + κ = 1 2 E2. Jest to znane równanie klasycznej cząstki o energii E 2 /2 poruszającej się w potencjale V = 1 2 κ κm r + L2 2r 2 ml3 r / 32

11 Czasowe geodezyjne (κ = 1) Punkty w których potencjał V ma ekstrema są dane wzorem R ± = L2 ± (L 4 12L 2 m 2 ) 1 2 2m Dla L 2 < 12m 2 nie ma ekstremów, więc cząstka lecąca w kierunku centrum, spadnie na nie. Dla L 2 > 12m 2 R + jest minimum (stabilne kołowe orbity) a R jest maksimum. Dla L m odtwarzamy wynik Newtonowski R + L 2 /m.. 11 / 32

12 Geodezyjne czasowe (κ = 1). V 2 L = 3m r / 32

13 Geodezyjne czasowe (κ = 1). V 0.7 L = 5m r / 32

14 Precesja orbity. Jeżeli wypchniemy nieznacznie orbitę z R + to będzie ona oscylować wokół R + z częstością ωr 2 = d2 V dr 2 = m(r + 6m) R+ R+(R 3 + 3m). Z kolei częstość kołowa orbity ω 2 φ = L2 R 4 + = m R 2 +(R + 3m). Z powyższego wynika, że orbity nie są zamkniętymi elipsami lecz ich wielka oś wykonuje powolną precesję (w kierunku obiegu centrum). 14 / 32

15 Precesja orbity. Częstość precesji W przybliżeniu R + m ω p = ω φ ω r. ω p 3m3/2 R 5/2. + Efekt ten zaobserwowano dla Merkurego, którego orbita wykonuje precesję z szybkością 43 sekund kątowych na 100 lat. Po uwzględnieniu oddziaływania grawitacyjnego od innych ciał w układzie słonecznym pozostały efekt udało się wytłumaczyć za pomocą ogólnej teorii względności. 15 / 32

16 Geodezyjne zerowe (κ = 0). W tym przypadku potencjał upraszcza się do V = L2 (r 2m). 3r3 Ten potencjał ma tylko jedno maksimum w R = 3m, wiec mamy tylko jedną możliwość niestabilnej orbity kołowej. Fizycznie można się spodziewać zakrzywienia promieni świetlnych przechodzących w pobliżu obiektów o dużej masie. 16 / 32

17 Geodezyjne zerowe (κ = 0). V 4 L = 10m r / 32

18 Zakrzywienie promieni świetlnych. Dzieląc przez siebie wyrażenia na φ i ṙ otrzymujemy równanie dφ dr = L ( ) 1/2 r 2 E 2 L2 (r 2m). r3 Zamieniając zmienną na u = 1/r dostajemy całkę 1/R0 φ = 2 0 du (R0 2 2mR0 3 u 2 + 2mu 3 ), 1/2 gdzie R 0 jest najbliższym zbliżeniem do gwiazdy. Dla m = 0 mamy φ = π. Do pierwszego rzędu w m dostajemy ugięcie promienia δφ = φ π 4m R / 32

19 Zakrzywienie promieni świetlnych. Ro 0 R. M. Wald General Relativity (1984) 19 / 32

20 Soczewkowanie grawitacyjne. Zgodnie z powyższymi wyprowadzeniami promień światła dla którego R 0 równa się promieniowi Słońca, ugnie się o 1.75 sekund kątowych. Eksperymentalnie potwierdzono to ugięcie podczas zaćmień Słońca począwszy od 1919 roku. Dalsze obserwacje kwazarów podczas zaćmień Słońca dały zgodność z przewidywaniami z dokładnością 1% (1976). Dla masywnych ciał efekt ten może być silniejszy. Mówimy wtedy o soczewkowaniu grawitacyjnym. 20 / 32

21 Soczewkowanie grawitacyjne / 32

22 Pionowy spadek swobodny. W tym przypadku mamy φ = 0 i dostajemy (κ = 1) ( ṙ m r ) = E 2. Załóżmy, że na początku cząstka spoczywała (ṙ = 0) w r 0, można wtedy podstawić E 2 = (1 2m/r 0 ). Całkując dostajemy τ = 1 r0 ( ) r0 r 1/2 (2m) 1/2 dr. r r 0 r Dla r 2m całka pozostaje skończona. Wykorzystując dt dτ = E 1 2m r można pokazać, że t w tym przypadku jest nieskończone. 22 / 32

23 Horyzont zdarzeń. Jak zauważyliśmy czas własny spadania cząstki do r = 2m jest skończony i kontynuuje ona swój ruch do r = 0. Jednak zewnętrzny obserwator postrzega czas jej spadania jako nieskończony. Sygnały wysyłane na zewnątrz przez cząstkę przesuwałyby się coraz bardziej ku czerwieni, aż w końcu zewnętrzny obserwator nie byłby w stanie jej dostrzec. Po przekroczeniu r = 2m cząstka nie byłaby już w stanie wysłać sygnału do zewnętrznego obserwatora ani wydostać się poza r = 2m. Z tego powodu hiperpowierzchnię r = 2m nazywamy horyzontem zdarzeń. 23 / 32

24 Osobliwości w r = 2m i r = 0. Można pokazać, że w r = 2m nie ma osobliwości geometrycznej, jedynie wybrane współrzędne nie są w stanie pokryć tego regionu. Skalar krzywizny R nie jest osobliwy w tym punkcie. Podobnie można pokazać, że punkt r = 0 jest faktycznie osobliwością geometryczną (R wybucha). Wprowadźmy współrzędne Kruskala-Szekersa (1960) X = T = Metryka ma wtedy postać ( ) r 1/2 ( ) 2m 1 e r t 4m cosh, 4m ( ) r 1/2 ( ) 2m 1 e r t 4m sinh. 4m g = 32m3 e r 2m ( dt 2 + dx 2 ) + r 2 (dθ 2 + sin 2 θdφ 2 ). r 24 / 32

25 Współrzędne Kruskala-Szekersa. T X N II r = 2M t =+CO I t = constant r m r=2m t = -CX) 0=0 r = constant R. M. Wald General Relativity (1984) 25 / 32

26 Współrzędne Kruskala-Szekersa. Udało nam się rozszerzyć współrzędne, otrzymując diagram Kruskala. Każdy punkt diagramu to dwuwymiarowa sfera. Region I to poprzednio r > 2m, czyli region zewnętrznego pola grawitacyjnego. Region II ograniczony osobliwością r = 0 to czarna dziura. Każdy promień świetlny wysłany w tym regionie musi w nim pozostać. Region III to biała dziura. Każdy obserwator tu obecny musi pochodzić z osobliwości r = 0 i opuści region III. Region IV ma własności takie same jak region I. Reprezentuje kolejny asymptotycznie płaski region czasoprzestrzeni leżący wewnątrz r = 2m. Każdy sygnał wysłany z I do IV spadnie do czarnej dziury, zanim osiągnie IV. 26 / 32

27 Współrzędne Kruskala-Szekersa. quantum-entanglement-wormholes-0424/ 27 / 32

28 Kolaps grawitacyjny. W pobliżu r = 0 należy spodziewać się załamania rozwiązania Schwarzschilda, ponieważ wnętrze masywnych obiektów nie jest próżnią. W tym przypadku T µν 0. Z tego powodu regiony III i IV są raczej niefizyczne, natomiast regiony I i II są. Zapadająca się materia powoduje powstanie czarnej dziury jeżeli chowa się ona pod linią r = 2m. W takim przypadku regiony niefizyczne i osobliwość r = 0 zostają przykryte zapadającą się materią. Kolejną wątpliwością może być fizyczność równań Einsteina w tak silnym polu grawitacyjnym. 28 / 32

29 Kolaps grawitacyjny. r= 2M r = 0 ( origin of coordinates) I ~ ~----\ collapsing molter R. M. Wald General Relativity (1984) 29 / 32

30 Podsumowanie. 1. Sferycznie symetrycznym, statycznym rozwiązaniem próżniowych równań Einsteina jest metryka Schwarzschilda. 2. W pobliżu obiektów o dużej masie ma miejsce szereg zjawisk fizycznych takich jak: precesje orbit, zakrzywianie toru fotonów, przesunięcie ku czerwieni. 3. Jeżeli masa obiektu chowa się pod hiperpowierzchnią r = 2m, ta staje się miejscem osobliwych zjawisk - horyzont zdarzeń. 4. W celu opisania geometrii pod horyzontem potrzebna jest zmiana współrzędnych na współrzędne Kruskala-Szekersa. 5. Osobliwość w r = 2m jest osobliwością układu współrzędnych, natomiast w r = 0 jest prawdziwą osobliwością geometryczną. 30 / 32

31 Literatura. R. M. Wald, General Relativity, The University of Chicago Press (1984) J. Foster, J. D. Nightingale, Ogólna teoria względności, Państwowe Wydawnictwo Naukowe (1985) B. F. Schutz, Wstęp do ogólnej teorii względności, Wydawnictwo Naukowe PWN (1995) Notatki do wykładu Ogólna teoria względności 31 / 32

32 Dziękuję za uwagę! 32 / 32

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Geometria Struny Kosmicznej

Geometria Struny Kosmicznej Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp

Bardziej szczegółowo

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić.

Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarna dziura obszar czasoprzestrzeni, którego, z uwagi na wpływ grawitacji, nic, łącznie ze światłem, nie może opuścić. Czarne dziury są to obiekty nie do końca nam zrozumiałe. Dlatego budzą ciekawość

Bardziej szczegółowo

3. Model Kosmosu A. Einsteina

3. Model Kosmosu A. Einsteina 19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Co widzi kosmonauta zbliżając się do horyzontu czarnej dziury?

Co widzi kosmonauta zbliżając się do horyzontu czarnej dziury? Uniwersytet Warszawski Wydział Fizyki Daniel Pęcak Nr albumu: 290923 Co widzi kosmonauta zbliżając się do horyzontu czarnej dziury? Praca licencjacka na kierunku Fizyka w ramach Międzywydziałowych Indywidualnych

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Ruch pod wpływem sił zachowawczych

Ruch pod wpływem sił zachowawczych Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej

Bardziej szczegółowo

Czarne dziury. Grażyna Karmeluk

Czarne dziury. Grażyna Karmeluk Czarne dziury Grażyna Karmeluk Termin czarna dziura Termin czarna dziura powstał stosunkowo niedawno w 1969 roku. Po raz pierwszy użył go amerykański uczony John Wheeler, przedstawiając za jego pomocą

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (B+C) Wykład IV: Ruch jednostajnie przyspieszony Ruch harmoniczny Ruch po okręgu Klasyfikacja ruchów Ze względu na tor wybrane przypadki szczególne prostoliniowy, odbywajacy

Bardziej szczegółowo

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje.

y + p(t)y + q(t)y = 0. (1) Z rozwiązywaniem równań przez szeregi potęgowe związane są pewne definicje. 1 Szeregi potęgowe Poszukiwanie rozwiązań równań różniczkowych zwyczajnych w postaci szeregów potęgowych, zwane metodą Frobeniusa, jest bardzo ogólną metodą. Rozważmy równanie y + p(t)y + q(t)y = 0. (1)

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.

GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina /28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

Dwa przykłady z mechaniki

Dwa przykłady z mechaniki Rozdział 6 Dwa przykłady z mechaniki W rozdziale tym przedstawimy proste przykłady rozwiązań równań mechaniki Newtona. Mechanika Newtona zajmuje się badaniem ruchu układu punktów materialnych w przestrzeni

Bardziej szczegółowo

Czy da się zastosować teorię względności do celów praktycznych?

Czy da się zastosować teorię względności do celów praktycznych? Czy da się zastosować teorię względności do celów praktycznych? Witold Chmielowiec Centrum Fizyki Teoretycznej PAN IX Festiwal Nauki 24 września 2005 Mapa Ogólna Teoria Względności Szczególna Teoria Względności

Bardziej szczegółowo

Twierdzenie 2: Własności pola wskazujące na istnienie orbit

Twierdzenie 2: Własności pola wskazujące na istnienie orbit Cykle graniczne Dotychczas zajmowaliśmy się głównie znajdowaniem i badaniem stabilności punktów stacjonarnych. Wiele ciekawych procesów ma naturę cykliczną. Umiemy już sobie poradzić z cyklicznością występującą

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Wyprowadzenie prawa Gaussa z prawa Coulomba

Wyprowadzenie prawa Gaussa z prawa Coulomba Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.

Bardziej szczegółowo

Ruch cząstki próbnej w polu grawitacyjnym czarnej dziury

Ruch cząstki próbnej w polu grawitacyjnym czarnej dziury Ruch cząstki próbnej w polu grawitacyjnym czarnej dziury I. Przyspieszony kurs Ogólnej Teorii Względności Gdy w 1916 r. Einstein sformułował OTW trudno było znaleźć dla niej zastosowania. Obserwować można

Bardziej szczegółowo

Zagadnienie dwóch ciał

Zagadnienie dwóch ciał Zagadnienie dwóch ciał Rysunek : Rysunek ilustrujący zagadnienie dwóch ciał. Wektor R określa położenie środka masy, wektor x położenie masy m, a wektor x 2 położenie masy m 2. Położenie masy m 2 względem

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja

Wszechświat. Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Wszechświat Krzywizna przestrzeni Opis relatywistyczny Wszechświata Stała kosmologiczna Problem przyczynowości - inflacja Geometria w 2D Poszukujemy opisu jednorodnej i izotropowej przestrzeni. Na razie

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

1.6. Ruch po okręgu. ω =

1.6. Ruch po okręgu. ω = 1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane

Bardziej szczegółowo

Wielcy rewolucjoniści nauki

Wielcy rewolucjoniści nauki Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L

LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia. S= L 4π r L LX Olimpiada Astronomiczna 2016/2017 Zadania z zawodów III stopnia 1. Przyjmij, że prędkość rotacji różnicowej Słońca, wyrażoną w stopniach na dobę, można opisać wzorem: gdzie φ jest szerokością heliograficzną.

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

Ogólna teoria względności - wykład dla przyszłych uczonych, r. Albert Einstein

Ogólna teoria względności - wykład dla przyszłych uczonych, r. Albert Einstein W dobrej edukacji nie chodzi o wkuwanie wielu faktów, lecz o wdrożenie umysłu do myślenia Albert Einstein ELEMENTY OGÓLNEJ TEORII WZGLĘDNOŚCI Podstawa tej teorii zasada równoważności Zakrzywienie przestrzeni

Bardziej szczegółowo

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego

Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie I (luty, 2013) u Wyprowadzenie transformacji Lorentza u Relatywistyczna transformacja prędkości u Dylatacja czasu u Skrócenie długości

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Ruchy planet. Wykład 29 listopada 2005 roku

Ruchy planet. Wykład 29 listopada 2005 roku Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja

Bardziej szczegółowo

Mikrosoczewkowanie grawitacyjne. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski

Mikrosoczewkowanie grawitacyjne. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Mikrosoczewkowanie grawitacyjne Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Ogólna teoria względności OTW została ogłoszona w 1915. Podstawowa idea względności: nie możemy mówid o takich

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Indukcja elektromagnetyczna Faradaya

Indukcja elektromagnetyczna Faradaya Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW

Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Ogólna teoria względności Ogólna Teoria Względności Ogólna Teoria Względności opisuje grawitację jako zakrzywienie czasoprzestrzeni. 1915

Bardziej szczegółowo

Temat XXXIII. Szczególna Teoria Względności

Temat XXXIII. Szczególna Teoria Względności Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje

Bardziej szczegółowo

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka SPIS TREŚCI Przedmowa... 7 1. PODSTAWY MECHANIKI... 11 1.1. Pojęcia podstawowe... 11 1.2. Zasada d Alemberta... 18 1.3. Zasada prac

Bardziej szczegółowo

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach

Dr Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Dr Kazimierz Sierański kazimierz.sieranski@pwr.edu.pl www. If.pwr.wroc.pl/~sieranski Konsultacje pok. 320 A-1: codziennie po ćwiczeniach Forma zaliczenia kursu: egzamin końcowy Grupa kursów -warunkiem

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ

Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie

Bardziej szczegółowo

Kinematyka: opis ruchu

Kinematyka: opis ruchu Kinematyka: opis ruchu Fizyka I (Mechanika) Wykład II: Pojęcia podstawowe punkt materialny, układ odniesienia, układ współrzędnych tor, prędkość, przyspieszenie Ruch jednostajny, ruch jednostajnie przyspieszony

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

ver grawitacja

ver grawitacja ver-7.11.11 grawitacja początki Galileusz 1564-164 układ słoneczny http://www.arachnoid.com/gravitation/small.html prawa Keplera 1. orbity planet krążących wokół słońca są elipsami ze słońcem w ognisku

Bardziej szczegółowo

V.4 Ruch w polach sił zachowawczych

V.4 Ruch w polach sił zachowawczych r. akad. 5/ 6 V.4 Ruch w polach sił zachowawczych. Ruch cząstki w potencjale jednowyiarowy. Ruch w polu siły centralnej. Wzór Bineta 3. Przykład: całkowanie wzoru Bineta dla siły /r Dodatek: całkowanie

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

4. Ogólna teoria względności

4. Ogólna teoria względności Informatyka 011/1 4. Ogólna teoria względności W ogólnej teorii względności A.Einstein rozszerzył wcześniejsze prace na układy nieinercjalne. Doprowadziło go to do ujednolicenia opisu grawitacji oraz sił

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Uogólniony model układu planetarnego

Uogólniony model układu planetarnego Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej 22.05.2009 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na

Bardziej szczegółowo